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Chapter 1

Introduction

This introduction �rst gives an idea of what system identi�cation (or mod-
eling) is, where it is applied, how a model can be obtained and what a�ects its
quality. Next, the di�erence between a linear and nonlinear system is explained
and the nonlinear state-space model that will be used throughout this thesis
is brie�y introduced. This introductory chapter also contains an outline of the
thesis, the contributions and a publication list.

1.1 System identi�cation

There are many engineering branches, such as chemical, mechanical, electrical
and civil engineering. The work of an engineer can be very versatile. He or she
can e.g. be charged with design, testing, production or maintenance. Often,
the subject the engineer is working on can be considered to be a �system�,
possibly consisting of several components and surely having a speci�c behavior.
Examples of such systems � for the previously stated engineering branches � are
a distillation column, an airplane, an ampli�er and a bridge. Of course, millions
of other systems can be thought of, many that are not part of traditional
engineering branches: the stock market (in economics), ecosystems such as
a lake (in biological engineering) and even the weather (in meteorology) or
climate (in earth science).

If one wants to optimize the design (e.g. of a distillation column), detect
or prevent a failure (e.g. collapse of a bridge), build a controller or simulator
(e.g. for a jet) or know what factors have the highest impact on our climate,
it is important to get insight in the behavior of those systems. This is what

13



14 Chapter 1. Introduction

system identi�cation is about: mathematically modeling the behavior of a sys-
tem, thereby employing measured data and statistical methods. Typically, the
system has some memory and is therefore called �dynamic�. This means that
an action in the past can still have an in�uence in the present.

In practice, the identi�cation of a system entails four steps:

1. Collecting data
The engineer �rst collects data via measurements. Those data can result
from an excitation that is applied by the engineer him- or herself (e.g.
vibration of the wings of an airplane by means of a shaker), or can simply
be a measurement of what is going on with the system (e.g. cars passing
over a bridge or wind blowing on a wind turbine). Figure 1.1 shows a
schematic representation in which the data are divided in input data u
and output data y. The in- and output are related to physical quantities
such as e.g. a force, a velocity or a temperature. For instance, in control
applications, the input usually is the signal that controls the behavior of
the system, while the output is its response to this input. In many other
situations however, it is rather a choice made by the engineer: when
measuring an impedance, either the current or the voltage can be chosen
as the input. In the errors-in-variables framework, no choice is needed.

2. Choosing a model representation
Next, the engineer chooses a model structure. It represents a whole family
of behaviors, depending on (unknown) parameters. These parameters
need to be tuned (see step 3) in order to get a good correspondence
between the modeled and measured system behavior. In this thesis we
will concentrate on nonlinear dynamic models.

3. Using a cost function to make the model �t the data
A suitable optimization criterion (called cost function) is selected. The
value of the cost re�ects the correspondence quality (distance between
the model and the data) and is function of the model parameters. Hence,
minimizing the cost is equivalent to tuning the model parameters. Once
the parameters are tuned, the model should �t the data in some statistical
sense (e.g. minimize the output error in least-square sense, as de�ned by
the chosen cost function). Also, it is desirable to generate uncertainty
bounds. This is possible by using noise models.

4. Model validation
A last validation step should be performed to check the model quality.
Such a validation can be done on a separate data set (also called test
set). If the model appears to inaccurately describe those data, the identi-
�cation process should be repeated with either di�erent estimation data,
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model
input output

�� ���Tu y

Figure 1.1: Schematic representation of a model with inputu and output y.
The model depends on its parameters (� ).

a di�erent choice of model, a di�erent cost function, a di�erent initial
guess of the parameters (initial estimates) or a modi�ed optimization
algorithm.

The �nal accuracy of the model depends on (1) the available measurement
data, (2) the technique that is used to estimate the model parameters and (3)
the model class itself:

1. The data are to some extent corrupted by noise and might not be ade-
quate to reveal the intended phenomena. Technically spoken, the data
might e.g. not fully cover the interesting (for the engineer or user) fre-
quency band or amplitude range.

2. The optimization procedure of step 3 might not always attain the desired
minimal cost function value. Models that are linear-in-the-parameters,
can be estimated in least-square sense via a single computation. For more
complicated models, such as the state-space models that are considered
in this thesis, a numerical optimization routine is used. The outcome of
such optimization routines is highly dependent on the complexity of the
problem and might be di�erent for several initial parameter estimates
(there might exist local minima of the cost function that needs to be
minimized).

3. There are many model types: static and dynamic, linear and nonlin-
ear, frequency domain and time domain, discrete-time and continuous-
time, white-box (such as a physical description), grey-box (assuming some
prior knowledge) and black-box (without assuming any prior knowledge),
time-invariant or time-varying (the model parameters change over time),
... The optimal choice depends on the system under consideration, the
prior knowledge of the engineer and the intended use. This thesis deals
with dynamic (in particular state-space), nonlinear (namely polynomial),
discrete-time, black-box, time-invariant models.

Classic textbooks about system identi�cation are Ljung (1999), Pintelon and
Schoukens (2001b) and Söderström and Stoica (1989).



16 Chapter 1. Introduction

1.2 Linear and nonlinear systems

Disregarding the e�ect of transients (or equivalently initial conditions), linear
systems behave according to the superposition principle. As a consequence,
when the input's amplitude is doubled, the output's amplitude is doubled as
well. Clearly, this is quite restrictive and many or even most real-life systems
are nonlinear. E.g., the amount of work done in a factory does not double
with the number of employees (if the o�ce area remains the same). Striking
a piano key twice as hard does not always produce a tone that sounds twice
as loud (because the hammer acts somewhat like a hardening spring). More-
over, our ears behave very nonlinearly: while the inner ear is quite linear (in
some amplitude range), the outer hair cells of the cochlea have a built-in sound
level compression system. Of course, also in typical engineering applications
(such as chemical, mechanical, telecom, electronical, power machines, automo-
tive and civil engineering), nonlinear systems pop up and can even be useful.
Besides a simple nonlinear characteristic (as the one of a hardening spring),
also saturation (as in some electronic components), hysteresis (as backlash in
a gear wheel) and dead zones (e.g. due to friction) are examples of nonlinear
behavior.

1.3 Nonlinear black-box modeling

Although most real-life systems are nonlinear, and a nonlinear model might
greatly outperform a linear model, engineers usually stick to the identi�cation
of a linear model. They have good reasons: a general framework for both the
identi�cation and control theory exists. Indeed, the high amount of possible
nonlinear structures might discourage many engineers. Let's sum up some of
them: nonlinear state-space models (Paduart, 2008), Volterra series (Schetzen,
1980), NARMAX models (Billings and Fakhouri, 1982a; Sjöberg and Ljung,
1995), the Wiener theory (Schetzen, 1980), block-structured models (Bai and
Giri, 2010; Haber and Unbehauen, 1990), neural networks (Suykenset al., 1996;
Rojas, 1996) and fuzzy models (Nelles, 2000). For more information, we refer to
Giannakis and Serpedin (2001) and Sjöberget al. (1995). If specially designed
periodic excitation signals (such as multisines) can be applied, the level of
nonlinearity can be determined (Pintelon and Schoukens, 2001b). With this
level, the (possible) gain of using a nonlinear model instead of a linear one
can be quanti�ed, even without constructing a nonlinear model. Such a result
might be persuasive, but the question which nonlinear model to choose remains.
This thesis focuses on one such a model, anonlinear state-space model, that
appears to be quite powerful in several modeling tasks and benchmarks. On
the other hand, nonlinear state-space models can be quitecomplex and subject
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to stability problems. Those are the two drawbacks that will be tackled in this
thesis.

1.4 Nonlinear state-space models

As it is very well known, state-space models are particularly well suited for
modeling multiple-input multiple-output (MIMO) systems. Let nu and ny

represent resp. the number of input and output signals.

De�nition 1.1. In general, a discrete-time nonlinear state-space model is given
by

x(t + 1) = f (x(t); u(t); � )
y(t) = h (x(t); u(t); � )

(1.1)

with u(t) 2 Rn u � 1 a vector that contains the nu input values at time instant
t 2 Z, y(t) 2 Rn y � 1 the vector of ny outputs and x(t) 2 Rn � 1 the vector of
n states. The functions f and h depend on the vector of model parameters
� 2 Rn � � 1.

This is a model that can capture dynamics in a system via the top equation,
called state equation. It describes the states evolution: a new state (vector) is
function of the previous state(s) and input(s). The states represent in fact the
memory (dynamics) of the model. The bottom equation is theoutput equation
and relates the present output(s) to the present state(s) and input(s). The
number of statesn is also known as the model order.

This general discrete-time nonlinear state-space model can be seen as a
black-box, nonlinear, dynamical model.

In this thesis, the nonlinearity is restricted to be of polynomial kind (which
means that the nonlinear functions f and h are polynomial functions of x and
u). The model structure hence looks like a conventional linear state-space
model extended with polynomial nonlinear terms. It is called a Polynomial
Nonlinear State-space Model (PNLSS) (Paduart, 2008).

1.5 Outline of the thesis

Chapter 2 introduces the PNLSS model and its identi�cation as it was per-
formed by Johan Paduart (Paduart, 2008). This chapter includes a summary
of advantages and drawbacks of PNLSS models. Next, the two main parts of
the thesis, each aiming at tackling a speci�c drawback, follow.
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1.5.1 Part I: How to deal with model instabilities

As will be shown later on, the PNLSS model is not guaranteed to respond
in a bounded way to any bounded input (viz. in a stable way). Since the
identi�cation method by Paduart (2008) involves a nonlinear, iterative mini-
mization, which needs to simulate each intermediate model, the minimization
can get stuck due to these model instabilities. A constrained and a partially
constrained approach are proposed to allow the optimization method to cross
these unstable regions of the parameter space. The partially constrained ap-
proach provides a trade-o� between robustness and memory allocation or com-
putation speed. The bene�ts of the constrained approaches will be explained
and shown via simulation examples. Moreover, an experimental data example
shows that, when the unconstrained method does not get stuck, the results are
equivalent to the (unconstrained) identi�cation technique in Chapter 2. A �nal
experimental result demonstrates that the (partially) constrained approach can
improve the result of an unconstrained approach, hereby crossing an unstable
region in the parameter space.

1.5.2 Part II: Reducing the model complexity

The high �exibility of the PNLSS model typically comes at the expense of a
quite high number of parameters. This part aims at simplifying the model
(i.e. bias-sparsity trade-o�) assuming that the model admits certain struc-
tural properties. Thereto, model reduction techniques such as regularization
methods are also considered. The relation between the PNLSS model and
some nonlinear block-structures � consisting of interconnected linear dynamic
blocks (LTI) and static nonlinear blocks (SNL) � is discussed. The PNLSS
model properties are investigated for a number of nonlinear block-structures,
and the key role of state transformations is emphasized. Next, two methods
are proposed to reduce the model complexity by converting the PNLSS model
into more easily interpretable LTI and SNL blocks. The structure is either a
Wiener-Hammerstein structure 1 or the most general representation of a system
that consists of one (here assumed to be SISO) static nonlinearity. A block-
structured model is in fact a grey-box model and hence contains (if correct)
extra information on the system.

1.6 Contributions

The contributions of the �rst part are listed below:

1A Wiener-Hammerstein structure is a block-structured model consisting of two linear
dynamic blocks with a static nonlinearity in between.
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ˆ Construction of a constrained optimization method that allows the PNLSS
model parameters to be estimated from input-output data. The approach
is related to multiple shooting methods for parameter estimation (Bock,
1987), but is now applied to black-box system identi�cation with a pro-
cedure that provides initial estimates of the parameters;

ˆ Evaluation of the properties of the constrained optimization method, such
as the estimation of an unstable system based on bounded input-output
data, by means of simulation examples;

ˆ Comparison of the performances (least square errors) of the two opti-
mization methods on experimental data;

ˆ Introduction of a partially constrained optimization method and ad hoc
strategy that combines the positive aspects of the constrained and un-
constrained methods.

The contributions of the second part are:

ˆ Evaluation of the relation between some block-structured models and the
PNLSS model;

ˆ Construction of algorithms to investigate the e�ect of linear and nonlinear
state transformations to PNLSS models;

ˆ Reduction of the number of parameters of a PNLSS model by imposing
a Wiener-Hammerstein structure;

ˆ Reduction of the number of parameters of a PNLSS model by imposing
a quite general structure with one (SISO) static nonlinearity.
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• …

Figure 2.0: Illustration complementing the abstract and ideas of Chapter 2.
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Chapter 2

Polynomial Nonlinear
State-Space model: existing
identi�cation method and
properties

This chapter gives a quick overview on the PNLSS model and how it was
identi�ed in Paduart (2008); Paduart et al. (2010) (i.e. the minimization of
the cost function and how to obtain the Best Linear Approximation as initial
estimate). The chapter ends with a summary of the advantages and drawbacks
of the PNLSS model.

2.1 Model structure

2.1.1 Model equations

Throughout this thesis, a special type of nonlinear state-space model is consid-
ered, wheref and h in (1.1) are replaced by polynomial functions.

De�nition 2.1. A Polynomial Nonlinear State-Space (PNLSS) model is a non-
linear state-space model with polynomial nonlinearities. It can be written as a
classical linear state-space model of which all (n state- andny output) equations

25
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are extended by polynomials (with nonlinear degree> 2):

x(t + 1) = Ax (t) + Bu(t) + E� (x(t); u(t))
y(t) = Cx(t) + Du(t) + F � (x(t); u(t))

(2.1)

As mentioned in Chapter 1, x(t) 2 Rn � 1, u(t) 2 Rn u � 1 and y(t) 2 Rn y � 1

are respectively the state-, input- and output vectors at time instant t. The
vectors � 2 Rn � � 1 and � 2 Rn � � 1 contain monomials in x(t) and u(t); the
matrices E 2 Rn � n � and F 2 Rn y � n � contain the coe�cients associated with
those monomials. n� and n� are the number of monomials in resp. � and � .
The coe�cients of the linear terms in x(t) and u(t) are given by the coe�cient
matrices A 2 Rn � n and B 2 Rn � n u in the state equation, and C 2 Rn y � n

and D 2 Rn y � n u in the output equation.

In practice, the nonlinear degree of the monomials in� and � is limited to
a value d 2 N that is chosen by the user. Hence, they can be any chosen set of
combinations of

x � 1
1 x � 2

2 : : : x � n
n u
 1

1 u
 2
2 : : : u
 n u

n u

with � 1; : : : ; � n ; 
 1; : : : ; 
 n u 2 N and 2 6
P

j � j +
P

i 
 i 6 d.
The major advantage of the PNLSS model is its capability of describing

a very large class of nonlinear systems, such as bilinear models, a�ne mod-
els, nonlinear models with only nonlinearities in the states, nonlinear models
with only nonlinearities in the input and certain block-structured nonlinear
models (Wiener, Hammerstein, Wiener-Hammerstein and nonlinear feedback)
(Paduart, 2008). In this reference, the model has been successfully used on
several application examples. Consequently, it can be stated that the PNLSS
model (2.1) is a generic �all-purpose� black-box model (although its approx-
imation capabilities are quite good, e.g. non-smooth state evolutions cannot
be adequately represented). One drawback is that, in practice, when a full
parameterization is used, with a high nonlinear degree, the number of parame-
ters grows combinatorially. This means that in practice, to keep the number of
parameters reasonable compared to the number of data, the nonlinear degree
should not be chosen too high.

2.1.2 Parameterization

De�ne � 2 Rn � as a vector containing all the model parameters:

� T = [ vec(A)T vec(B )T vec(C)T vec(D)T vec(E)T vec(F )T ] (2.2)

with vec an operator that stacks the columns of a matrix onto each other.
Since all model parameters are included, the model is overparameterized. This
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is a consequence of similarity transforms on the states that do not in�uence
the input-output behavior. As will be discussed in Chapter 5, both linear
and nonlinear transforms can exist. This problem is taken care of during the
estimation process by means of a pseudo-inverse. Other approaches exist, such
as the use of canonical forms or Data Driven Local Coordinates (DDLC). The
latter approach avoids the numerical ill-conditioning of the estimation problem
in case of a canonical parameterization (McKelveyet al., 2004). The DDLC
approach has in fact been proven to be equivalent to the use of a pseudo-inverse
(Wills and Ninness, 2008). The advantage of the pseudo-inverse is that it can
easily be implemented, while the DDLC method is up to now only feasible
for linear, bilinear or LPV state-space models. It has been shown (Pintelon
et al., 1996) that the choice of parameterization does not a�ect the stochastic
properties of the estimates of the invariants of the system (i.e. the minimum
variance bounds).

2.2 Assumptions

Assumption 2.2. The input u(t) is known exactly (without noise) and is per-
sistently exciting. The model is assumed to describe the system output exactly,
such that there exists a� 0 for which the true model outputy(t) = y(t; � 0). The
output measurementsym are related to the system outputy(t; � 0):

ym (t) = y(t; � 0) + v(t) (2.3)

with � 0 the true parameter values andv(t) the additive output measurement
noise, which is (possibly colored) Gaussian, zero mean and has a �nite variance.
Moreover, it is independent of the input.

Under Assumption 2.2, the least-squares estimator corresponds to the maxi-
mum-likelihood estimator, which is asymptotically consistent, e�cient and nor-
mally distributed (Kendall and Stuart, 1979). The noise condition can be re-
laxed to (non-Gaussian) colored noise with existing second and fourth order
moments.

Remark. If these assumptions do not hold, the methods can still be used, but
their maximum-likelihood properties will not be valid anymore. If only a noisy
version of the input is available and the signal-to-noise ratio (SNR) is so low
that the bias is not negligible, the SNR can be improved by averaging over
several periods (when available), hence decreasing the bias.

In the identi�cation method outlined in the remainder of this chapter, it is
assumed that the following assumption holds.
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Assumption 2.3. The system response to the (bounded) input that was applied
is bounded.

This assumption is needed since a state recursion will be applied to calculate
the model output. In Chapters 3 and 4, this assumption is redundant and will
be removed.

2.3 Identi�cation

In order to identify a system, a cost function (function of the model parameters
and a measure of the model quality with respect to the data) is de�ned (Section
2.3.1). This cost function needs to be minimized over the model parameters
and, since the chosen model structure is nonlinear in the parameters, this is
done by means of a numerical optimization (Section 2.3.2). The quality of the
�nal model often depends on the initial estimates of the parameters, which
should be located as close as possible to the global minimum. As initialization,
the Best Linear Approximation (BLA) (Section 2.3.3) can be used andE and
F can be initialized as zero matrices.

2.3.1 Cost function

With parameter vector � (2.2), the weighted least-squares cost function is de-
�ned as

VWLS (� ) =
bN= 2c+1X

k=0

e� H (k; � )W (k)e� (k; � ) (2.4)

with e� (k; � ) 2 Cn y � 1 de�ned as the residual vectore� (k; � ) = Y (k; � ) � Ym (k) and
W (k) 2 Cn y � n y a user-chosen frequency dependent weighting matrix. Formu-
lating the cost function in the frequency domain yields asymptotically equiv-
alent results as in the time domain and simpli�es the implementation of non-
parametric weighting because it results in block-diagonal weighting matrices.
Superscript H means that the Hermitian transpose is taken and the notation
bN=2c means that the �oor function is applied to the real number N=2, i.e.
it takes the largest integer not greater than N=2. Vector Y (k; � ) 2 Cn y � 1 is
the kth frequency component of the Discrete Fourier Transform (DFT) of the
modeled output

y(� )T = [ y(0; � ) � � � y(N � 1; � )] (2.5)

de�ned by Y(k; � ) = 1
N

P N � 1
t =0 y(t; � )e� j 2� k

N t , with j =
p

� 1. Note that
y(t; � ) 2 Rn y � 1 and hencey(� ) 2 RN � n y .
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Analogously, Ym (k) is the kth DFT component of the measured output

yT
m = [ ym (0) � � � ym (N � 1)]

N represents the number of time samples.
The cost function in (2.4) can be rewritten as a product

VWLS (� ) = e� H
tot (� )Wtot e� tot (� ) (2.6)

with e� tot (� )T =
�
e� (0; � )T � � � e� (bN=2c + 1 ; � )T

�
and

Wtot =

0

B
@

W (0) 0
. . .

0 W (bN=2c + 1)

1

C
A (2.7)

a block-diagonal matrix.
In the following, U(k) 2 Cn u � 1 is de�ned as the kth DFT component of the

input u.
Often, Wtot contains the inverted frequency domain noise covariance ma-

trices estimated from repeated experiments (e.g. a periodic excitation) � when
available. If not available, it can be used to put more weight on a frequency
band, or can simply be chosen equal to identity.

Remark. Up to now, transient e�ects were not taken into account. They result
from a mismatch between the true and assumed initial statesx(0). Due to this
mismatch, there is � during some time (a number of transient points N trans ) �
an extra big, but diminishing, di�erence between the modeled and measured
output. If this e�ect is neglected, the model �t will be distorted because the
minimization of the cost function will try to reduce the error on these transient
points, while it should rather focus on the rest of the data. To avoid this, there
are three options:

1. Simply discarding the transient points. This means that some information
is lost.

2. If the signals are periodic, an extra (part of a) period (or possibly several
periods) can be simulated. Afterwards, these extra points can be omitted.
No information gets lost.

3. Estimating x(0) by adding it to the parameter vector � . This is especially
useful for aperiodic data.

More information can be found in Paduart (2008).
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2.3.2 Optimization

The cost (2.4) can be rewritten asVWLS (� ) = � H � with � = W 1=2
tot e� tot . This

is possible sinceWtot is a Hermitian positive de�nite matrix (Golub and Van
Loan, 1989). The parameter estimate�̂ should minimize the cost function:

�̂ = argmin
�

VWLS (� ) (2.8)

Using a nonlinear optimization method, such as e.g. the Levenberg-Marquardt
method (Fletcher, 1991b), a (local) minimum is found in an iterative way:

(J ( i )T J ( i ) + � ( i )2
LM I n � )�� ( i ) = � J ( i )T � ( i ) (2.9)

with � ( i )
LM 2 R+ the Levenberg-Marquardt factor and J ( i ) 2 RN � n � the Jaco-

bian matrix at iteration i :

J ( i ) =
@�
@�

�
�
�
�
� ( i )

(2.10)

The parameters are updated by adding�� to the previous value of � :

� ( i +1) = � ( i ) + �� ( i ) (2.11)

The parameter update�� ( i ) is calculated via a singular value decomposition
(SVD) of the Jacobian matrix J ( i ) = U( i )

J � ( i )
J V ( i )T

J :

�� ( i ) = � V ( i )
J

�
� ( i )2

J + � ( i )2
LM I n �

� � 1
� ( i )

J U( i )T
J � ( i ) (2.12)

Doing so reduces the numerical errors compared to solving (2.9) directly, which
would deteriorate the numerical conditioning due to the explicit formation
of the product J ( i )T J ( i ) (Pintelon and Schoukens, 2001b). The Levenberg-
Marquardt factor is adapted during the iterations depending on the success of
the parameter update. When the cost decreases (VWLS

�
� ( i +1)

�
< VWLS

�
� ( i )

�
),

it is decreased (typically by e.g. a factor2) such that the method tends more
towards a Gauss-Newton method; when the cost increases, it is increased (typi-
cally by e.g. a factor

p
10), such that the method tends more towards a gradient

method (which is slower, but has a larger region of convergence).

2.3.3 Initial estimates: the Best Linear Approximation

The initial estimates for the linear parameters (A, B , C, D) are found by a
two-step procedure. The �rst step is based on the Best Linear Approximation.
Starting from a nonparametric estimate of the BLA, the initial estimates can
be the parametersA; B; C; D of a parametric �t of the BLA (via subspace
techniques).



2

2.3. Identi�cation 31

De�nition 2.4. The Best Linear Approximation (BLA) of system G(:) is the
linear systemGBLA (:) that best describes the systemG(:) in Mean Square sense.
Note that the BLA depends on the input signal. Consider a Gaussian with given
power spectrum; for a SISO system, the BLA is de�ned as

GBLA = arg min
G

E
h
jy(t) � G(q)u(t)j2

i

with q the time shift operator (qu(t) = u(t + 1) ) and E the expected value
with respect to the input realization (Enqvist and Ljung, 2005; Enqvist, 2005;
Pintelon and Schoukens, 2001b).

2.3.3.1 Nonparametric Frequency Response Function

The BLA can be estimated nonparametrically via (Bendat and Piersol, 1980;
Pintelon and Schoukens, 2001b)

ĜBLA (k) = ŜY U (k)Ŝ� 1
UU (k) (2.13)

with ĜBLA (k) 2 Cn y � n u the estimated frequency response function (FRF) at
frequency line k, ŜY U 2 Cn y � n u the estimated cross-power spectrum between
output and input and with ŜUU 2 Cn u � n u the estimated auto-power spectrum
of the input. If the input is Gaussian and the system is a Wiener system
(Schetzen, 1980) (in the sense that periodic input data result in periodic output
data with the same period), the system can be modeled as the sum of the BLA
and a noise sourceys(t) 2 Rn y � 1(Schoukenset al., 2003a; Enqvist and Ljung,
2005). This noise source is called stochastic nonlinear contribution since it is
uncorrelated with the input. It accounts for the part of the output y that
cannot be captured by the linear dynamics:

Y (k) = GBLA (k)U(k) + Ys(k) (2.14)

with Ys(k) 2 Cn y � 1 the kth frequency line of the DFT of ys and with the
property that E [Ys(k)] = 0 .

The choice of the frequency domain to estimateGBLA and its variance
�̂ 2

GBLA
has three advantages:

1. Initial estimates can also be obtained for unstable systems that are sta-
bilized with e.g. a feedback loop. Note that techniques for modeling an
unstable system in the time domain exist as well (Forssell, 1999), but
these are more involved.

2. The nonparametric variance estimates�̂ 2
GBLA

(k) robustify the second,
parametric step of the identi�cation (Section 2.3.3.2) by using them as
weights in a weighted least-squares method.
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3. The user can select � in a straightforward manner � a frequency band of
interest.

An alternative approach for the nonparametric estimation of the FRF, is to use
the local polynomial method (Pintelon et al., 2010), which provides a maximal
frequency resolution while taking full care of transient phenomena.

2.3.3.2 Frequency domain subspace identi�cation

The second step is to convert the nonparametric model into a linear parametric
state-space model using the frequency domain subspace identi�cation method
(McKelvey et al., 1996; Pintelon, 2002).

2.3.3.3 Quality of the initial estimate

According to Assumption 2.2, the measured output is corrupted by a noise
source:

Ym (k) = GBLA (k)U(k) + Ys(k) + V (k) (2.15)

with V (k) the kth DFT component of v.
Hence, the total variance of the estimateĜBLA (k) is the sum of the mea-

surement noise variancê� 2
v (k) and the variance due to the stochastic nonlinear

contributions:
�̂ 2

GBLA
(k) = var (Ys(k)) + �̂ 2

v (k) (2.16)

When periodic data are available, the measurement noise (variations over
the periods) and the e�ect of the nonlinear behavior (variations over di�erent
realizations) can be separated. There are three options:

1. If �̂ 2
GBLA

� �̂ 2
v (k), a linear model is su�cient, since the nonlinear e�ects

are buried in the noise.

2. If �̂ 2
GBLA

> �̂ 2
v (k), it can be assumed that the nonlinear behavior is not

too strong, such that the parametric estimate of the BLA will allow the
iterative algorithm to converge to a good (local) minimum. The nonlinear
parameter matrices (E and F ) can be initialized to zero.

3. If �̂ 2
GBLA

� �̂ 2
v (k), a nonlinear initialization is also possible. An example

is the initialization of a PNLSS model with only state-a�ne terms in
the state- and output equations via subspace techniques (Verdult, 2002).
Afterwards, the parameters of the other nonlinear terms can be initialized
to zero and optimized (together with the other parameters) with the
nonlinear optimization method (see Section 2.3.2).
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2.3.4 Selecting the best model via a separate portion of
data

Up to this point, it was not clari�ed yet how to choose the best model order n
and nonlinear degreed of the model. The highest model order and degree are
expected to obtain the lowest estimation cost, but this is not the best reference
for the model quality (on a fresh, separate portion of data, it will not obtain
the lowest cost). This is due to over�tting, which happens when the model
complexity is partially used to model the noise on the estimation data. The
best choice (forn and d) is to pick the model with the lowest cost on a separate,
unused portion of the estimation data.

The same e�ect arises during the iterations of the estimation procedure.
Usually, during the iterations of the optimization, the cost on the separate
portion of data will �rst decrease and then start to increase again. Hence, in
this case, the model does not gain in quality during the last optimization steps.

In practice, a given set of estimation data is split in two parts: one that
is supplied to the optimization routine and one that can be used to select
a good model afterwards (both for selection ofn and d and the best model
over the iterations). In the end, the result on the (untouched) validation data
(also called test data) provides the real test for the model, such that it can be
compared with other models (from other methods).

2.4 Advantages and drawbacks

The use of a PNLSS model is subject to a number of pros and cons, which will
be summarized below.

Some advantages of the PNLSS model are:

ˆ its �exibility (it can be used to model nonlinear feedback phenomena �
including e.g. hystesis, amplitude-dependent resonances, subharmonics
and chaotic behavior � and it can perfectly describe virtually any block
structure with polynomial nonlinearity)

ˆ the ease with which initial estimates to start the numerical optimization
can be generated

ˆ the straightforward computation of the polynomial basis functions

ˆ the easy application of both the polynomial basis functions and state-
space models in a multivariable framework

ˆ the di�erentiability of the polynomials, such that the Jacobian matrix
does not need to be approximated.



34 Chapter 2. PNLSS model: existing identi�cation method and properties

Drawbacks of the model are:

ˆ its high number of parameters

ˆ the lack of physical interpretability, in contrast to white-box (physical)
models and grey-box models (such as block-structures)

ˆ the model is not (guaranteed to be) stable

ˆ the explosive behavior of the polynomials outside the region in which
they were estimated.

This last point means that it can be problematic to extrapolate a PNLSS
model. Replacing the polynomials by other (saturating) basis functions can
avoid this problem. On the other hand, it is never a good idea to extrapolate
with an estimated model, even not for well-behaving basis functions. But, the
optimization itself might as well get stuck at a stability boundary, yielding a
suboptimal model.

Two of the main drawbacks are handled in this thesis: on the one hand, the
problem of instability during optimization (the two chapters in Part I) and on
the other hand the high number of parameters (Part II of this thesis).



Part I

How to deal with model
instabilities

35





Introduction

As stated in Chapter 2, a drawback of the PNLSS model is that it is di�cult to
guarantee the stability of an estimated model: the model's output could diverge
if no special care is taken. A state-space model is recursive and polynomials
� especially those with a high nonlinear degree � easily grow very large. In
some cases, it is possible to force the model to be stable, but this may increase
the model errors. Two problems can occur during the estimation: either the
initial estimates can be unstable or the model can become unstable during the
optimization. In the �rst case, the optimization can not even start; in the
second case, the optimizationgets stuck at the stability boundary.

This part of the thesis focuses on how to obtain arobust optimization that
does not su�er from instabilities. It will however not explore how to stabilize
an unstable model. This part consists of two chapters. The �rst one explains a
method that is maximally robust; the second chapter proposes an alternative
that tackles the drawbacks of the �rst method (its long computation time and
high memory usage) at the expense of a decreased robustness. Both methods
can also be used for non-polynomial state-space models. They essentially con-
sist of aconstrained optimization: the �rst one includes a constraint for (nearly)
every of the nN states, while the second method includes constraints for only
a selection of states. All the selected states are added to the parameter vector
of the constrained optimization. The additional robustness can be intuitively
understood as follows: the parametric states are �nite in every iteration step
(they are obtained from updating an initial, �nite guess) and cannot diverge
(if they would, the cost would diverge as well). These (bounded) parametric
states are used to calculate the model output, instead of the simulated states.

37
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Figure 3.0: Illustration complementing the abstract and ideas of Chapter 3.
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Chapter 3

A constrained approach

This chapter proposes an identi�cation method that is robust to model
and system instabilities. This can be used to model unstable systems (for
which bounded input-output data are available), but can also help to cross
unstable regions in the parameter space. The approach is to avoid a blow-up
of the state equations while computing the cost (which normally involves a
state recursion). This is done by considering the states as model parameters,
such that the output (and output error) is calculated by means of the output
equation only. To satisfy the state equations, a vector of constraints is added.

3.1 Introduction

Due to the presence of feedback in state equations, the identi�cation method
described in Chapter 2 and more in particular the optimization in Section 2.3.2
can su�er from instabilities. The consequence is that unstable regions in the
parameter space cannot be crossed, nor can an unstable system be modeled.
The method presented here di�ers in three respects from the standard identi�-
cation: the choice of the free (optimization) variables, the presence (instead of
lack) of constraints, and the way in which the model output is calculated. In the
previous method (Chapter 2), the free variables were only the model parame-
ters, whereas here, both the model parameters and the states are free variables.
The calculation of the modeled output is di�erent because in this method, the
(parameterized) states are used instead of the recursively simulated states via
the state equations.

39
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This method is inspired by the so called �simultaneous approach� to param-
eter estimation in di�erential equations (Bock et al., 1992; Bock, 1987, 1983).

3.2 Outline

Section 3.3 gives the de�nition of the extended parameter vector, the cost
function and the constraint function. Section 3.4 discusses how to obtain initial
estimates for the parameters, especially for the states. Section 3.5 provides
some background information on the constrained optimization. Sections 3.6
to 3.11 explain how to proceed with the optimization itself. Furthermore, two
simulations and an experimental result are used to validate the method.

3.3 Parameter vector, cost function and constraint
function

The optimization variables # 2 Rn # (with n# = nN + n� ) are the states (at all
time instants) and the parameters � of the chosen model (2.1):

#T = [ xT (0) � � � xT (N � 1) � T ] (3.1)

In this case, the modeled output in (2.5) should be interpreted as function of
# instead of � . Moreover, in this chapter and the next one, the cost is assumed
to be de�ned as follows in the time domain:

V (#) = "(#)T " (#) (3.2)

with
" (#) = vec(y(#)) � vec(ym ) (3.3)

and y(#) 2 RN � n y and ym 2 RN � n y respectively the modeled and measured
output. There is no (frequency dependent) weighting introduced in this chap-
ter. Doing so would destroy the sparsity of the equations in Section 3.6.

In the constrained method, the cost function (also called objective in opti-
mization literature) is minimized subject to the constraint function F (#) = 0 :

#̂ = arg min
#

s:t : F (# )=0

V(#) (3.4)

with

F (#) =

2

6
6
6
4

f (x(0); u(0); � ) � x(1)
f (x(1); u(1); � ) � x(2)

...
f (x(N � 1); u(N � 1); � ) � x(0)

3

7
7
7
5

(3.5)
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This constraint function F 2 Rn F consists of the di�erences between both
sides of the state equation (1.1), evaluated at the states from (3.1). The last
constraint equation imposes periodicity. For aperiodic signals, this equation
should be deleted. Hence, the number of constraints is

nF =
�

nN; if the signals are periodic
n(N � 1); if the signals are aperiodic

(3.6)

3.4 Generating initial estimates for #

The initial estimates of the parameter values � are determined via the best
linear approximation as described in Section 2.3.3. The remainder of this sec-
tion will focus on the generation of initial estimates for the (parametric) states,
which are new in the present constrained approach compared to Chapter 2.
Note that the states will be a�ected by the same, unavoidable similarity trans-
forms as theA, B , C, E and F matrices.

3.4.1 Periodic signals

For periodic signals (in steady state), some options can be enumerated for the
calculation of the initial estimates of the states (which are the states of the
BLA):

ˆ In the time domain by using the state equation of (2.1), with u(t) the
known input and A, B (and E = 0 ) parameters in � . Transient e�ects
can be eliminated by simply simulating several periods (starting from
x(0) = 0 ) and retaining only the last period.

ˆ In the time domain by estimating the initial state x(0). This can be done
by adding an arti�cial impulse input to the model (Paduart, 2008). Next,
the states at the other time instants can be obtained via direct simulation
of this extended model.

ˆ Another option is to calculate the states in the frequency domain (z-
domain) via:

X (k) = ( zk I � A) � 1BU (zk ) (3.7)

with zk = ej 2�k=N and X and U the discrete Fourier transforms of the
time domain signals x and u. This provides bounded initial estimates,
even in case of unstable models (when bounded input-output measure-
ments are available, e.g. by means of a stabilizing feedback).
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The last option is robust with respect to model instabilities and is therefore
preferred 1. In that case, the next assumption is made:

Assumption 3.1. (Regularity state transition matrix A)
(zk I � A) is a regular (invertible) matrix 8zk .

3.4.2 Aperiodic signals

For aperiodic signals, the second option presented for the periodic case can be
used for stable models. However, this method does not work in the unstable
case.

We choose to use the frequency domain approach for both periodic and
aperiodic signals in this thesis. For periodic excitations, the resulting states
are exactly the states of the BLA. For aperiodic excitations, the states of the
BLA are also used. This assumes that the transient errors will be corrected
in the iterations of the constrained minimization of the nonlinear model (to
be described in the sequel of this chapter). The transient errors will not be
important for su�ciently long data records, as they are known to vanish as
an O(N � 1=2) relative to the dominant contribution (Pintelon and Schoukens,
2001b).

3.5 Goal of the optimization

The aim of the optimization is to �nd a stationary point of the Lagrangian
function

L (#; � ) = V (#) + � T F (#) (3.8)

with � 2 Rn F the vector of Lagrange multipliers. In the stationary point, with
parameters#? and Lagrange multipliers � ?,

rL (#?; � ?) = 0 (3.9)

r =
�

r #

r �

�
denotes a �rst derivative operator for the n# + nF variable space

with e.g. r # V(#) =
�

@V
@#

� T

# .

1Please note that also a Kalman smoother approach can be used. Another option is to
split the linear dynamics in a stable and an unstable part. On this second part, anti-causal
�ltering can be used to generate bounded estimates.



3

3.6. Iterative procedure 43

�� �� 0, 21 � �-�-F

1�-

2�-

�� ��21,�-�-V

�O�- F�’��

V�-�’��

Figure 3.1: Geometrical interpretation of a stationary point.

From the derivative of (3.8) with respect to � , it follows that F (#?) = 0 : the
constraint should be satis�ed in the stationary point. By setting the derivative
of (3.8) with respect to # equal to zero, it follows that

r # V(#?) + r # F (#?)� ? = 0 (3.10)

For a two-dimensional parameter space, with one constraint, this is visualized
in Figure 3.1. Hence, in a minimum of the Lagrangian function (where (3.10)
holds), small changes along the constraint curve will lead to an increase of the
cost. Similarly, if a step in the decreasing direction of the costV is taken (i.e.
along �r # V(#)), the constraint will no longer be satis�ed.

Every constraint Fj has a corresponding Lagrange multiplier� j as weight
factor in (3.10). Consequently, the Lagrange multipliers are the sensitivity of
the cost with respect to the constraint.

3.6 Iterative procedure

The optimization consists of a (constrained) minimization that is achieved by
iteratively updating the variable vector #. In the minimization process, a new
value of # is calculated by adding �# to the current value:

#( i +1) = #( i ) + �# ( i ) (3.11)

with iteration number i . It is then required that the new parameter value #( i +1)

decreases the penalty function (see Section 3.8).
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If we would use the constrained Lagrange-Newton method (as derived in
Appendix 3.A and in Fletcher (1991b); Bock (1983)), �# ( i ) (the step at iteration
i ) would be the solution of:

"
2J ( i )T

1 J ( i )
1 J ( i )T

2

J ( i )
2 0n F � n F

#

| {z }
KKT

�
�# ( i )

� ( i )

�
= �

�
2J ( i )T

1 " ( i )

F ( i )

�
(3.12)

with KKT 2 RK � K (K = n# + nF ) the Karush-Kuhn-Tucker matrix (Fletcher,
1991b) and J ( i )

1 2 RN � n # and J ( i )
2 2 Rn F � n # the Jacobians of the residual

vector " ( i ) and constraint function:

J ( i )
1 =

@"( i )

@#

J ( i )
2 =

@F( i )

@#

(3.13)

The Lagrange multipliers in vector � ( i ) 2 Rn F are a by-product of the calcula-
tions.

Note that the �rst Jacobian is di�erent from the one in (2.10). The analytic
expression of the Jacobians is given in Appendix 3.B. The derivative of the error
" ( i ) to the model parameters of the state equation is now zero, since the states
have become parameters themselves. The consequence is thatJ ( i )

1 (as J ( i )
2

and " ( i ) ) does not consist of recursive expressions: it is no longer required to
simulate the state equation. Therefore, its computation does not su�er from
instabilities of the model at any iteration because only one time step is made
in each point.

3.7 Inversion of the KKT matrix

It might become time-consuming to invert the KKT matrix because it grows
(in both dimensions) with the number of data points N . On the other hand,
the matrix is very sparse, which allows for the use of more e�cient direct
inversion techniques available in software packages such as Matlab—. Also, re-
ordering the rows and columns of the KKT matrix (by alternating between the
�rst nN parameters and their corresponding Lagrange multipliers) reduces the
distance between nonzero elements and the diagonal. The auto-reordering in
Matlab—2007a will give a similar result, speeding up the computation.

Figure 3.2 on page 48 depicts the nonzero elements of the KKT matrix for
100 data points, model order 2 and nonlinear degreed = 3 .
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A blockwise system solving method seems to be an interesting option for
this type of sparsity. This was implemented and tested, but appeared to be
more time-consuming than the direct inversion technique of Matlab—. In this
test, the KKT matrix was split in 4 smaller matrices, the �rst one being the
block diagonal J1(1 : nN; 1 : nN ).

3.8 Penalty (or merit) function

The constraints are not satis�ed during the iterative procedure. For every
new step �# ( i ) , it needs to be determined whether the new candidate solution
#( i ) + �# ( i ) is better or worse, and consequently whether a step should be taken
or not. By using the so-called �̀ 1 exact penalty function�, de�ned as

� (#) = � ( i ) V(#) + jjF (#)jj1 (3.14)

with penalty parameter � ( i ) > 0, the SQP (Sequential Quadratic Program-
ming) method is turned into an S`1QP (Sequential Quadratic Programming
with `1 exact penalty function) method (Fletcher, 1991b; Nocedal and Wright,
1999). By means of this penalty function, the trade-o� between the costV and
the constraints F is made. The penalty function is exact in the sense that it is
locally minimized by the solution to the constrained problem if � ( i ) is chosen
such that � ( i ) < 1=jj � ( i ) jj1 , with jj � ( i ) jj1 the in�nity norm of the Lagrange
parameters at iteration i (Fletcher, 1991b; Han, 1977). The in�nity norm is

de�ned as jj � ( i ) jj1 = max
�

j� ( i )
1 j; : : : ; j� ( i )

n F j
�

. Extra details on the choice of

� ( i ) can be found in Section 3.10.1.
In practice, the penalty function is minimized along the direction indicated

by the KKT system of equations (line search). When, at some point during the
iteration procedure, the relative changes of the penalty function are less than
a user-de�ned tolerance level, the optimization can be stopped.

Several other globalization strategies can be used to ensure convergence,
e.g. natural level functions or the restrictive monotonicity test (Bock et al.,
2000), trust region methods (Connet al., 2000), merit functions (Powell, 1978)
or �lter SQP (Sequential Quadratic Programming, Fletcher et al., 2002).

3.9 Avoiding singularities

As discussed previously in Section 2.1.2, similarity transforms are linear or non-
linear transformations of the states, not modifying the input-output behavior.
In our case, they preventJ1 from being a full rank matrix. Unfortunately, these
indeterminations cause the KKT matrix in (3.12) to be singular. This problem
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can be circumvented by adding a strictly positive constant to each diagonal el-
ement of 2J T

1 J1: it is replaced by 2J T
1 J1 + � 2

LM I n # . Herein, � LM 2 R+
0 is called

Levenberg-Marquardt parameter. The KKT matrix then becomes nonsingular:
2J T

1 J1 + � 2
LM I n # is positive de�nite instead of positive semide�nite, while J2

is a full-rank matrix, as shown in the proposition in Appendix 3.C. How these
properties render the KKT matrix nonsingular is shown in Appendix 3.D. Since
this only introduces a small number of nonzero diagonal elements (< n � ), the
inversion time is only slightly increased.

"
2J ( i )T

1 J ( i )
1 + � ( i )2

LM I n # J ( i )T
2

J ( i )
2 0n F � n F

#

| {z }
KKT LM

�
�# ( i )

� ( i )

�
= �

�
2J ( i )T

1 " ( i )

F ( i )

�
(3.15)

Since the left upper part of KKT LM and its inverse are now positive de�nite
and bounded, andJ ( i )

2 has full rank, the S̀ 1QP method converges (Han, 1977).
Also, Nocedal and Wright (1999); Fletcher (1991b) report its good performance
in combination with a second order correction step.

Remark. � ( i )2
LM should not be added to the entire diagonal of the KKT matrix,

since this yieldsJ ( i )
2 �# ( i ) + � ( i )2

LM � ( i ) = � F ( i ) for the bottom equation in (3.15).
Adding � ( i )2

LM to the Hessian approximation 2J ( i )T
1 J ( i )

1 does not create a bias
on the solution, although it might slow down convergence (as in a Levenberg-
Marquardt method).The alternative is the pseudo-inverse, but that requires
much more computation time (see Section 3.11).

3.10 Some implementation details

3.10.1 Penalty parameter �

In Nocedal and Wright (1999), it was argued that the penalty parameter should
be chosen su�ciently large to have good global convergence properties. They
propose to use1=� ( i ) = jj � ( i ) jj1 + � , with constant � > 0. Here, in the imple-
mentation, � ( i ) is chosen to be0:9=jj � ( i ) jj1 and is updated after every successful
step. This choice of� ( i ) guarantees that the condition for the exactness of the
penalty function ( � < 1=jj � jj1 ) is always ful�lled.

3.10.2 Second order correction

A Second Order Correction (SOC) was implemented, which is not used in every
iteration step, but only when a normal SQP step could not provide a decrease
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of the merit function � (see (3.14)). The SOC step should prevent the method
to su�er from the Maratos e�ect (Nocedal and Wright, 1999; Maratos, 1978),
where convergence is slowed down because certain seemingly bad steps (for
which � increases) are not accepted, while they are actually bene�cial to the
convergence. A routine similar to the one described in Nocedal and Wright
(1999) was implemented.

The idea behind the SOC is that, if a (potential) step �# ( i ) increases the
merit function, i.e. � (#( i ) + �# ( i ) ) > � (#( i ) ), this might be due to the linear
approximations to the constraints not being accurate enough. In that case, a
new parameter estimate

#new = #( i ) + �# ( i ) + �# ( i )
SOC

is generated and used in the evaluation of� . If � (#new ) > � (#( i ) ), the steplength
is reduced, otherwise#( i +1) = #new . The correction step is de�ned to be

�# ( i )
SOC = � J ( i )T

2

�
J ( i )

2 J ( i )T
2

� � 1
F (#( i ) + �# ( i ) )

such that J ( i )
2 �# ( i )

SOC + F (#( i ) + �# ( i ) ) = 0 . By this choice, the constraint
decreases (to the third order, at least near the solution). The SOC necessitates
an extra evaluation of the constraint in #( i ) + �# ( i ) .

3.10.3 Choice of � LM

In the constrained framework, contrary to the unconstrained Levenberg-Mar-
quardt method, convergence is no longer guaranteed by just adding a su�-
ciently high � ( i )

LM (Fletcher, 1991b). Also the convergence speed is in�uenced
by the choice of � ( i )

LM . Choosing this term as small as possible is not a good
idea: it sometimes results in a bad step because the matrix tends more towards
singularity. On the other hand, a large term can result in slow convergence.
Moreover, for � ( i )

LM going to in�nity, the matrix becomes singular as well. There-
fore, the regularization term is altered during the iterations. When a step is
successful, it might be possible that a smaller Levenberg-Marquardt parameter
is su�cient, so it is reduced (for instance by a factor 1:2). When a step is not
successful or when the line search resulted in a very small step, while the added
term is not very large, the Levenberg-Marquardt parameter is increased (for
instance by a factor 10). This approach is inspired by the adaptation of the
step length in gradient descent methods and the adaptation of the Levenberg-
Marquardt term in the unconstrained method.



48 Chapter 3. A constrained approach

Figure 3.2: Position of the nonzero elements (grey dots) of the KKT matrix.

3.11 Why not use a Singular Value Decomposi-
tion?

In a usual identi�cation context, where the number of unknowns does not in-
crease with the number of data pointsN , the degeneracies in the KKT matrix
of (3.12) could be taken care of by using the pseudo-inverse. This would prob-
ably yield a better convergence, since the system of equations does not need
to be changed. But, even for sparse matrices, singular value decompositions
(SVD) require a huge amount of computation time. The number of �ops re-
quired for the SVD decomposition of a full m � m matrix increases asO(m3)
(Golub and Van Loan, 1989). Applied to the KKT matrix, with m = Nst + n# ,
this corresponds to anO(N 3) increase forn; n � � N .

3.12 Simulations

Two cases are used to illustrate the advantages of the constrained method
(also called method B, while the unconstrained method is called method A).
The �rst simulation shows that it can cross unstable regions of the parameter
space during the optimization; the second simulation exempli�es its use for the
modelling of unstable systems. Advantages of the unconstrained method on the
other hand are a higher computation speed and lower memory requirements.
In general, this will render the unconstrained method preferable, but in some
cases, one cannot solve the optimization problem with that method while the
constrained method works as usual.
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3.12.1 Simulation example 1

The idea is to start with a known PNLSS model structure so that � for the
right model settings � the cost function should converge to zero (or computer
precision) in the noiseless case and to the noise level in the noisy case. The
constraint function should also converge to computer precision, even in the
noisy case. In general, the results of both the constrained and unconstrained
method are comparable. Nevertheless, some cases could be found where, al-
though starting at the same initial estimate, the unconstrained method could
not converge while the constrained method had no di�culties. The converse is
not true. One such a result is shown in Figure 3.3, in which the convergence
curves of the two methods are plotted (cost versus iteration number) in a noise-
less case. The selected model structure is of ordern = 2 and has nonlinear
degreed = 3 :

�
x1(t + 1)
x2(t + 1)

�
=

�
0:739 � 0:624
0:625 0:736

� �
x1(t)
x2(t)

�
+

�
0:793

� 0:345

�
u(t) + E� (t)

y(t) =
�

0:712 0:349
�

�
x1(t)
x2(t)

�
+ 0 :0450u(t) + F � (t)

with nonlinear coe�cients shown in Table 3.1 on the next page.
The input is aperiodic (with initial state zero) and Gaussian with zero

mean and root mean square (rms) value0:22. The evolution of the constraint
function's one-norm (constrained method) is depicted in Figure 3.4. For the
�rst method, method A, this has no use: the constraint is always satis�ed. At
every iteration, a trade-o� is made between cost and constraint. The measure
of this trade-o� is determined by the Lagrange multipliers � (Section 3.6) and
by the value of � in the L 1 exact penalty function � (3.14).

Even when the constraints are satis�ed at iteration i = 0 , they will in
general not remain zero afterwards since the constraints are nonlinear in the
parameters. The di�culty to identify the chosen model with the unconstrained
method can be explained by its `nearly unstable' nature: the poles of the
underlying linear system lie close to the unit circle (at radius 0:968) and the
intermediate estimated models have often an output which blows up. During
the iteration process, the constrained method manages to pass through an
unstable region: at certain iterations, the simulated model output (simulated
recursively via the state equation), blows up. This simulated output is not
calculated with the state-parameters in#, but with the entire state-space model
(2.1), feeding the states back (via the state equation) and hence causing the
problem. The unconstrained method is incapable of passing through unstable
regions (as will be explained in Section 3.14) and gets stuck at their border.
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E(1; :)T E(2; :)T F T � = �
0:188 � 0:535 � 0:009 x2

1
� 0:270 � 0:366 � 0:006 x1x2

0:009 0:023 0:002 x1u
� 0:578 0:143 � 0:001 x2

2
0:010 � 0:014 � 0:001 x2u
0:001 0:013 � 0:028 u2

� 1:339 0:799 � 0:018 x3
1

� 2:022 1:353 � 0:103 x2
1x2

� 0:406 � 0:053 0:006 x2
1u

� 1; 377 0:489 0:090 x1x2
2

0:121 0:781 0:211 x1x2u
� 0:093 � 0:341 0:000 x1u2

� 0:538 0:228 0:033 x3
2

0:002 0:077 0:021 x2
2u

0:049 � 0:013 � 0:092 x2u2

� 0:019 0:016 � 0:038 u3

Table 3.1: Nonlinear coe�cients of simulation example 1.
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Figure 3.3: Convergence curves: method A refers to the unconstrained method
(crosses) and method B to the constrained method (circles).
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Figure 3.4: Constraint versus iteration number (constrained method).

3.12.2 Simulation example 2

We now give an example of a third order unstable, nonlinear system that can
only be well identi�ed with the constrained method. Its instability can be
easily seen by looking at the �rst state equation. Without taking the input
into consideration, the value 1:5 in matrix A and the addition of a quadratic
term in x1, will ensure that the (�rst) state blows up over time.

2

4
x1(t + 1)
x2(t + 1)
x3(t + 1)

3

5 = A

2

4
x1(t)
x2(t)
x3(t)

3

5 + Bu(t) +

2

4
1:2x1(t)2

0:3x2(t)3

� 0:1x3(t)3

3

5

y(t) = Cx1(t)

(3.16)

with

A =

2

4
1:5 0 0
0:5 0:4 0:3
0:3 0:8 � 0:6

3

5 (3.17)

B =

2

4
1

� 0:2
0:3

3

5 (3.18)

C =
�

1 0:1 0
�

(3.19)

The unstable system is placed inside a feedback loop, such that a feedback term
w is added to the (Gaussian and aperiodic) reference signalr :

u(t) = r (t) + w(t) (3.20)
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Figure 3.5: Convergence curve for unstable system: method A refers to the
unconstrained method (crosses) and method B to the constrained method (cir-
cles).

with
w(t) = � 1:5y(t) � 1:2y(t)2 (3.21)

This feedback loop does not provide stabilization for all possible arbitrary in-
puts, but the output realization was bounded for an input signal with root mean
square (RMS) value0:1, while the system behaves clearly unstable without the
feedback terms. In the example, a random reference signalr � N (0; 0:01) was
used.

The subspace method provides an initial estimate of the state-space param-
eters of the BLA. The initial states are obtained in the frequency domain via
(3.7). Since this initial linear model is unstable, method A cannot even start
optimizing.

However, the model can be stabilized, for instance by re�ecting the poles
into the unit circle. Of course, this will in general create an additional (bias)
error on the estimate. Nevertheless, this idea is used to obtain alternative
initial estimates for method A.

The convergence curves of both methods are shown in Figure 3.5. The
evolution of the constraint function of method B is depicted in Figure 3.6.

In this example, the initial linear estimates are bad approximations of the
true system. The RMS values of the output errors are respectively0:094 and
0:030for the unconstrained and the constrained methods, while the RMS value
of the output itself is 0:1. The convergence curve of method A stops after58
iterations because the cost is no longer improved. In method B, the �rst success-
ful step was made after9 iterations. This is because the initial estimate of� LM

was chosen too small. The constraint is quite jagged because of adaptations
of the Levenberg-Marquardt parameter over the iterations, which changes the
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Figure 3.6: Constraint versus iteration number for unstable system (con-
strained method).

step size and hence also the accuracy of the approximation of the constraints
(linear without Second Order Correction, quadratic after an SOC step).

Other examples that are not displayed here show that when improved initial
estimates are used, the unconstrained method still fails to converge, while the
constrained method �nds a solution.

3.13 Experimental results (Wiener-Hammerstein
benchmark)

3.13.1 The device under test and the measurement data

The Device Under Test (DUT) is an electronic circuit with a Wiener-Hammer-
stein structure (see Figure 3.7). A Wiener-Hammerstein system is a nonlinear
system consisting of two linear dynamic systems and a static nonlinearity (SNL)
in between. The DUT has been used in a benchmark (Schoukenset al., 2009)
and was designed by Gerd Vandersteen (Vandersteen, 1997). The �rst linear
system is a third order Chebyshev low-pass �lter with a passband up to4:4
kHz and a 0:5 dB ripple. The SNL consists of two resistors and a diode. The
second linear system is a third order inverse Chebyshev low-pass �lter with a
� 40 dB stopband, starting at 5 kHz.

A measured set of input and output data was split up in estimation data
(100000samples) and test (or validation) data (88000samples). The input was
a �ltered Gaussian excitation signal with cut-o� frequency 10 kHz and sample
frequency 51:2 kHz. The root mean square (RMS) value of the input signal is
0:66 V .



54 Chapter 3. A constrained approach

Figure 3.7: Wiener-Hammerstein benchmark system.

3.13.2 De�nitions

The �rst 5000points of the estimation data are removed throughout the entire
identi�cation procedure since they consist only of quantization noise. Transient
e�ects are eliminated by discarding the �rst 1000time instants in the simulation
error esim = y(� ) � ym . The de�nitions of the quantities that are used in the
next paragraphs are given below. They refer respectively to the RMS value of
the estimation error, the RMS value of the simulation (test) error, its mean
value and its standard deviation.

eRMS e =

vu
u
t 1

N � 1000

t � + NX

t = t � +1001

esim (t)2 (3.22)

eRMS t =

vu
u
t 1

87000

188000X

t =101001

esim (t)2 (3.23)

� t =
1

87000

188000X

t =101001

esim (t) (3.24)

st =

vu
u
t 1

87000

188000X

t =101001

(esim (t) � � t )
2 (3.25)

t � is speci�ed later on, since it depends on the method that was used.

3.13.3 Model selection

For the model selection, the100000data points of the estimation set are split
up in two blocks (e.g. two times 50000). The �rst block for the estimation of
several model structures (combinations of model order and nonlinear terms),
the other block for the selection of the best model (as in Section 2.3.4). The
model structure with the smallest RMS error (eRMS ) on this second block is
chosen.



3

3.13. Experimental results (Wiener-Hammerstein benchmark) 55

3.13.4 Linear model

A 6th order linear state-space model is estimated as explained in Section 2.3.3.
This linear model will be suitable as starting-point for both the unconstrained
and constrained optimization methods.

3.13.4.1 The identi�cation: a brief overview

First, frequency domain techniques are used to estimate (nonparametrically)
the FRF ĜBLA and its variance �̂ 2

GBLA
(see Section 2.3.3). Hereby, in order to

decrease the variance, the data were split up in100subrecords. Because of the
length of the data set, this choice still yields a reasonable frequency resolution
(although the number of frequency lines is a factor100 lower). The variance
estimate �̂ 2

GBLA
contains the combined e�ect of the noise and the nonlinear

distortions. Its inverse serves as weighting factor when �tting a parametric
(linear state-space) model onĜBLA . The parametric �t is obtained via a
subspace method followed by a nonlinear optimization of the weighted least-
squares cost (2.4). Several model orders are tried out and the best one (on the
second block of the estimation data) is selected, preferably with a low model
order.

3.13.4.2 Results

The linear model is validated on the test data and the measured output of the
system is plotted in Figure 3.8 (black line) together with the simulation error
(grey line). In this case, t � in (3.22) is 5000, such that only the points with
nothing but quantization noise are removed. The RMS value of the simulation
error (eRMSt ) is about 23 % of the RMS output level that measures 0:24 V .
This linear model contains 49 parameters, but only 13 independent parame-
ters are necessary to describe the input-output behavior due to the (linear)
similarity transform (characterized by a transformation matrix with n2 = 36
elements). Other model orders were tried out, but none of them could sig-
ni�cantly improve this poor result. It is however wrong to conclude that all
nonlinear models based on this6th order linear model perform better than
higher order models (e.g. 7th or 8th). Table 3.2 on page 60 shows the RMS
value of the simulation (test) error (eRMSt ), its mean value (� t ), its standard
deviation (st ) and the RMS value of the estimation error (eRMSe ).

3.13.5 Nonlinear model

When the nonlinear model is an extension of a linear model of order6, the
nonlinear terms of the PNLSS model consist of combinations between the6
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Figure 3.8: Validation result for the 6th order linear model: modeled output
(black) and simulation error (grey); time (top) and frequency domain (bottom).

states x1(t); :::; x6(t) and the input u(t) in both the state and output equation
of (2.1). Every monomial (such asx1x2

3u) is weighted by a coe�cient of the
parameter matricesE and F and the sums of these terms result in polynomials.

Method A: Unconstrained approach This method was already tried out
on the same DUT, but with di�erent measurement data: several periods of
a multisine and lower excitation amplitudes. This is described in Paduart
(2008). Since the purpose of this section is to compare methods A and B, the
identi�cation is repeated. The order of the linear model is kept at 6 and the
nonlinear degree is - if necessary - set higher than in (Paduart, 2008). This is
based on the fact that in method B, the cost (in terms of calculation time and
memory) of adding nonlinear degrees is much lower than the cost of augmenting
the order (number of states). Besides, increasing the nonlinear degree had a
higher impact than increasing the order in the examples in Paduart (2008).

The best model structure (of the examined ones) appears to be a model with
nonlinear degreed = 3 in the state and output equation. This corresponds to
the degree that was found in Paduart (2008), although the excitation ampli-
tude was di�erent. This model contains 833 parameters, or 797 = 833 � 62

independent parameters. The validation of this nonlinear model is plotted in
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Figure 3.9: Validation result for the nonlinear model of method A: measured
output (black) and model simulation error (grey).

Figure 3.9 (black line) together with the simulation error (grey line). The top
�gure is a time domain plot, the bottom �gure is the frequency domain result.
The eRMSt is reduced considerably: it is about0:2 % of the RMS output level
and 0:8 % of the linear eRMSt . The results are shown in Table 3.2, with the
eRMSe based on95000estimation points (t � = 5000).

Method B: Constrained approach For estimations with a large number
of data points and a high order of the underlying linear system, the dimension
of the KKT matrix will soon be very large. Even if sparse techniques from Mat-
lab—are applied, the calculation time grows essentially linearly, with a small
quadratic term, as function of the number of data points and the computer
could run out of memory. Thus, we restrict ourselves to a shorter dataset than
the one we used in method A.

Since the signals are aperiodic, the optional periodicity constraint in (3.5)
was deleted.

With the same settings as in method A (nonlinear degreed = 3 for the
state and output equation), but with only 6000instead of 100000data points,
and starting at t � = 45000, the RMSE is about 1:1 % of the RMS output level
and still a signi�cant reduction compared to the linear error. The results are
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Figure 3.10: Validation result for the nonlinear model of method B: measured
output (black) and model simulation error (grey).

shown in Figure 3.10 and Table 3.2 (6000points used to compute theeRMSe ).
This result was obtained by using an estimated model obtained on another

6000 points as an initial estimate. Improvement of the result is possible by
choosing other data points (out of the 100000).

3.13.6 Comparison

To be able to compare the two methods, method A is run with the 6000 data
points used in method B. The results are plotted in Figure 3.11 and shown
in Table 3.2 (6000 points used to compute theeRMSe ). The results are very
similar to the results of method B, with eRMS t , st and eRMS e di�ering by less
than a factor 3. The di�erences can be explained by the altered optimization
path, which leads to di�erent local minima.

The convergence curves on the test data behave di�erently depending on
the number of data points used. The curves of method A with95000estimation
points decrease nicely, while the curves of the two methods on6000estimation
points show a very irregular behavior, not even close to a monotonic decrease
and some of the estimated models are unstable on the test set. It may be
that 6000 estimation points are insu�cient for a reliable estimation with the
current (rather high) number of parameters. The problem does not occur with
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Figure 3.11: Validation result for the nonlinear model of method A (6000 esti-
mation points): measured output (black) and model simulation error (grey).

more parameter-parsimonious models such as state a�ne models: theeRMSt

(5:2 mV ) is slightly increased compared to the full third degree model.
Anyhow, the limited number of data points of method B is one of its weak-

nesses. It might be overcome with (sparsity-)structure exploiting algorithms
(see Bocket al. (1992)).

On the other hand, Section 3.12 showed an advantage of method B: its
robustness towards instabilities.

3.14 Conclusion

The problem with the unconstrained method is that it calculates the output
by means of a simulation of the entire state-space model (2.1), which involves
the recursion of the state equation. If the system is unstable, the states and
consequently the output (and output error) will grow very (even in�nitely)
large. In the constrained approach, the states are considered to be model
parameters, and the output (and output error) is calculated by means of the
output equation only. If the initial state estimates are bounded, so will be the
output. In other words, the �rst method su�ers from the ill-posedness of the
simulation problem for an unstable system, while the second does not.
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Model N eRMSt � t st eRMSe

[mV ] [mV ] [mV ] [mV ]

Linear 95000 56:2 � 36:0 43:2 57:3
NL, A 95000 0:443 � 0:0523 0:440 0:323
NL, A 6000 3:11 � 0:249 3:10 0:268
NL, B 6000 2:62 0:00441 2:62 0:630

Table 3.2: Properties of the residuals for6th order models. Subscriptst and e
refer resp. to the test and estimation sets.

The constrained optimization showed to be robust in case of nearly unsta-
ble nonlinear systems with stable underlying linear part, while unconstrained
optimization sometimes failed. The constrained optimization was able to iden-
tify an unstable nonlinear system within a control loop that generates bounded
input-output values, unlike the unconstrained optimization, which simply breaks
down on the evaluation of the model output and gets stuck at the stability bor-
der. Moreover, the constrained method o�ers the advantage of being able to
start with an unstable initial model.

Remark. Since the optimization toolbox of Matlab—recently became available
in the department, it was compared with the proposed implementation on the
second simulation example (Section 3.12.2). It appears that the �interior-point
method� setting could be used, but after a few hundred iterations, only very tiny
improvements were achieved in every iteration. The optimization was stopped
because it took too much time (certainly more time than our implementation).
If the dataset or model order becomes too large, a sparse implementation of
the gradients should be provided by the user. The Hessian approximation
option should be selected to be either the limited-memory, large-scale quasi-
Newton approximation or a sparse user-supplied Hessian. E.g. the second
simulation example (Section 3.12.2), whereN = 2048 and n = 3 , needed a
sparse implementation.

Appendices

3.A Derivation of the Lagrange-Newton method

The derivation in this appendix can be found in Fletcher (1991b). As explained
in Section 3.5, the Lagrange-Newton method aims at �nding the stationary
point of the Lagrangian function L (#; � ) = V (#) + � T F (#).
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In the stationary point, with parameters #? and Lagrange multipliers � ?,

rL (#?; � ?) = 0 (3.26)

When performing a Taylor series expansion, and truncating at the2nd degree:

rL
�

#( i ) + �# ( i ) ; � ( i ) + �� ( i )
�

�= rL
�

#( i ) ; � ( i )
�

+ r 2L
�

#( i ) ; � ( i )
� �

�# ( i )

�� ( i )

�

(3.27)
If the step (�# ( i ) ; �� ( i ) ) leads to the stationary point, the left-hand side of this
equation is zero, thus

r 2L
�

#( i ) ; � ( i )
� �

�# ( i )

�� ( i )

�
= �rL

�
#( i ) ; � ( i )

�
(3.28)

This is in fact the equation that is used in Newton's method. It can be rewritten
as

"
r 2

# V(#( i ) ) +
P n F

q=1 � ( i )
q r 2

# F (#( i ) ) r # F (#( i ) )T

r # F (#( i ) ) 0n F � n F

# �
�# ( i )

�� ( i )

�

= �
�

r # V(#( i ) ) + r # F (#( i ) )� ( i )

F (#( i ) )

�
(3.29)

or equivalently, with � ( i +1) = � ( i ) + �� ( i ) the new value of the Lagrange mul-
tipliers, and with (3.13),

"
2J ( i ) T

1 J ( i )
1 + 2

P N
r =1 " ( i ) (r ) @2 " ( i ) ( r )

@#2 +
P n F

q=1 � ( i )
q r 2F ( i ) J ( i ) T

2

J ( i )
2 0n F � n F

# �
�# ( i )

� ( i )

�

= �

"
2J ( i ) T

1 " ( i )

F ( i )

#

(3.30)

Remark. In equations (3.12) and (3.15), it is assumed that

2
NX

r =1

" ( i ) (r )
@2" ( i ) (r )

@#2
+

n FX

q=1

� ( i )
q r 2F ( i )

can be neglected. In reality, they will not be zero. For instance, omitting
the last term means that the constraints should be more or less linear in#( i ) .
Although they are linear in � ( i ) , they are not in #( i ) . The drawback of including
these terms is that they can ruin the (semi-) positive de�niteness of2J ( i )T

1 J ( i )
1 .
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3.B Expression of the Jacobian matrices

In this appendix, the expressions of the JacobiansJ1 and J2 in (3.13) are
computed. The iteration index (i ) is omitted for simplicity. For the Jacobian
in (2.10), we refer to Paduart (2008).

De�ne I m � n
ij 2 Rm � n such that it denotes a zero matrix with a single

element equal to one at entry(i; j ):

I m � n
ij =

2

6
6
6
6
6
6
4

0 � � � 0 � � � 0
...

...
...

0 � � � 1 � � � 0
...

...
...

0 � � � 0 � � � 0

3

7
7
7
7
7
7
5

i

j

(3.31)

and matrices

@�(t)
@x(t)

=
�

@�(t)
@x1(t)

� � �
@�(t)

@xn (t)

�
(3.32)

@�(t)
@x(t)

=
�

@�(t)
@x1(t)

� � �
@�(t)

@xn (t)

�
(3.33)

Next, we can start computing every Jacobian entry. The �rst Jacobian J1 is

the matrix of derivatives
@"
@#

=
@y
@#

. Index 1 of J is omitted for notational

simplicity:

JA ij (t) =
@y(t; # )

@Aij
= 0 n � n (3.34)

JB ij (t) =
@y(t; # )

@Bij
= 0 n � n u (3.35)

JC ij (t) =
@y(t; # )

@Cij
= I n y � n

ij x(t) (3.36)

JD ij (t) =
@y(t; # )

@Dij
= I n y � n u

ij u(t) (3.37)

JE ij (t) =
@y(t; # )

@Eij
= 0 n � n � (3.38)

JF ij (t) =
@y(t; # )

@Fij
= I n y � n �

ij � (t) (3.39)

Jx ( j ) (t) =
@y(t; # )
@x(j )

= � jt

�
C + F

@�(t)
@x(t)

�
(3.40)
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The second JacobianJ2 =
@F
@#

is (index 2 omitted for notational simplicity).

The constraint entry F (t; # ), corresponding to time instant t in (3.5), is de�ned
as f (x(t); u(t); � ) � x (( t + 1) mod N )2.

JA ij (t) =
@F(t; # )

@Aij
= I n � n

ij x(t) (3.41)

JB ij (t) =
@F(t; # )

@Bij
= I n � n u

ij u(t) (3.42)

JC ij (t) =
@F(t; # )

@Cij
= 0 n � 1 (3.43)

JD ij (t) =
@F(t; # )

@Dij
= 0 n � 1 (3.44)

JE ij (t) =
@F(t; # )

@Eij
= I n � n �

ij � (t) (3.45)

JF ij (t) =
@F(t; # )

@Fij
= 0 n � 1 (3.46)

Jx ( j ) (t) =
@F(t; # )

@x(j )
= � jt

�
A + E

@�(t)
@x(t)

�
+ � j;t +1

�
� I n � n �

(3.47)

If there is a periodicity constraint, the last n rows of the Jacobian (att = N � 1)
are de�ned by

Jx ( j ) (N � 1) =
@F(N � 1; #)

@x(j )
= � j;N � 1

�
A + E

@�(N � 1)
@x(N � 1)

�
+ � j; 0

�
� I n � n �

(3.48)
instead of (3.47).

Due to the large number of zero entries in both Jacobians, the KKT matrix
(3.15) will be sparse. If programmed in Matlab—, it is recommended to create
the matrices in the Matlab—sparse storage format.

3.C Proposition: regularity of J2

Under the assumption that
Q N � 1

t =0 A t � I n is regular, J2 is a full rank matrix.
Herein, A t is de�ned as A t = A + E @�(t )

@x( t ) for t = [0 � � � N � 1], cf. (3.47).

Proof. In order to prove the full rank property of a matrix with fewer rows
than columns (nN < n # ), one can focus on the dependency of the rows. If

2The modulo operator is de�ned as follows: a mod b = c, such that 0 � c � b � 1, and
lb + c = a with l 2 Z
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any part of this matrix (after removal of some columns) has rank equal to the
number of rows, then the matrix will have a full rank. Choose the �rst nN
columns of J2 and rewrite them as:

J2(:; 1 : nN ) =

2

6
6
6
6
6
6
6
4

A0 � I n 0n � n � � � 0n � n

0n � n A1 � I n . . .
...

...
. . .

. . .
. . . 0n � n

0n � n 0n � n . . .
. . . � I n

� I n 0n � n � � � 0n � n AN � 1

3

7
7
7
7
7
7
7
5

(3.49)

The rows of this matrix are linearly independent if
P nN � 1

j =0 � j J2(j; 1 : nN ) is
only zero when all � j = 0 . � is now split up in N vectors � t 2 Rn , such that
every set ofn rows corresponds to an� t , i.e. � T = [ � T

0 � T
1 � T

2 � � � � T
N � 1]. With

this de�nition, the rows will be dependent if some nonzero � t can be found
such that 8

>>>><

>>>>:

� N � 1 = AT
0 � 0

� 0 = AT
1 � 1

� 1 = AT
2 � 2

: : :
� N � 2 = AT

N � 1� N � 1

(3.50)

Substitution and transposition leads to the expression:

� T
N � 1

 
N � 1Y

t =0

A t � I n

!

= 0 1� n (3.51)

If only � N � 1 = 0 n � 1 should be a solution,
Q N � 1

t =0 A t � I n should be a regular
matrix.

Note that the other columns of J2 can still render J2 full rank if this con-
dition would not be ful�lled.

If there is no periodicity constraint, the last n rows in (3.49) are removed.
In that case, it is impossible to make the rows dependent, such thatJ2 is always
of full rank.

3.D Proposition: regularity of the KKT matrix
with Levenberg-Marquardt parameter

If the determinant of the KKT matrix (3.15) is nonzero, then none of the
eigenvalues is zero and the matrix has full rank. First, determine the expression
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for the determinant. Rewrite the KKT matrix for notational simplicity as
�

A B T

B 0N st � N st

�
(3.52)

with

A = 2J T
1 J1 + � 2

LM I n # (3.53)

B = J2 (3.54)

Then, the determinant of this block matrix is (Horn and Johnson, 1990):

det(KKT LM ) = det (A) det
�
� BA � 1B T �

(3.55)

SinceA is a positive de�nite matrix (thus also A � 1) and B is a full rank matrix,
BA � 1B T is a positive de�nite matrix (Horn and Johnson, 1990). Therefore,
the KKT matrix with � LM 6= 0 has full rank.



Figure 4.0: Illustration complementing the abstract and ideas of Chapter 4.
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Chapter 4

Looking for a compromise:
the partially constrained
approach

This chapter makes a compromise between the unconstrained approach of
Chapter 2 and the constrained approach of Chapter 3. In the constrained
method, the states are part of the optimization problem, resulting in a rather
slow method with a high memory use compared to the unconstrained method,
in which the states are simulated via recursion. On the other hand, the con-
strained method is robust with respect to instabilities.

A �partially constrained� optimization is proposed to allow for a trade-o�
between the robustness of the constrained method and the lower memory use
and higher speed of the unconstrained method. A strategy is proposed that
bene�ts from the advantages of both situations. The methodology is illustrated
both via simulation examples and an experimental application.

4.1 Introduction

When using o�-the-shelf sparse direct solvers, the constrained optimization
cannot handle very large amounts of data points, because of memory limita-
tions and an increased computation time. To deal with these drawbacks, a
�partially constrained� optimization is introduced. This is a generalization of
the constrained optimization, in which only the states at a selection of time

67
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instants are considered as parameters. Hence, the number of parameters and
constraints is reduced. Depending on the fraction of retained states, the algo-
rithm is more robust towards instabilities but needs a lot of memory (many
constraints), or more memory-e�cient but less robust (few constraints).

4.1.1 Outline

This introduction explains the technical aspects and gives some insight into
the partially constrained optimization. Afterwards, Sections 4.2 to 4.5 deal
with the strategy that is proposed to make a clever choice of constraints and
to be able to use a long data record: they present respectively the basic idea, a
possible implementation, how to select the parametric states and some remarks.

4.1.2 Optimization terminology

In an optimization context, the terminology for fully, over partially, to uncon-
strained optimizations, is somewhat di�erent, as shown in Table 4.1.2.

Terminology in the thesis Optimization terminology

Fully constrained Fully simultaneous / Direct transcription

Partially constrained Hybrid / Multiple shooting

Unconstrained Sequential / Single shooting

Table 4.1: Terminology used in this thesis.

4.1.3 Data and parameter vector

In the partially constrained approach, the available data are, as before, the
input and output signals, observed at time instants [0: : : N � 1]. The optimiza-
tion variables # 2 Rn # are a selection of states (at certain time instants) and
the parameters of the chosen model:

#T = [ xT (t0) : : : xT (tp� 1) � T ] (4.1)

with T = [ t0 : : : tp� 1]T (p � N ) the (ordered1) time instants that are selected
out of the set of all possible time instants[0 : : : N � 1]. The constraints consist
of imposing the state equation relating2 successive state vectors in# (via state
recursion in this time interval).

1There is no double use, i.e. t0 < t 1 < t 2 < ::: < t p� 1 .
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4.1.4 Relation to the previous optimization approaches

The fully constrained case is a (trivial) special case of the partially constrained
approach, with p = N and t r = r , r = 0 : : : p� 1. The optimization variables are
in that case the model parameters and the state variables at all time instants.
In a regular partially constrained case (1 � p < N ), the model parameters and
some of the states are free variables. In the unconstrained case (p = 0 ), only
the model parameters are free variables.

4.1.5 Cost and constraint functions

The cost function
V (#) = "(#)T " (#) (4.2)

is again minimized subject to a constraint function F (#) = 0 . The constraint
function expresses that the states in the parameter vector (4.1) should satisfy
the state equation in the model

x(t + 1) = f (x(t); u(t); � ) = Ax (t) + Bu(t) + E� (x(t); u(t))

y(t) = h (x(t); u(t); � ) = Cx(t) + Du(t) + F � (x(t); u(t))
(4.3)

Hence, the constraint function is de�ned as

F (#) =

0

B
B
B
B
B
B
B
B
@

' 0 � x(t1)

' 1 � x(t2)
...

' p� 2 � x(tp� 1)

' p� 1 � x(t0)

1

C
C
C
C
C
C
C
C
A

(4.4)

with ' i simply de�ned as f (x(t i ); u(t i )) for two neighboring time instants
(t i +1 � t i = 1 ). If t i and t i +1 are not two neighboring time instants, then
' i is a composite function that consists of several applications off . If we
de�ne f u( t i ) (x) = f (x; u(t i )) , then

' i = f u( t i +1 � 1) � : : : � f u( t i +1) � f u( t i ) (x(t i )) (4.5)

The last constraint equation of F imposes periodicity. For aperiodic signals,
this equation should be removed. Note that, for the last constraint of a periodic
signal, equation (4.5) should be modi�ed into

' p� 1 = f u(( t 0 � 1)mod N ) � : : : � f u(( t p � 1 +1) mod N ) � f u( t p � 1 ) (x(tp� 1)) (4.6)
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since this recursion connects the state at the end of the data record (timetp� 1)
with the state at the beginning of the data record (time t0).

4.1.6 The optimization itself

The (constrained) minimization

#̂ = arg min
#

s:t : F (# )=0

V(#) (4.7)

is achieved by iteratively updating the variable vector #, starting from any
initial point, which may be the point where the unconstrained method (of
Chapter 2) gets stuck. Similar to the fully constrained method, the parameter
increments can be computed by solving

2

4 2J ( i )T
1 J ( i )

1 + � ( i )2
LM I n # J ( i )T

2

J ( i )
2 0n F � n F

3

5

| {z }
KKT LM

2

4 �# ( i )

� ( i )

3

5 = �

2

4 2J ( i )T
1 " ( i )

F ( i )

3

5 (4.8)

with J ( i )
1 2 RN � n # and J ( i )

2 2 Rn F � n # the Jacobians of the residual vector
" ( i ) 2 RN and constraint function F ( i ) 2 Rn F (see Appendix 4.A), � LM 2 R+

0 a
�Levenberg-Marquardt� parameter that avoids singularity of the KKT matrix
and � ( i ) 2 Rn F a vector of Lagrange multipliers. The implementation is similar
to what was discussed in Chapter 3. Since the Jacobians are sparse, the KKT
matrix is sparse as well, see Figure 4.1.

Figure 4.1: Position of the nonzero elements (grey dots) of the KKT matrix
for N = 100, n = 2 and d = 3 when half of the constraints are used.
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4.1.7 Schematic representation of the partially constrained
method

A visualization of the computation of the output instants and the state in-
stants is shown in Figure 4.2, for T = [0 2 : : : tp� 1]T . Herein, similar to
the de�nition of f u( t i ) , the notation for the output equation (see (4.3)) is
hu( t i ) (x) = h(x; u(t i )) .

x # (0)
f u (0)

��! x(1)
f u (1)

��! x(2)
F1= x # (2)

f u (2)

��! x(3)
f u (3)

��! : : :

#hu (0) #hu (1) #hu (2) #hu (3)

y(0) y(1) y(2) y(3)

Figure 4.2: Combined simulation/constraint-scheme. The horizontal arrows
denote simulation via the state equation and the vertical arrows represent the
output equation. The parameterized states (at time instants corresponding
to T , in bold) are represented byx# (t), while x(t) represent simulated states
(which are implicitly de�ned via a recursion).

In Figure 4.2, it can be seen that y(2) is independent of the simulated
state x(2), but is computed via the parameter x# (2). The constraint F1 is
not necessarily satis�ed throughout the entire constrained optimization, so the
equality does not always hold exactly. At the end of the optimization however,
is should (ideally) be satis�ed.

In the current implementation, t0 = 0 , such that x(0) is always included
in the parameter vector. As a consequence, for aperiodic data, the transient
behavior of the estimation data is �tted as well. For periodic data in steady-
state, the periodicity constraint is imposed, connectingx(tp� 1) with x(0). In
the �rst case, also transient estimation data can be used, while in the second
case, the additional (periodicity) information about the data is exploited.

4.1.8 When to use the method

The Levenberg-Marquardt implementation of the unconstrained method is bet-
ter with respect to numerical conditioning (since the product Jacobian trans-
posed times Jacobian is not formed, which would square the condition number)
and a weighting (as in Sections 2.3.1 and 2.3.2) hardly in�uences the compu-
tation time or memory allocation. Adding a weighting to the partially and
fully constrained methods slows down both approaches because it destroys the
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sparsity. It can hence be advised to always give priority to the unconstrained
approach, and only use the constrained methods in the following situations:

ˆ when the unconstrained approach fails;

ˆ when it is known beforehand that the system is unstable;

ˆ when the Best Linear Approximation (or any available initial model) is
unstable2.

Failing of the unconstrained approach means that it gets stuck at the border
of the stability region or in a bad local minimum. In the �rst case, the model
generates an unbounded output (on the estimation input) in a certain region of
the parameter space. The second case can occur due to the shape of the cost-
and constraint function: the linearization (in the KKT system) of nonlinear
constraints provokes a step (slightly) away from the constraints; this step might
coincidentally (this is a matter of luck) be bene�cial 3 to the decrease of the
cost and further evolution of the optimization.

4.2 Proposed strategy

When a data record is too long for running the fully constrained optimization,
a possible strategy can be to split it into parts. First, on one part, a fully
constrained optimization is used to get � via the maximal robustness � good
initial estimates (for the nonlinear model). Next, extra parts are added, while
gradually removing constraints, such that the memory use (and optimization
time) remains reasonable. This strategy should allow us to use all available
information and at the same time cross the di�cult zones. Moreover, as will be
explained in the next section, it enables an e�ective choice of the constraints
that should be retained as parameters.

4.3 Suggested practical implementation of the
stepwise strategy

Suppose that the total number of data points is N = N1 + N2 + N3. To deal
with the issue described in 4.2, the following algorithm is proposed:

2From a theoretical viewpoint, the Best Linear Approximation need not be stable. The
constrained optimization still allows to handle this situation and exploit the optimality of
this linear model as a good initial guess.

3 In other cases, it might increase the number of iterations of the optimization.
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(a) In a �rst step, the �rst N1 points are used in a fully constrained method
(N1 constraints).

(b) In a second step,N1 + N2 data points are used in a partially constrained
method. The constraints are a fraction of theN1 constraints of the �rst
step (�N 1) and all the constraints of the N2 new time instants.

(c) Finally, the entire data record is used. The constraints are now the �rst
part of (b) ( �N 1), plus a fraction of the second part of (b) (�N 2), plus
all the constraints of the last N3 data points.

This way, supposing that N1 = N2 = N3 = 1000, � = 0 :25 and n = 1 , the num-
ber of constraints in every step is:1000, 1250and 1500. The maximal amount
of constraints is now 1500 (= �N 1 + �N 2 + N3) instead of 3000. Besides, as
follows from the simulation experiments (see Section 4.6), once the convergence
in step (a) was successful, (b) and (c) converge in very few iterations. However,
this may not be the case under non-stationary conditions (e.g. when the input
amplitude changes with time, see the experimental application in Section 4.7).

This idea is illustrated in Figure 4.3.

Figure 4.3: Selection of constrained time instantsT (indicated by dots), grad-
ually increasing the length of the data set (� = 0 :1).

Note that the subblock lengths need not be equal, nor the fraction� , and
the number of portions in which the data record is split up. The way in which
extra data subblocks are added (before, after or a combination of both), can
also be chosen freely by the user. It is advised to start with as many data as
possible in step (a), and in the next steps add smaller subblocks, such that the
number of constraints is kept (more or less) equal during the di�erent steps of
the strategy.
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4.4 Selection of the retained states

The constrained time instants need to be chosen in a `clever' way. Since the
Lagrange parameters� in (4.8) are a measure for the sensitivity of the objective
to changes in each constraint (see Section 3.5), the states corresponding to the
highest � -values (in magnitude) are the most important.

A threshold value is de�ned that marks the boundary of the �N i highest
values ofjj � r jj , with � r the part of the � -vector corresponding to' r � 1 � x(t r ) in
the constraints (see equation (4.4) on page 69). All constraints that correspond
to smaller values are removed.

The states preserved as optimization variables have time instants

T =
n

t 2 f 0: : : N i � 1g
�
�
� jj � t jj � jj � jj ( �N i )

o
(4.9)

with jj � jj ( �N i ) the �N i th order statistic (Stuart and Ord, 1987) of the jj � jj -
values, in which �N i is possibly rounded to a natural number. We noticed
that using this fraction is a safer way of reducing the number of constraints
than simply selecting them equidistantly in time, which often does not lead to
convergence of the optimization algorithm in unstable situations.

It can be observed that this set of time instants de�ned in this way depends
on the iteration number, but the present implementation keepsT �xed at the
value of the initial estimate.

4.5 A few additional remarks

ˆ There are two computationally-intensive parts in the optimization: build-
ing the Jacobians (see Appendix 4.A) and solving the system of equations
in (4.8). In the current implementation, the time for constructing the Ja-
cobian matrices can be higher than the inversion time. This is illustrated
in Figure 4.4, where the computation time of the KKT inversion (actually
solving the system of equations) and construction of the Jacobian matri-
ces is shown. The simulations were performed on a state a�ne PNLSS
system with model order3, nonlinear degree3, one input and 3 outputs.
The current implementation for the Jacobians in Matlab can probably be
decreased with a factor35 4, e.g. by implementation in C. Under these
conditions, the partially constrained optimization might gain more than
a factor 4 compared to the fully constrained optimization.

4This was the reduction in computation time between the Matlab implementation of the
partially constrained method with one constraint active and the C-implementation of the
unconstrained method (Paduart, 2008).
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Figure 4.4: Computation time (average over5 to 10 iterations) of the KKT
inversion (full black line) and Jacobian computation (full grey line). The grey
dashed line indicates the computation time for the Jacobian implementation
if a factor 35 can be gained (compared to the full grey line), and the dashed
black line shows that in that case, the overall computation time (sum of the
KKT inversion and the Jacobian computation) increases with the number of
constraints.
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ˆ How to choose the fraction in an optimal way in practice is still an open
question. One thing is for sure: the more the model output tends to blow
up (loosely spoken, the �stronger� the instability), the higher � should
be. This claim is exempli�ed via the simulation results.

ˆ Initial estimates of the states are obtained via simulation if the model
generates bounded states. If the model is linear, but unstable (and the
measurement data are bounded), the state estimates are obtained via the
frequency domain (see equation (3.7)). Currently, there are no good so-
lutions in the unbounded nonlinear case. In the present implementation,
the states are initialized to zero in this situation.

4.6 Simulations

The simple simulations in this section are used as an illustration of the par-
tially constrained method and the stepwise strategy. A higher order, nonlinear
example will be shown in Section 4.7.

4.6.1 The simulation data

The stepwise strategy presented in Section 4.3 is now applied to a very simple,
linear example, also with N = 3000 and N1 = N2 = N3 = 1000. A �rst order,
linear system is placed in a feedback loop as shown in Figure 4.5.r (t) is a
random input signal with zero mean and standard deviation 0:1, u(t) is the
input of the system that we want to identify, the �rst block is the system with
its z-domain transfer function 1

z� � (stable for � 1 < � < 1) and 
 is the gain
of the negative feedback. We impose closed-loop stability in order to achieve
bounded data values. For the closed-loop transfer function

G(z) =
Y(z)
R(z)

=
1

z � (� � 
 )
(4.10)

the pole, located at z = � � 
 should be contained in the unit disk, which
requires � 1 < � � 
 < 1. Y and R represent the discrete Fourier transforms
of the time domain signalsy and r .

Being a linear system, the system is of course part of the PNLSS model class,
thus the PNLSS model should be able to perfectly describe the generated data.
In general, the number of used constraintsp does not change the results, but
when the system is unstable, a method with no or few constraints can not
converge while a method with more constraints has no di�culties. This is the
situation that we focus on right now. We choose an� - and 
 -value such that
the closed loop is stable but the open loop is unstable.
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Figure 4.5: First order, linear system in a feedback loop.

4.6.2 Results

Table 4.2 shows for several� - and 
 -values (satisfying the closed loop stability
criterion j� � 
 j < 1) the minimal fraction � that has to be retained and the
number of iterations that every of the three steps of the strategy needs to
converge. The constraint function should always be satis�ed within computer
precision after convergence (even in the noisy case). In this illustrative example,
the output is noiseless, and therefore, also the cost function reaches computer
precision after convergence.

In order to show the good convergence of the method, instead of using the
BLA of Section 3.4, we take the true values (ofA, B , C and D) and add a
Gaussian perturbation with standard deviation 0:1. The states are initialized
by means of the frequency domain method described in Section 3.4.1. In the
examples, the initial output RMSE's range from a few up to 200%of the output
rms value.

Even for unstable systems far from the stability boundary, convergence is
achieved, as illustrated in Table 4.3 on the next page. Here, the other side
of the unstable region (� > 1 instead of � < � 1) is considered. This is an
arbitrary choice, not a�ecting the results.

4.7 Experimental results (crystal detector)

4.7.1 The device under test

The Device Under Test (DUT) is an Agilent-HP420C crystal detector (see
Figure 4.6). This kind of device is often used in microwave applications to
measure the envelope of a signal. The estimation data contain5 periods of a
slowly increasing (in amplitude) Gaussian noise sequence (each one with50000
samples at a sampling frequency of10 MHz and with an excitation bandwidth
of 800 kHz). The only available set of validation data is similar, but with an
excitation bandwidth of 400kHz. The time domain sequence of the estimation
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� � 1:5 � 1:05 � 1:005 � 1

 � 1:8 � 1:8 � 1:8 � 1:8

� 0:4 0:3 0:1 0

Step (a) 19 18 18 18

Step (b) 1 1 1 1

Step (c) 2 1 1 1

Table 4.2: Preserved fraction � and number of iterations needed for every
step of the strategy to achieve convergence, for unstable open-loop systems
(� 6 � 1). Note that the initial state x(0) is also kept as parameter in the
rightmost situation.

� 2:99 4:99 7:99

 2 4 7

� 0:8 0:9 0:9

Step (a) 30 45 57

Step (b) 2 2 2

Step (c) 2 2 2

Table 4.3: Preserved fraction� and number of iterations needed for every step
of the strategy to achieve convergence for unstable open-loop systems far over
the stability boundary ( � � 1).

Figure 4.6: Agilent-HP crystal detector.
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Figure 4.7: Averaged estimation input sequence.

data (averaged over5 periods) is displayed in Figure 4.7. For the validation
data, this �gure looks similar. The noise has an estimated standard deviation
of 0:23 mV.

4.7.2 Prior results: other models

n d RMSE n�

nonlinear feedback
(Schoukenset al., 2008)

2 9 0.30� 14

nonlinear LFR
(Section 7.9)

2 3 0.29 11

PNLSS
(Paduart, 2008)

4 3 0.26 259

state a�ne PNLSS
(Paduart, 2008)

4 3 0.259 59

Table 4.4: Comparison of the rms error (RMSE= rms(y � ym ), in mV) on the
estimation (� ) or validation data, and number of independent parameters for
several models of the crystal detector.
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4.7.3 Application of the method

With the unconstrained PNLSS identi�cation method in Chapter 2 and Pad-
uart (2008), it is not guaranteed that the iterations will lead to the global
minimum, since they may get stuck due to instabilities. In particular, starting
from the BLA (partitioning the data in 10 subblocks, treating them as realiza-
tions), both the unconstrained and (partially) constrained methods converge to
a (validation) rms error of 0:26 mV. However, when the data is partitioned in 5
subblocks, the unconstrained method gets stuck at a (validation) rms error of
1:6 mV 5. Here, the aim is to show that superior results can be obtained for a
PNLSS model of ordern = 2 with the robusti�ed optimization method. More-
over, to emphasize the robustifying e�ect of the constraints, it is started up at
the point where the unconstrained optimization got stuck (without changing
the selected portion of the data). The nonlinear degree is set tod = 3 and a
fully parameterized representation is used.

The model will contain 53 (= 3 2 (linear) +3 � 16 (nonlinear) � 22 (n2 linear
similarity transform degeneracies)) independent parameters. For this example,
a fully constrained optimization (which would involve 100000constraints) is not
feasible (yet) due to memory limitations, but the partially constrained method
can circumvent this.

Similar to Figure 4.3, three steps were used: �rst with the last 20000points,
next with the last 35000points and �nally with the full dataset, consisting of
50000 points. Hereby, � was equal to 0:1, such that only 10 percent of the
states from the previous block were retained as parameters (with corresponding
constraint equations). Since the last20000points of the dataset su�er most
from instabilities (probably due to the larger amplitude), starting from this
selection of the data makes the optimization task harder. It can be mentioned
that, when starting up at the BLA based on 5 subblocks, the unconstrained
method achieves a much lower validation rms error by selecting only the �rst
20000points, than by selecting the last 20000points or the full dataset. This
may be due to local minima and instability issues.

Note. As can be seen in Figure 4.8, the simulated (estimation) output was

5Table with the estimation (Est.) an validation (Val.) rms errors, depending on the
number of subblocks:

5 subblocks 10 subblocks
Est. Val. Est. Val.

Linear 1:8 mV 1:0 mV 2:0 mV 0:86 mV

Nonlinear
(unconstr. optimization)

1:7 mV 1:6 mV ? 0:27 mV 0:26 mV

? This validation RMSE may seem unexpected (since it is higher than the linear validation
RMSE), although the estimation RMSE indeed decreased.
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Figure 4.8: RMSE of the estimation data (obtained via direct simulation of
the entire state-space model) versus iteration number of the last step of the
strategy. This shows a gap where the partially constrained method crosses an
unstable region (�RMSE= 1 �).

n d RMSE n�

PNLSS
(this chapter)

2 3 0.27 53

Table 4.5: Rms error (RMSE= rms(y � ym ), in mV) on the validation data,
and number of independent parameters for the PNLSS model identi�ed via the
partially constrained method.

unbounded during several iterations of the constrained optimization. Hence,
the constrained optimization e�ectively crossed an unstable region of the pa-
rameter space.

4.7.4 Results

The result on the validation data is shown in Figures 4.9 and 4.10 for the time
domain and Figure 4.11 for the frequency domain. The validation rms error
was 0:27 mV, which is clearly a very good result and a big improvement of the
1:6 mV rms error where the unconstrained method got stuck.
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Figure 4.9: Comparison of the measured and simulated validation output: the
measured validation output after substraction of its DC component (grey), the
simulation error of the (nonlinear) initial estimate (black) and of the nonlinear
�nal estimate (white).

Figure 4.10: Zoom of Figure 4.9, showing a DC o�set on the simulation error
of the (nonlinear) initial estimate (black). This o�set is not present on the
�nal estimate (with simulation error in white) and is probably caused by an
inadequate modelling of the even nonlinearities. The grey part is the measured
validation output (after suppression of its DC o�set).
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Figure 4.11: DFT spectra of the measured validation output (black, top), the
simulation error of the (nonlinear) initial estimate (grey) and of the nonlinear
�nal estimate (black, bottom).

4.8 Conclusion

The strategy o�ers a good compromise between the robustness of the con-
strained method and the shorter computation time and memory requirements
of the unconstrained method for the identi�cation of nonlinear state-space mod-
els. The identi�cation of stable systems can also bene�t from the additional ro-
bustness of the (partially) constrained optimization: the unconstrained method
can get stuck at a point where an intermediate model becomes unstable, even
though the true minimum is in a stable region, whereas the constrained method
can cross unstable regions in the parameter space.

4.9 User guidelines

Apart from the increased robustness, the constrained methods still have some
drawbacks compared to the unconstrained methods (e.g. Levenberg-Marquardt
with a pseudo-inverse):

ˆ they are more time-consuming (even though the partially constrained
method o�ers a good compromise);

ˆ they require more memory;
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ˆ they have a worse numerical conditioning becauseJ T
1 J1 needs to be

formed explicitly;

ˆ up to now, no weighting is implemented in costV (4.2).

When the unconstrained method gets stuck, (a single iteration of) the fully
constrained method can be used to compute all Lagrange multipliers. Next,
the number of constraints can be decreased. If the data record is too long
to apply the fully constrained method directly, the stepwise strategy of this
chapter can be used. An alternative is to split the data in blocks, determine
the Lagrange multipliers for every block and (block-wise) select the states to
remove from the parameter vector.

Appendix

4.A Expression of Jacobians

Similar to Appendix 3.B, the expressions of the JacobiansJ1 =
@"
@#

and J2 =

@F
@#

in (3.13) are computed. The iteration index (i ) is omitted for notational

simplicity.
De�ne as in (3.31) I m � n

ij 2 Rm � n such that it denotes a zero matrix with a
single element equal to one at entry(i; j ):

I m � n
ij =

2

6
6
6
6
6
6
6
4

0 � � � 0 � � � 0
...

...
...

0 � � � 1 � � � 0
...

...
...

0 � � � 0 � � � 0

3

7
7
7
7
7
7
7
5

i

j

(4.11)

and matrices

@�(t)
@x(t)

=
�

@�(t)
@x1(t)

� � �
@�(t)

@xn (t)

�
(4.12)

@�(t)
@x(t)

=
�

@�(t)
@x1(t)

� � �
@�(t)

@xn (t)

�
(4.13)

De�ne also

ot =

(
1 if t =2 T
0 if t 2 T
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Next, we can start computing every Jacobian entry.

The �rst Jacobian J1 is the matrix of derivatives
@"
@#

=
@y
@#

, and is obtained

by di�erentiating the output equation of (4.3). The index 1 of J1 is omitted
for notational simplicity.

JA ij (t) =
@y(t; # )

@Aij
= ot

�
C + F

@�(t)
@x(t)

�
@x(t)
@Aij

(4.14)

JB ij (t) =
@y(t; # )

@Bij
= ot

�
C + F

@�(t)
@x(t)

�
@x(t)
@Bij

(4.15)

JC ij (t) =
@y(t; # )

@Cij
= I n y � n

ij x(t) (4.16)

JD ij (t) =
@y(t; # )

@Dij
= I n y � n u

ij u(t) (4.17)

JE ij (t) =
@y(t; # )

@Eij
= ot

�
C + F

@�(t)
@x(t)

�
@x(t)
@Eij

(4.18)

JF ij (t) =
@y(t; # )

@Fij
= I n y � n �

ij � (t) (4.19)

Jx ( j ) (t) =
@y(t; # )
@x(j )

= � jt

�
C + F

@�(t)
@x(t)

�
(4.20)

with

@x(t + 1)
@Aij

= I n � n
ij x(t) + ot

�
A + E

@�(t)
@x(t)

�
@x(t)
@Aij

(4.21)

@x(t + 1)
@Bij

= I n � n u
ij u(t) + ot

�
A + E

@�(t)
@x(t)

�
@x(t)
@Bij

(4.22)

@x(t + 1)
@Eij

= I n � n �
ij � (t) + ot

�
A + E

@�(t)
@x(t)

�
@x(t)
@Eij

(4.23)

x(j ) in Jx ( j ) refers to time instant j and not component j . Jx ( j ) should
only be computed (and included in the Jacobian matrix) for j 2 T .

The second JacobianJ2 =
@F
@#

is obtained by di�erentiating (4.4). The

index 2 of J2 is omitted for notational simplicity. The constraint entry F (t r ; #),
de�ned as the part of F (#) corresponding to time instant t r 2 T in (4.4), is
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given by ' r � x(t ( r +1) mod p).

JA ij (t) =
@F(t; # )

@Aij
= I n � n

ij x(t) + ot

�
A + E

@�(t)
@x(t)

�
@x(t)
@Aij

(4.24)

JB ij (t) =
@F(t; # )

@Bij
= I n � n u

ij u(t) + ot

�
A + E

@�(t)
@x(t)

�
@x(t)
@Bij

(4.25)

JC ij (t) =
@F(t; # )

@Cij
= 0 n � 1 (4.26)

JD ij (t) =
@F(t; # )

@Dij
= 0 n � 1 (4.27)

JE ij (t) =
@F(t; # )

@Eij
= I n � n �

ij � (t) + ot

�
A + E

@�(t)
@x(t)

�
@x(t)
@Eij

(4.28)

JF ij (t) =
@F(t; # )

@Fij
= 0 n � 1 (4.29)

Jx ( j ) (t) =
@F(t; # )

@x(j )
= � jt

�
A + E

@�(t)
@x(t)

�
+ � j;t +1 (� I n ) (4.30)

Again, Jx ( j ) should only be computed (and included in the Jacobian matrix)
for those x(j ) that belong to the parameter vector. Due to the zero entries in
both Jacobians, the KKT matrix in (4.8) will be sparse.

Note that @x(t )
@Aij

, @x(t )
@Bij

and @x(t )
@Eij

need to be computed recursively via (4.21)

� (4.23) if x(t) is not a parameter (t =2 T ). The dependency of@x(t )
@# on its past

values in time stops at the �rst parameter prior to x(t), e.g. x(t � r ):

t � r = max [ T \ f 0; :::; t � 1g]

Hence, in practice, @x(t )
@# is computed �rst at the parametric time instants

(t 2 T ; ot = 0 ) and next a recursion is performed via (4.21) � (4.23) to obtain
these derivatives for the time instants in between. This means that both the
simulation of the output and the computation of the Jacobian matrices do not
need a full recursion. As a result, they are more robust towards instabilities
than the unconstrained method.



Part II

Reducing the model
complexity

87





Introduction

A nonlinear state-space model such as the PNLSS is very �exible. However,
this �exibility comes at the cost of a high complexity, meaning that the model
contains many parameters. A high number of (independent) model parameters
is an undesired property: it is not only impractical to work with, but also mostly
increases the variability of the estimated parameters (and as a consequence the
model output). One way to reduce the number of parameters is to exploit
structure that might be present in the true system. Another option is to apply
existing parameter reduction techniques, such as regularization.

Chapter 5 includes the keys to understand Chapters 6 and 7. Among others,
it explains why regularization methods cannot be used in their current form to
(maximally) reduce the number of nonzero parameters of the PNLSS model. A
second observation is that, even in noiseless simulations, the identi�ed PNLSS
is not sparse, even though it is known that a sparse model exists. This is due
to linear and nonlinear state transformations: they conceal the possibly under-
lying structure. This insight is used in Chapters 6 and 7, where methods are
proposed that convert the PNLSS model to respectively a Wiener-Hammerstein
block-structure and what will be called a nonlinear LFR.
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Figure 5.0: Illustration complementing the abstract and ideas of Chapter 5.



5Chapter 5

Preliminaries

This introductory chapter starts with a comparison between the PNLSS
model and block-structures. It also provides some background information that
can help to understand the following chapters, including parameter reduction
techniques, an introduction to state transformations applicable to the PNLSS
model and the mathematical equivalences between some block-structures and
the PNLSS model (from theoretical point of view).

5.1 Nonlinear state-space versus block-structured
models

This section reveals the properties of both approaches, which are also listed in
Table 5.1 on page 93.

5.1.1 Black-box nonlinear state-space models (the PNLSS)

Recall the model equations (1.1) of a nonlinear state-space model:

x(t + 1) = f (x(t); u(t); � )
y(t) = h (x(t); u(t); � )

(5.1)

In this thesis, it is assumed that the nonlinear functionsf and h are polynomial.
This means that the output can be a complex, polynomial function of (delayed)
inputs and states: it is a �exible model.

91
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Clearly, looking at its good properties in Table 5.1 (including its �exibility),
black-box modeling is appealing and would be even more attractive if the model
complexity could be decreased. The downside of the higher model complexity
is twofold: the number of parameters increases combinatorially (coe�cients of
the polynomials f and h, see (5.1)), but also, compared to a block-structured
model, the interpretability of the model is lost (or at least more di�cult).

An advantage is that those models require little prior knowledge during
estimation. Once one has constructed an initial estimate, such as the best
linear approximation (BLA) (Section 2.3.3), the nonlinearities will simply arise
at the right places during the optimization in a natural way. 1As will become
clear later on, the possible structure contained in the system will usually not
be visible in this model.

5.1.2 Block-structured models

Block-structured models are a combination of linear dynamic blocks (in this
thesis assumed to be time-invariant, which is also commonly found in the liter-
ature) and static nonlinear blocks. Some examples can be found in Appendix
5.E. The models can be quite parsimonious and easy to interpret (this is why
these models are also called grey-box), but their �exibility is limited by their
structure. Moreover, prior knowledge can be necessary to choose an appropri-
ate grey-box structure (which should approximate the device under test well
enough).

In block-structured modeling, the initial estimates problem is known to be
a quite non-trivial task (Billings and Fakhouri, 1982 a; Bai and Giri, 2010);
good initial estimates are very important since suboptimal models can be the
consequence of local minima (due to nonlinearities in the parameters). It is
especially hard to split the dynamics over the separate blocks. E.g., a Wiener-
Hammerstein system (see Section 5.E.2.2) consists of two linear dynamic blocks
and one static nonlinearity in between. When optimizing, the choices of the
model orders and the pole and zero distribution over both of the linear blocks
will greatly in�uence the quality of the �nal model and it is not excluded that
many trials have to be done in order to �nd the right (or a good) split (Sjöberg
and Schoukens, 2012a).

1Note however that a nonlinear optimization, depending on the quality of the initial
estimates, yields the risk of local minima. Not only can they occur while estimating a
nonlinear state-space model, but also in case of the block-structured model estimation.
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Nonlinear
state-space
(black-box)

Block-
structured

(almost) no prior
knowledge needed

+ �

parsimony of the model
(complexity)

� +

ease of initialisation + �

model �exibility + �

interpretability � +

Table 5.1: Properties of nonlinear state-space (black-box) and block-structured
modeling.

5.2 Goal

If e.g. for a mechanical system, it is known that the only part in the structure
that behaves nonlinearly is a hardening spring, a block-structure with one static
nonlinearity is su�cient to describe its behavior. Black-box models generally
do not reveal the (block) structure that might be present and might hence
contain more parameters than strictly necessary.

The purpose of this part of the thesis is to reduce the number of parameters
of the black-box PNLSS model. One can e.g. try to use a regularization
method (not trying to �nd the underlying structure), or to impose structure on
the non-structured, complex, all-purpose, black-box PNLSS model, to obtain a
simpler, grey-box, block-structured model with linear dynamic blocks and static
nonlinearities. This last option means that the PNLSS model is completely
unraveled into well interpretable blocks.

5.3 Outline

The remaining of this chapter is organized as follows:
Section 5.4 �rst gives a brief discussion on some existing parameter reduc-

tion techniques (a pragmatic approach and regularization methods). It is also
shown that it is not straightforward to extend the `1 norm regularization to
a nonlinear-in-the-parameters, semi-convex problem. Nevertheless, it remains
an attractive option, although no (reliable) solution exists yet.

Next, in Section 5.5, the e�ect of state transformations is explained: they
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can conceal the true model structure (and hence sparsity).
Section 5.6 summarizes the results obtained in Appendix 5.E, showing the

equivalences between the nonlinear state-space and block-structured models
and their properties. It also explains a method to know rank properties of a
PNLSS model for a given, possibly complex, block structure.

Section 5.7 concludes the chapter.

5.4 Parameter reduction techniques

5.4.1 Basic concepts

This section brie�y introduces `p norm regularizations (more precisely forp = 0 ,
1 and 2) to help understand the following sections. There is a lot of recent
interest in this �eld, especially for p = 1 (see, e.g., Ljunget al. (2011) and the
book Bühlmann and van de Geer (2011)). An`p norm regularization uses the
minimization

min
�

jjA� � bjj2
2 + � jj � jjp (5.2)

to de�ne the regularized estimator in the linear least-squares situation. Herein,
� is called regularization parameter and the`p-norm is de�ned as follows:

jj � jjp =

(
# f � i 6= 0g p = 0

(
P n �

i =1 j� i jp)1=p p > 1

For p = 0 or 1, regularization can be used in system identi�cation to favor
sparse solutions. This can help to avoid over�tting. A linear least-squares
problem is considered in this section. Some small discussions on the use of the
three norms follow below. Figure 5.1 shows the circles of unit norm forp = 0 ,
p = 1 and p = 2 .

ˆ `0 �norm� 2 regularization
Because of the`0 �norm�, this is a nonconvex problem that cannot be
solved numerically without enumerating every possible combination. All
possible combinations of nonzero (selected) parameters should be checked
and this is very time-consuming.

ˆ `1 norm regularization
A way to overcome the impracticality of the `0 �norm� is to use an `1

norm regularization, which is a convex relaxation of the `0-regularized
problem. Note however that it is only a suboptimal approximation for

2Mathematically, this is not a norm, since it does not satisfy the positive homogeneity
condition jj �v jj = j� j jj vjj for scalar � and vector v (e.g. consider � 6= 1 and unit vector v).
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Figure 5.1: Unit circles of three types of norms: `0, `1 and `2. Note that the
lines of the `0 �norm� continue beyond 1 and � 1.

the `0 �norm� (Boyd and Vandenberghe, 2009). It can be written in a
constrained formulation

min � jjA� � bjj2
2

s.t. jj � jj1 � �
(5.3)

(with � 2 R+
0 ) or in an unconstrained formulation with a penalty term, as

in (5.2). This regularization method, also called LASSO (Least Absolute
Shrinkage Selection Operator) (Tibshirani, 1996), has already been used
extensively and is very successful. There exist several di�erent methods
for optimizing the LASSO, as e.g. the method in Kim et al. (2007).
Figure 5.2 illustrates how the `1 approach generates sparse solutions for
a 2D situation. The constraint in (5.3) is satis�ed in the grey region. For
large � , the solution of (5.3) coincides with the minimizer of the unreg-
ularized cost function (a). When � decreases, the solution is situated at
the contour line of the cost which is tangential to the grey region (b); for
quadratic cost functions, the solution moves along a straight line for these
values of � . When � becomes small enough and decreases, the solution
will move along one of the axes ((c) and (d)). The parameters� (and � )
allow one to control the �t-versus-sparsity trade-o�. This demonstrates
the importance of a well-chosen regularization parameter� (or � ), which
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Figure 5.2: The e�ect of decreasing� (or equivalently increasing the regulariza-
tion parameter � ): highest � in (a), smallest in (d). The contour lines belong
to the term jjA� � bjj2

2; the grey squares correspond to the term� jj � jj1. The
dot indicates the location of the minimum of the regularized cost.

is not always straightforward.

ˆ `2 norm regularization
This method is also known as ridge regression or Tikhonov regularization.
Because the penalty is quadratic, it is very small close to parameter values
zero and will not outweigh the term jjA� � bjj2

2 in (5.2) 3. This results
in a solution of which (some of) the parameters have a small norm, but
does not necessarily pull them towards zero. It especially helps to make
an ill-posed problem well-posed (Eriksson, 1996) and to make a good
bias-variance trade-o� (Zou and Hastie, 2005; Ohlsson, 2010).

More details and examples can be found in the thesis of Henrik Ohlsson (Ohls-
son, 2010) or in Ljung et al. (2011).

3To make a little comparison: an `1 norm decreases linearly towards the zero values and
will result in a larger penalty term close to the zero parameters than the `2 norm. An `0
�norm� is a discontinuous function that increases stepwise with the number of parameters.
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5.4.2 Pragmatic approach

The standard way of evaluating the model quality, is to consider a �fresh� data
set that is not used during the optimization, and select the model that achieves
the best result on this test set also known as validation data set (Paduart, 2008;
Sjöberg et al., 1995). In Sjöberget al. (1995), it is shown that, under certain
assumptions, this so-called �stopped search� can be regarded as an implicit
regularization. Since it is a kind of `2 norm regularization, it will not set
parameter values exactly to zero, but does help to reduce the model variability
(Ljung et al., 2011). Hence, it cannot be considered as a parameter reduction
technique.

In order to reduce the number of parameters, a possibility is to look at the
RMS contributions4 of the parameters to the model output (Paduart et al.,
2006). After identifying a fully parameterized nonlinear model, the parameters
are sorted according to these RMS contributions. Then, a prede�ned number
of the least important parameters is selected. Next, the estimation is restarted
from either the reduced (pruned) model or the initial (linear) model, but with
the selected parameters held equal to zero. This procedure is repeated several
times (every time reducing the number of parameters) and the models are
compared on a test set.

This approach has several drawbacks:

ˆ it is quite time consuming, because it is not known beforehand how many
parameters should be withdrawn. This means that in general, several
optimizations will be necessary.

ˆ in general, there are several local minima. The validation cost as function
of the number of selected parameters is not necessarily smooth. There-
fore, to be sure, all numbers of parameters have to be checked. Also,
the re-estimation (every time some parameters are removed) is subject
to local minima.

ˆ it does not take state transformations into account. In general, the iden-
ti�ed model will nearly always contain only nonzero parameter values,
even when it is known that a sparse model can describe the data exactly.
In this case, only a well-chosen state transformation can render the model
sparse. The pragmatic approach will hence often yield a suboptimal so-
lution. It is clear that the state transformations play a crucial role in the
model reduction. These will be discussed in more detail in Section 5.5.

4The RMS contributions are precisely de�ned as rms
�
y(� [i ! 0] ) � ym

� 2

with � [i ! 0]
k =

(
� k k 6= i
0 k = i

.
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Another approach that helps to keep the number of parameters restricted is to
simply try out several restricted PNLSS models (e.g. with only nonlinearities
in the states, or nonlinearities that are a�ne in the states, etc.) and select the
model with the best �value for money�, i.e. a good trade-o� between model
quality and number of parameters.

5.4.3 Regularization

The most appealing way to reduce the number of parameters, is probably by
means of an`1 norm regularization (see Section 5.4.1).

5.4.3.1 First pitfall

Although this regularization has already been extensively described in litera-
ture, it usually deals with problems that are linear in the parameters. Because
the state-space model is nonlinear in the parameters, the regularization prob-
lem in this thesis cannot be reformulated as in (5.3) or some variant on this
notation. One might consider performing many iterations of linearizations fol-
lowed by optimizations. The question then is how well this converges.

5.4.3.2 Second pitfall

A second problem resides in the nonlinear degeneracies of state-space models
(both linear and nonlinear state transformations, to be discussed in Section
5.5). For a linear state-space model, the invariants are given by the impulse
response coe�cients, which are nonlinear functions of the parameters: these
are of the form CAm B . Hence, all points satisfying CAm B = km with km a
constant for all m 2 N, have the same input-output behavior and hence have
equal cost function.

To illustrate the e�ects of nonlinear degeneracies, consider a2-dimensional
example with a parabolic cost, depending on� 1 and � 2 only via the scalar
variable � :

V (� ) = (3 + � )2 + 1 (5.4)

with minimum at � = � 3. De�ne the variable � as the function (similar to the
degeneracy coming from the state transformations):

� = e� 2 � 0:1e� 2
1 (5.5)

Hence, there is a parabolic degeneracy. The parameterse� i are rotated and
translated versions of the variables� 1 and � 2 (see (5.7)), which are displayed
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on the axes of Figure 5.3:

 
e� 1

e� 2

!

=

 
cos

�
�
8

�
� sin

�
�
8

�

sin
�

�
8

�
cos

�
�
8

�

!  
� 1

� 2

!

(5.6)

and

� i = � i � 5 (5.7)

These expressions generate the cost in the second subplot of Figure 5.3. There
exists a sparse solution (at� 1 = 0 and � 2 around 6:8 (5)), but due to the
curvature of the degeneracy, the`1 penalized cost (V (� ) + � jj � jj1) tends to a
point between (� 1 = 2 :1, � 2 = 3 :4) and the origin, depending on the value of
� . Figure 5.3 shows the case of� = 3 . The tangent point between an `1 norm
�ball� (points that satisfy jj � jj1 = constant) and one of the contour lines of the
original cost determines the minimizer of the `1 penalized cost6. As can be
seen in Figure 5.4, showing the minimizers of thè 1 penalized cost for several
values of � , in this example, there does not exist any choice of� that yields
the correct sparse solution (i.e. where the minimum of thè 1 penalized cost is
equal to the sparse solution).

The degeneracy in this example is nonlinear, similar to the state degenera-
cies of a state-space model. This shows that̀1-regularization does not solve
our problem in every situation.

The cost function in the example (5.4) does not have local minima. Lo-
cal minima are an additional problem in the nonlinear system identi�cation
problems of this thesis. Even linear state-space models are nonlinear in the
parameters and subject to local minima. Hence, (5.4) should be replaced by a
general non-convex, multivariate cost function, leading to much more intricate
regularization issues.

5.4.3.3 Third pitfall

An extra di�culty is the choice of the regularization parameter � (or equiv-
alently � in (5.3)), which in�uences the position of the minimizer (see also
Figure 5.4).

5The cost V (� ) in (5.4) is minimal in � = � 3. The sparse solution can be found by solving
equations (5.5), (5.6) and (5.7) to � 2 , with � 1 = 0 and � = � 3.

6 Intuitively, this is because, at such a point, an equilibrium is found between the force
of the `1 norm, which tends to pull the minimizer towards the origin (perpendicular to its
ball) and the cost term, which pulls the minimizer towards minimal cost (perpendicular to
the contour lines of the cost). The position of this equilibrium depends on the choice of the
regularization parameter � .
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Figure 5.3: `1 penalized cost and original cost for� = 3 , together with their
minima. In the bottom �gure, the degeneracy curves are clearly visible.
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Figure 5.4: Contour lines of original cost, minimizers of`1 penalized cost and
sparse solution.
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5.4.3.4 Alternative method

An alternative, found in Peeters et al. (2006) discusses aǹ2/ `1 minimization for
state-space models. The method uses a combination of two optimizations, by
alternating between them. One is a Gauss-Newton optimization that minimizes
the least-squares cost and the other is a minimization of thè 1 norm of the
parameters, while remaining in the kernel of the Jacobian of the cost function:

min jj � + 4 � jj1

s.t. J 4 � = 0
(5.8)

with J = @y
@�.

Any value smaller than or equal to 4 � lowers the`1 norm of the parameters.
The choice of step size should be such that the cost function does not increase
too drastically (e.g. less than 10%). However, this ad-hoc method does not
guarantee a monotonic convergence.

5.4.3.5 Last hurdle

The last drawback of any regularization method, as well as the pragmatic
approach of Section 5.4.2, is that, even if it convergences to a (local) minimum,
the possibly underlying block-structure will not be easy to derive. In other
words: a split-up in simpler, linear dynamic and static nonlinear blocks is not
straightforward and there will in general be no gain in structural insight. The
regularization only reduces the model complexity (i.e. increases the number
of zero parameters), but does not automatically reveal the underlying (block-)
structure.

5.5 State transformations

For any state-space model (5.1), there exist state transformations such that the
input-output behavior is unchanged. Let state x and transformed state xT be
related by

x = T (xT ) (5.9)

with T an invertible mapping from Rn to Rn . Applying this to (5.1) de�nes
new state update and output functions:
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qxT = T � 1 [f (T (xT ) ; u)]
, f T (xT ; u)

y = h (T (xT ) ; u)
, hT (xT ; u)

(5.10)

In this equation, the forward shift operator, with qx(t) = x(t + 1) , was intro-
duced to keep the notation simpler.

For a linear transformation

x = TxT (5.11)

all the functions T and T � 1 in (5.10) become matrix products. Even such a
linear transformation can alter the form of the functions f and h.

Example. This can be illustrated via a second order example with output
equation y = ax1 + bx2

2, where the statesx1 and x2 are replaced by di�erent
linear combinations in xT 1 and xT 2 (according to (5.11)). Applying

"
x1

x2

#

=

"
T11 T12

T21 T22

# "
xT 1

xT 2

#

to the model
"

x1 (t + 1)
x2 (t + 1)

#

= A

"
x1 (t )
x2 (t )

#

+ Bu (t )

y(t ) = ax1 (t ) + bx2
2 (t )

results in:
"

xT 1 (t + 1)
xT 2 (t + 1)

#

= T � 1AT

"
xT 1 (t )
xT 2 (t )

#

+ T � 1Bu (t)

y(t ) = a (T11 xT 1 (t ) + T12 xT 2 (t )) + b(T21 xT 1 (t ) + T22 xT 2 (t )) 2

= aT11 xT 1 (t ) + aT12 xT 2 (t ) + bT2
21 x2

T 1 (t )

+2 bT21 T22 xT 1 (t )xT 2 (t ) + bT2
22 x2

T 2 (t )

The underlined terms are new terms inxT 2, x2
T 1 and xT 1xT 2; created via the

state transformation.

In contrast to linear models, in which only linear similarity transforms can
keep the model linear, in the nonlinear case, both linear and nonlinear trans-
formations can create a new PNLSS model that �ts with the same nonlinear
degree and model order (i.e. only the parameter values have changed). A
simple example of a nonlinear state transform is provided in Appendix 5.A.
In this example, the rank of matrix E has increased. Note that a transforma-
tion should be invertible and that for a PNLSS model, only polynomial state
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transformations will yield another PNLSS model. Not only the rank might be
increased after a nonlinear transformation, also the nonlinear degree can have
changed.

In order to analyze the linear and nonlinear state transformations, a number
of tools have been implemented. These are reported in Appendices 5.B, 5.C and
5.D. Besides, in Appendix 5.B it is proven that a linear state transformation
does not a�ect the rank of the E-matrix.

Loss of the sparsity of a PNLSS model

There are three reasons for a model to contain only nonzero parameters:

ˆ The presence of model errors (e.g. a non-polynomial nonlinearity)
E.g. if the true nonlinearity is a hyperbolic sine and it is modelled by a poly-
nomial, the approximation is only correct for an in�nite degree:

sinh x = x +
x3

3!
+

x5

5!
+ ::: =

1X

n =0

x2n +1

(2n + 1)!

On the other hand, by choosing a hyperbolic sine as nonlinearity in � and � ,
one term would be su�cient.

ˆ Overmodeling
In practice, all the parameters in a model have an uncertainty because there
is noise on the data. Also parameters that would normally be zero, can hence
have a non-zero value.

ˆ Degeneracies of the model, corresponding to state transformations of the
PNLSS model
See e.g. the example in Section 5.5 and Appendix 5.A.

Both the pragmatic approach in Section 5.4.2 and̀ 1 and `2 norm regularization
can reduce overmodeling problems, but cannot exploit the degeneracies of the
model explicitly.

The degeneracies, in this thesis caused by state transformations, will be
used explicitly in Sections 6.4.4, 6.5.1, 6.5.2 and 6.5.3.

5.6 Overview of the equivalences between block-
structures and the PNLSS model

If a system can be perfectly described by a block-structured model (e.g. a
Wiener-Hammerstein or Nonlinear Feedback model with polynomial nonlinear-
ities), an equivalent sparse PNLSS model � that also reveals the block-structure
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� should exist (see Appendix 5.E). However, this is not what is found by the
standard (unregularized) optimization: the optimization usually yields a model
without zero-valued parameters. This is due to the possible state transforma-
tions of the state-space model. The example in Appendix 5.A illustrates how
a nonlinear state transform can a�ect the rank of the nonlinear coe�cients
matrix E and the nonlinear degree. The numerical implementation of a linear
similarity transform is given in Appendix 5.B.

5.6.1 Summary of the results in Appendix 5.E

This section provides a summary of some properties of the equivalent sparse
PNLSS models for several block-structures.

Recall the equations of the PNLSS model (see Section 2.1):

x(t + 1) = Ax (t) + Bu(t) + E� (x(t); u(t))
y(t) = Cx(t) + Du(t) + F � (x(t); u(t))

(5.12)

Table 5.2 shows rank information of the nonlinear parameter matricesE and
F in these equations.

Model rank (E ) rank ([E ; F ]) Other properties

Wiener (W) 0 1

Hammerstein (H) 1 1 only NL terms in u

W-H 1 1 only NL terms in x1 and u

H-W 1 2 only NL terms in u in E

parallel W (pW) 0 1

generalized pW 0 1

parallel H max max only NL terms in u

parallel W-H # branches r # branches r

generalized H-W # cascades r # cascades r

LFR 1 1

structured PNLSS rank (E2 ) + 1 rank (E2 ) + 1 F = 0

Table 5.2: Table with rank (and special monomial) properties of the model
types discussed in Appendix 5.E.
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5.6.2 Rank results for a general block-structure

Figure 5.5: Complex block-structure with several SNLs and linear dynamic
blocks, to illustrate that it can be easily seen that rank(E) 6 3 and rank(F ) =
1.

Unlike Appendix 5.E, where rank information was found by writing out the
equations of the sparse PNLSS model, this section provides a quick method
that is based on simple reasoning. With the method, also for very complicated
structures, the ranks of the matrices can be found in no time. The idea is that
the rank of E depends on the state equations and the rank ofF on the output
equations.

Before starting a more thorough derivation, �rst consider the example of
Figure 5.5:

ˆ The states in the nonlinear state-space equations are (vectors)x1 until
x5, respectively belonging to LTI blocksG1 until G5. Only the states that
are nonlinear functions of the input and/or states, contribute to the (rank
of) parameter matrix E (of the entire PNLSS model). While x1 and x2

are simply linear functions of the input and states,x3, x4 and x5 all have
one input that originates from an SNL. Since the three nonlinear inputs
to G3, G4 and G5 are linearly independent, there will be three nonzero
rows in the sparsest representation of matrixE . Hence, rank(E) 6 3.

ˆ The output of this example is simply the nonlinear signal that originates
from SNL5, and hence rank(F ) = 1 .

Let's now generalize this result.
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In the PNLSS model of the entire structure, the states resulting from all
the linear dynamic blocks are grouped together in one tall state vector

x =

0

B
B
B
B
@

x f 1g

x f 2g
...

x f n LTI g

1

C
C
C
C
A

with nLTI the number of linear dynamic blocks in the structure and x f i g the
state vector of the i 'th LTI block. The total model order is the sum of all state
dimensions: n =

P n LTI
i =1 nf i g. Also the E-matrix ( 2 Rn � n � ) can be considered

as one tall matrix:

E =

0

B
B
B
B
@

E f 1g

E f 2g
...

E f n LTI g

1

C
C
C
C
A

(5.13)

in which E f i g 2 Rn f i g � n � corresponds to thei 'th LTI block. The rank of this
tall E -matrix is maximally equal to the sum of the ranks of all E f i g 's resulting
from the separate blocks.

Consider the state-space equations of any linear dynamic block,

x f i g(t + 1) = A f i gx f i g(t) + B f i guf i g(t)

yf i g(t) = Cf i gx f i g(t) + D f i guf i g(t) (5.14)

with input uf i g(t) 2 Rn u f i g , output yf i g(t) 2 Rn y f i g and state x f i g(t) 2 Rn f i g .

5.6.2.1 State equation

For every linear dynamic block, the nonlinear parameter matrixE f i g 2 Rn f i g � n �

is given by

E f i g = BNL f i g

h
� f i g

2 � � � � f i g
n � +1

i

= BNL f i g � f i g

with BNL f i g 2 Rn f i g � m f i g corresponding to a set ofmf i g nonlinear signals
(outputs of SNL(s)) which serve as input of LTI block f ig and � f i g 2 Rm f i g � n �

a matrix with monomial coe�cients � f i g
j with j the monomial index. The
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monomial coe�cients are determined by the SNL. Hence, using (5.13), the
nonlinear parameter matrix E is in general of the form

E =

0

B
B
B
B
B
@

BNL f 1g 0 � � � 0

0 BNL f 2g

. . .
...

...
. . .

. . . 0
0 � � � 0 BNL f n LTI g

1

C
C
C
C
C
A

| {z }
B NL

2

6
6
4

� f 1g
2 � � � � f 1g

n � +1
...

...

� f n LTI g
2 � � � � f n LTI g

n � +1

3

7
7
5

| {z }
� 1

(5.15)
Columns of linear dynamic blocks that only have linear inputs, are empty (i.e.
BNL f i g 2 Rn f i g � 0). That is why the equation shows BNL f i g , instead of B f i g,
which is in general not empty.

To obtain a tighter rank bound, it is recommended not to repeat the rows
� f i g

2 � � � � f i g
n � +1 of � 1 in (5.15): some columns ofBNL should be summed to-

gether, while rows of� 1 are removed.
From (5.15), it follows immediately that the rank of E is limited by the

rank of the total BNL matrix, as well as by � 1:

rank(E) 6 min (rank(BNL ); rank(� 1))

6 min

 
n LTIX

i =1

rank(BNL f i g ); rank(� 1)

!

Under the assumption that � 1 is of full rank and rank(BNL f i g ) = mf i g,
this reduces to:

rank(E) =
n LTIX

i =1

mf i g

In practice, the matrices BNL and � 1 need not be constructed explicitly.
Look at all SNLs which have one or more outputs that are used as input(s) of
a linear dynamic block (this determines

P n LTI
i =1 mf i g). Be aware of double (or

multiple) use of one static nonlinear signal: e.g. if� 1 contains repeated rows,
the rank is decreased. Also, the rank contribution to E f i g is limited by the
model order of block i (i.e. nf i g).

Remark. The number of nonlinear (and independent) inputs of an LTI block
is important, not the number of outputs of the nonlinearities (since they can
be combined via e.g. a summation or product).

Conclusion. An upper bound for the rank of the state equation is given by the
number of signals that are nonlinear (in x or u) that serve as input of a linear
dynamic block. Nonlinear signals are outputs of an SNL or signals behind e.g.
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a product.
The rank is moreover limited by the number of linear dependencies between
these nonlinear signals, which arises when a linear dynamic block hasnf i g <
mf i g, when a summator or any static operation decreases the number of (scalar)
nonlinear input signals or when a signal is used several times (possibly with a
scaling factor or via a linear combination).

5.6.2.2 Output equation

The nonlinear parameter matrix F is in general of the form

F = DNL

2

6
6
4

� 2 � � � � n � +1
...

...
� 2 � � � � n � +1

3

7
7
5

| {z }
� 2

(5.16)

with DNL =
h

D � � � � D �

i
and every column in DNL corresponds to a

(scalar) output of a relevant SNL. DNL represents the direct term D of a
linear state-space model with these scalar outputs as inputs. Note that certain
columns of theDNL -matrix may be rather simple, e.g. a canonical unit vector
consisting of all zeros but a single1-entry (which occurs when there is a direct
connection between a nonlinearity and a model output).

To obtain a tighter rank bound, it is recommended not to repeat the rows
� : : : � of � 2 in (5.16).

From (5.16), it follows immediately that the rank of F is limited by the
rank of DNL :

rank(F ) 6 rank(DNL )

In practice, the matrix DNL need not be constructed explicitly. All the
(scalar) outputs that originate only from linear blocks (and operators) can be
excluded from the count since they do not contribute to F . For the others,
�rst look for their source of nonlinearity. The lowest number of scalar inter-
mediate signals between the sources and the outputs has to be counted (DNL

becomes rank de�cient when the number of relevant outputs is higher than this
amount7). This way of counting takes double (or multiple) use of one static
nonlinearity into account: the signals then become dependent and the rank is
decreased.

7E.g. if an SNL has two outputs, but it is succeeded by a linear block with only one
output, the rank contribution of this SNL to the output will be only 1.

Similarly, the output(s) of any (static) operation that converts two (possibly nonlinear)
signals into one, as e.g. a summation or a product, will at most have a rank contribution
equal to the number of outputs of this operation.
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Remark. As soon as there is a linear block withD f i g = 0 between a nonlinear
signal and the output, this nonlinear signal has to be excluded from the count.

Conclusion. An upper bound for the rank of the output equation is given by
the number of (scalar) outputs that result from signals that are nonlinear (in x
or u). Nonlinear signals are outputs of an SNL or signals behind e.g. a product.
The rank is moreover limited by the number of linear dependencies between
the signals, which happens when a linear dynamic block, a summator or any
static operation decreases the number of (scalar) intermediate signals.

5.6.2.3 State and output equation combined

Once the ranks ofE and F are determined, the rank of[ E
F ] can also be found.

Given (assuming for simplicity � = � )
"

E
F

#

=

"
BNL 0

0 DNL

# "
� 1

� 2

#

| {z }
� tot

it can be easily seen that

rank

 "
E
F

#!

6 min (rank(BNL ) + rank(DNL ); rank(� tot ))

6 min

 
n LTIX

i =1

rank(BNL f i g ) + rank(DNL ); rank(� tot )

!

with
rank(� tot ) 6 rank(� 1) + rank(� 2)

The rank is strictly smaller than the right hand side if the state and output
equations have some nonlinear signals in common.

Example
After these more theoretical considerations, reconsider the example in Fig-

ure 5.5, where it is assumed that all interconnections are scalar signals.

ˆ rank(E) 6 1 + 1 + 1 = 3
There are three nonlinear signals (outputs of SNL3 and SNL4, all linearly
independent) that serve as input of three linear dynamic blocks (G3, G4

and G5). Assuming that the model orders of these blocks are at least
one, the rank of E is (at most) three.

ˆ rank(F ) = 1
There is one system output, which is a nonlinear function (in this case,
it is one of the outputs of an SNL).
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ˆ rank ([ E
F ]) 6 3 + 1

Since the SNL of the output is not (directly) used in a state equation,
the above inequality is the tightest bound that can be made with the
available information.

5.7 Conclusion

One major drawback of a PNLSS model is the high number of parameters. In
this preliminary chapter, it was studied whether regularization techniques can
help to overcome this drawback. It appears that the `1 regularization tech-
nique cannot enforce sparsity as desired to systems that are nonlinear in the
parameters (resulting in local minima), nor to models that have nonlinear de-
generacies. In case of a PNLSS model, both problems occur: it is a state-space
model and hence nonlinear in the parameters and the nonlinear degeneracies
are caused by state transformations. It was shown that state transformations
can turn a sparse set of equations into a model without zero parameters.

The next two chapters present another approach, which not only reduces
the number of parameters, but also increases the interpretability. Based on the
equivalences between the PNLSS model and some block-structures, it is known
which properties can be imposed on the PNLSS model in order to obtain a
block-structured model.

Appendices

5.A Simple example of a nonlinear state trans-
form

Consider the following second order PNLSS model:
8
><

>:

x1(t + 1) = A1x1(t)
x2(t + 1) = A2x2(t) + B2u(t)

y(t) = C2x2(t) + CNL x2
2(t)

(5.17)

(with x1;2(t) 2 R). Please note that a second order Wiener system (written in
controllable canonical form) with a quadratic, static nonlinearity, �ts into this
structure. Apply the nonlinear transformation x = T(xT ) given by

(
x1 = xT 1 + �x 2

T 2

x2 = xT 2
(5.18)
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to (5.17). Hence, the transformed model equations are
8
><

>:

xT 1(t + 1) + �x 2
T 2(t + 1) = A1

�
xT 1(t) + �x 2

T 2(t)
�

xT 2(t + 1) = A2xT 2(t) + B2u(t)
y(t) = C2xT 2(t) + CNL x2

T 2(t)

(5.19)

or, by substituting xT 2(t + 1) (middle equation in (5.19)) in the top equation
of (5.19):

8
><

>:

xT 1(t + 1) = A1
�
xT 1(t) + �x 2

T 2(t)
�

� � (A2xT 2(t) + B2u(t))2

xT 2(t + 1) = A2xT 2(t) + B2u(t)
y(t) = C2xT 2(t) + CNL x2

T 2(t)
(5.20)

Recall that the E- and F -matrices are de�ned as nonlinear coe�cient ma-
trices in the state and output equations respectively (see (2.1) or (5.12)). The
rank of the ET -matrix of the initial set of equations (5.17) (written in the states
x1 and x2) is zero

rank (ET ) = 0 (5.21)

since there simply are no nonlinear terms in the two state equations; the rank
of the E-matrix of the �nal set of equations (5.20) has become1,

rank (E) = 1 (5.22)

due to the nonlinear terms in the �rst state equation of (5.20):

E� (xT (t); u(t)) =

 
�

�
A1 � A2

2

�
� 2�A 2B2 � �B 2

2

0 0 0

!
0

B
@

x2
T 2(t)

xT 2(t)u(t)
u2(t)

1

C
A

(5.23)
The rank of [E ; F ] has become2 instead of 1:

rank

 "
ET

FT

#!

= 1

while

rank

 "
E
F

#!

= 2

Note that state transformations can also a�ect the contributions containing
the input only.
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5.B Applying a linear state transform to a given
PNLSS model

This appendix explains how to compute a new, transformed model, given an
initial model and a transformation matrix T, with

x = TxT (5.24)

The new parameter matricesAT ; : : : ; FT (with state xT ) should be calculated
from A; : : : ; F (with state x). Applying (5.24) to (5.1), results into

qxT = T � 1 (ATx T + Bu + E� (TxT ; u))

y = CTxT + Du + F � (TxT ; u)

The parameters of the linear terms of the transformed state-space model can
now be easily determined:

AT = T � 1AT
BT = T � 1B
CT = CT
DT = D

(5.25)

The parameter matricesET and FT are of the form (consequence of (5.10))

ET = T � 1ET�

FT = FT�
(5.26)

with T� 2 Rn � � n � and T� 2 Rn � � n � (matrices only dependent onT) de�ned
via

T� � (xT ; u) = � (TxT ; u)
T� � (xT ; u) = � (TxT ; u)

Introducing � T = � (xT ; u) = �
�
T � 1x; u

�
and � T = � (xT ; u) = �

�
T � 1x; u

�
(�

and � are known functions) and using (5.24) yields

T� � T = � (x; u)
T� � T = � (x; u)

(5.27)

The question is now to �nd T� and T� such that (5.27) holds for all x, u.
It can be a cumbersome task to �nd T� or T� analytically. Consider for

instance a monomial of the formx1x3
2. Using the transformation in (5.24), the
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monomial becomes a polynomial:

x1x3
2 =

 
nX

i =1

T1i xT;i

! 0

@
nX

j =1

T2j xT;j

1

A

3

(5.28)

The length of the sums between brackets depends on the number of states and
many multiplications need to be performed when the monomial has a high
degree or whenn is high. The coe�cients of the monomials in the right-hand
side of (5.28) are products between multinomial coe�cients and elements inT.
When the model is a�ne in the states, the computation and implementation
is still reasonably simple, but in general, it will be rather complicated.

Numerical implementation

A more convenient way is to determineT� and T� numerically. Hence, several
(x; u)-vectors2 Rn + n u are chosen, the corresponding monomials in� , � , � T and
� T are calculated and �nally T� and T� are obtained by means of a pseudo-
inverse from (5.27) imposed at each(x; u) vector:

T� =
�
� [1] : : : � [R ]

�
(� [1]

T : : : � [R ]
T )y

T� =
�
� [1] : : : � [S]

�
(� [1]

T : : : � [S]
T )y

(5.29)

The minimal number of vectors that needs to be taken, equals resp.R = n�

and S = n� . The (x; u)-vectors can be chosen randomly to produce full rank
matrices. This method does not involve a simulation, which makes it also
applicable to unstable models.

Lemma. A linear transformation can never increase the rank ofE , i.e.

rank(ET ) = rank( E) (5.30)

Proof. From (5.26), it follows that

rank(ET ) 6 rank(E) (5.31)

Since this also holds for the backward transformation (going fromxT to x),

rank(E) 6 rank(ET ) (5.32)

Combining both equations �nishes the proof.
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5.C Applying a nonlinear state transform to a
given PNLSS model

This appendix explains how to compute a new, transformed model, given an
initial model and a nonlinear state transformation matrix � 2 Rn � n � (n� > n),
with

xT = � � (x) (5.33)

and

� (x) =

2

6
6
6
6
6
6
6
6
6
6
4

x
x2

1
...

x � 1
1 x � 2

2 : : : x � n
n

...
xd

n

3

7
7
7
7
7
7
7
7
7
7
5

2 Rn � (5.34)

containing all monomials in x with 1 6
P

j � j 6 d. The new parameter
matrices AT ; : : : ; FT (with state xT ) should be calculated fromA; : : : ; F (with
state x). In the linear transformation case (d = 1 ), n� = n and � = T � 1.
Again, a numerical implementation is proposed.

First, for R di�erent (possibly randomly chosen) (x; u)-pairs (with x =
x(t) and u = u(t)), compute x+ = x(t + 1) and y = y(t) via the state and
output equations with known parameter matrices A; : : : ; F . Next, the state
transformation (5.33) is applied to x and x+ , generatingxT = xT (t) and xT + =
xT (t + 1) . The new state-space equations read

"
xT +

y

#

=

"
AT

CT

#

xT +

"
BT

DT

#

u +

"
ET

FT

#

� ?(xT ; u)

in which � ? (of the transformed model) is de�ned similar to � , but possibly
with a higher nonlinear degree. The previous equation can be rewritten as:

"
xT +

y

#

=

"
AT BT ET

CT DT FT

#
2

6
4

xT

u
� ?(xT ; u)

3

7
5 (5.35)

Hence, by usingR (> n + nu + n� ? ) (x; u)-pairs, all parameter matrices can be
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found:
"

AT BT ET

CT DT FT

#

=

"
x [1]

T +

y[1]
� � �

x [R ]
T +

y[R ]

#

�

2

6
4

x [1]
T

u[1]

� ?(x [1]
T ; u[1] )

: : :
x [R ]

T

u[R ]

� ?(x [R ]
T ; u[R ])

3

7
5

y

The new model (with parameter matricesAT ; : : : ; FT ) will only yield model
output y if the transformation is valid. The transformation x ! xT = � � (x)
should be invertible. Also notice that xT is a polynomial function of x (without
u), meaning that the model type (i.e. PNLSS) will not change. Certain choices
of � will increase the nonlinear degree of the model (so thatn� ? > n � and� E T

FT

�
contains more columns than[ E

F ]).
If (5.35) has a nonzero residual, it should be concluded that the trans-

formation associated with � is not invertible, or the nonlinear degree of the
transformed model should be increased.

The presented method does not involve a simulation. Consequently, it also
applies to unstable models.

5.D Computation of the state transformation ma-
trix between two given (input-output-equi-
valent) models

Given two models, statesx and xT can be computed for a sequence ofR (> n� )
input values u. After simulation of x and xT , the (possibly nonlinear) relation
between both states can then be computed via (5.33):

� =
h

x [1]
T � � � x [R ]

T

i h
� (x [1] ) : : : � (x [R ])

i y

with � (x) de�ned as in (5.34).
If the relation is known to be linear, the linear state transformation matrix

T can also be found analytically via the equations in (5.25), or:

TAT � AT = 0 n � n

TBT = B
CT = CT

DT = D



5

5.E. Equivalence between PNLSS model and block-structures 117

Only the �rst three equations depend on T. They are linear in T, so that they
can be rewritten8 under the form

M vec(T) =

2

6
4

0n 2 � 1

vec(B )
vec(CT )

3

7
5 (5.36)

with vec(T) 2 Rn 2 � 1 a vector with all entries of T stacked column-wise on top
of each other andM 2 R(n 2 +2 n ) � n 2

a matrix that depends on the elements in
A; A T ; BT ; C:

M =

2

6
4

AT
T 
 I n � I n 
 A

B T
T 
 I n

I n 
 C

3

7
5

where 
 denotes the Kronecker product. Clearly, all entries ofT can be found
via left multiplication of (5.36) with the pseudo-inverse of M .

If the residual of (5.36) is nonzero, the two models were not exactly equiv-
alent.

5.E On the equivalence between the PNLSS model
and some block-structures

5.E.1 Introduction

This section presents a selection of block-structured models and their equivalent
PNLSS representations. It shows how the structures translate into the PNLSS
representation and reveals important properties of the PNLSS matrices (in
particular the rank of the nonlinear coe�cient matrices E and F ).

5.E.2 Feedforward block-structured models

The presented structures are assumed to be SISO (one input and one output).

8The following equations were used:

vec(XY ) = ( I 
 X ) vec(Y )

=
�

Y T 
 I
�

vec(X )
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5.E.2.1 Wiener and Hammerstein

A Wiener system consists of a concatenation of a linear dynamic block and a
static nonlinearity. A Hammerstein system has the same blocks, but in reverse
order. The PNLSS equations that correspond to these systems can be found
in Paduart (2008). Several generalizations of these block-structures will be
discussed in the next sections.

5.E.2.2 Wiener-Hammerstein

Figure 5.6: Wiener-Hammerstein block-structure.

The Wiener-Hammerstein (WH) model, which consists of two linear dy-
namic blocks with a static nonlinearity in between, is shown in Figure 5.6. Its
model equations can also be found in Paduart (2008), but are repeated below
because these will be used in Chapter 6. The nonlinearity is assumed to be
polynomial (here without a constant term, corresponding to a DC contribution)
and the equations are reformulated as a PNLSS model.

Let x1 be a vector of states of the �rst linear block and let the vector x2

belong to the second linear block.P is a polynomial operator and the zeros can
be matrices. Writing both linear blocks in a state-space form, the equations of
all the WH blocks are:

x1(t + 1) = A1x1(t) + B1u(t)
y1(t) = C1x1(t) + D1u(t)

P(y1(t)) =
P d

i =1 � i yi
1(t) =

P d
i =1 � i (C1x1(t) + D1u(t)) i

x2(t + 1) = A2x2(t) + B2P(y1(t))
y(t) = C2x2(t) + D2P(y1(t))

(5.37)

Introducing x(t) =

 
x1(t)
x2(t)

!

, grouping the state equations and substitut-

ing the nonlinearity, the equations can be rewritten as a PNLSS model:
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x1(t + 1)
x2(t + 1)

!

= A

 
x1(t)
x2(t)

!

+ Bu(t) + E� (t)

y(t) = C

 
x1(t)
x2(t)

!

+ Du(t) + F � (t)

(5.38)

with

A =

 
A1 0

B2� 1C1 A2

!

B =

 
B1

B2� 1D1

!

C =
�

D2� 1C1 C2

�

D = D2� 1D1

(5.39)

and

E� (t) =

 
0

B2P2:d(C1x1(t) + D1u(t))

!

F � (t) = D2P2:d(C1x1(t) + D1u(t))

(5.40)

with

P2:d(� ) =
dX

i =2

� i � i

Since there is only one SNL in the structure, the nonlinear degree is limited
to the degreed of this SNL. Moreover, the polynomial combinations are only
function of x1 and u and the monomial vectors are equal (� = � ). The rank of
the [ E

F ]-matrix is one because the SNL has only one output:[ E
F ] can be written

as a product between the column[0;B2; D2] and a row vector that depends on
P2:d.

Example. If degreed = 2 , the polynomial in (5.40) is

P2(C1x1(t) + D1u(t)) = � 2(C1x1(t) + D1u(t))2

Hence, (5.40), with E and F stacked on top of each other (since� = � ), is
equal to
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"
E
F

#

� (t) =

2

6
4

0 0 0
� 2B2C2

1 2� 2B2C1D1 � 2B2D 2
1

� 2D2C2
1 2� 2D2C1D1 � 2D2D 2

1

3

7
5

2

6
4

x2
1(t)

x1(t)u(t)
u2(t)

3

7
5

5.E.2.3 Hammerstein-Wiener

The Hammerstein-Wiener system is a concatenation of two static nonlinearities
with a linear dynamic block in between.

Figure 5.7: Hammerstein-Wiener block-structure.

v(t) =
d1X

i =1

� i 1ui (t)

x(t + 1) = A1x(t) + B1v(t)

w(t) = C1x(t) + D1v(t)

y(t) =
d2X

j =1

� i 2wj (t)

After substitution and reordering, the system matrices of the linear part of
the PNLSS model become

A = A1

B = B1� 11

C = � 12C1

D = � 12D1� 11

and the nonlinear terms are
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E� (t) = B1 (� 21 � 31 : : : � d1 1)

0

B
B
B
B
@

u2(t)
u3(t)

...
ud1 (t)

1

C
C
C
C
A

F � (t) = � 12D1 (� 21 � 31 : : : � d1 1)

0

B
B
@

u2(t)
...

ud1 (t)

1

C
C
A

+
d2X

j =2

� j 2

 

C1x(t) + D1

d1X

i =1

� i 1ui (t)

! j

The last term in F � (t) shows that many types of monomials inx and u are
present, with ud1 d2 the monomial with the highest degree, viz. the nonlinear
degree is the product of the polynomial degrees:d = d1d2. Note that, unlike � ,
there are no states in� . The E-matrix has rank 1 in this representation, and
the rank of the [ E

F ]-matrix is 2.

5.E.2.4 Parallel Wiener

The parallel Wiener system (Hunter and Korenberg, 1986b) consists of several
Wiener systems with a common input. The outputs are added together to yield
the total output of the system.

Figure 5.8: Parallel Wiener block-structure.
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The equation for branch j is

x j (t + 1) = A j x j (t) + B j u(t) (5.41)

yj (t) =
dX

i =1

� ji (Cj x j (t) + D j u(t)) i

After introducing x(t) =

0

B
B
@

x1(t)
...

x r (t)

1

C
C
A , and grouping the equations of all r

branches together, the system matrices of the linear part become

A =

0

B
B
B
B
B
@

A1 0 � � � 0

0 A2
. . .

...
...

. . .
. . . 0

0 � � � 0 A r

1

C
C
C
C
C
A

B =

0

B
B
B
B
@

B1

B2
...

B r

1

C
C
C
C
A

C = ( � 11C1 � 21C2 � � � � r 1Cr )

D =
rX

j =1

� j 1D j

Parameter matrix E does not contain any elements since the state equation
in (5.41) is linear:

E = 0

and consequently rank(E) = 0 . The nonlinearities in the output can be written
as

F � (t) =
rX

j =1

dX

i =2

� ji (Cj x j (t) + D j u(t)) i

All possible monomial combinations up to degreed will in general be present
in F and the rank of the [ E

F ]-matrix is 1.
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5.E.2.5 Generalized parallel Wiener

If the SISO static nonlinearities of a parallel Wiener system are replaced by
one big MISO static nonlinearity, the generalized parallel Wiener structure is
obtained. It was proven by Boyd and Chua (1985) that systems with fading
memory can be uniformly approximated by this structure. There is still re-
search going on concerning its identi�cation (Schoukens and Rolain, 2012; Tiels
and Schoukens, 2011). The corresponding PNLSS model is quite similar to the
one above (with E = 0 and F full), but with a more general output nonlinear-
ity. It can be remarked that a PNLSS model with only output nonlinearities
(similar to 5.E.2.4) is easier to identify than the parallel Wiener structure itself.
The main drawback is that the number of parameters is higher (especially for
high nonlinear degrees). On the other hand, once the nonlinearity is �tted, it
is possible to search for better basis functions (closer to the true behavior).

5.E.2.6 Parallel Hammerstein

A parallel Hammerstein (Schoukenset al., 2011) system is similar to a parallel
Wiener system, but has Hammerstein branches instead of Wiener branches.

Figure 5.9: Parallel Hammerstein block-structure.

The equation for branch j is

x j (t + 1) = A j x j (t) + B j

dX

i =1

� ji u(t) i

yj (t) = Cj x j (t) + D j

dX

i =1

� ji u(t) i
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After introducing x(t) =

0

B
B
@

x1(t)
...

x r (t)

1

C
C
A , and grouping the equations of all r

branches together, the system matrices of the linear part become

A =

0

B
B
B
B
B
@

A1 0 � � � 0

0 A2
. . .

...
...

. . .
. . . 0

0 � � � 0 A r

1

C
C
C
C
C
A

B =

0

B
B
B
B
@

B1� 11

B2� 21
...

B r � r 1

1

C
C
C
C
A

C = ( C1 C2 � � � Cr )

D =
rX

j =1

D j � j 1

and the nonlinear parts are

E� (t) =

0

B
B
@

B1� 12 � � � B1� 1d
...

. . .
...

B r � r 2 � � � B r � rd

1

C
C
A

0

B
B
@

u2(t)
...

ud(t)

1

C
C
A

F � (t) =

0

@
rX

j =1

D j � j 2 � � �
rX

j =1

D j � jd

1

A

0

B
B
@

u2(t)
...

ud(t)

1

C
C
A

Although this structure has nonlinear parameters in both the state- and out-
put equations, and hence seems more complicated than the parallel Wiener (or
even generalized parallel Wiener) structure, the nonlinearities are only function
of the input. The rank of E and the concatenation[ E

F ] is maximal.

5.E.2.7 Parallel Wiener-Hammerstein

A parallel Wiener-Hammerstein system consists of Wiener-Hammerstein branches
with a common input. The outputs are added together to yield the total system
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output.

Figure 5.10: Parallel Wiener-Hammerstein block-structure.

Consider the equation of one of ther branches. The second indices of
A; :::; D denote whether these matrices belong to the �rst or second linear
dynamic block of the considered branch. The states are de�ned with the same

indexing convention asx j (t) =

 
x j 1(t)
x j 2(t)

!

.

x j (t + 1) =

 
A j 1 0

B j 2� j 1Cj 1 A j 2

!

x j (t) +

 
B j 1

B j 2� j 1D j 1

!

u(t)

+

 
0

B j 2
P d

i =2 � ji (Cj 1x j 1(t) + D j 1u(t)) i

!

yj (t) =
�

D j 2� j 1Cj 1 Cj 2

�
x j (t) + D j 2� j 1D j 1u(t)

+ D j 2

dX

i =2

� ji (Cj 1x j 1(t) + D j 1u(t)) i

By construction, the states of all branches are decoupled, and therefore,
grouping all the state equations results in sparseA- and E-matrices. The E j s
of every branch have rank1 (as in the Wiener-Hammerstein equation (5.40)),
such that the total rank of E adds up to r . The output equation (i.e. the sum
of all the outputs of the branches) contains all possible monomials up to degree
d. The rank of [ E

F ] equalsr + 1 .

Note. A parallel Hammerstein-Wiener system would have an equivalent PNLSS
representation with high nonlinear degrees in the output equation and a rankr
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E-matrix with only nonlinearities in the input. In the next section, instead of
focusing on this structure, we choose to look at the generalized Hammerstein-
Wiener structure.

5.E.2.8 Generalized Hammerstein-Wiener

Figure 5.11: Generalized Hammerstein-Wiener block-structure.

This is a cascade of Hammerstein systems, as also de�ned (and identi�ed)
in Wills and Ninness (2009). If a simple cascade of two Hammerstein systems
is considered, the equations of the corresponding state-space model are:

x(t + 1) =

 
A1 0
0 A2

!

x(t) +

0

@
B1

P d1
i =1 � i 1u(t) i

B2
P d2

j =1 � j 2

�
C1x1(t) + D1

P d1
i =1 � i 1u(t) i

� j

1

A

y(t) =
�

0 C2

�
x(t) + D2

d2X

j =1

� j 2

 

C1x1(t) + D1

d1X

i =1

� i 1u(t) i

! j

with x(t) =

 
x1(t)
x2(t)

!

.

The linear part can be described by matrices

A =

 
A1 0

B2� 12C1 A2

!

B =

 
B1� 11

B2� 12D1� 11

!

C =
�

D2� 12C1 C2

�

D = D2� 12D1� 11

The number of monomials and nonlinear degree grow with the addition of
extra Hammerstein systems. The rank of theE-matrix for this simple cascade
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is 2 and would be r for a cascade ofr Hammerstein systems. The complexity
of the terms in E depends on the position of the subsystem (higher nonlinear
degree and more monomials closer to the output). The complexity ofF is
similar to the most complex rows ofE (here the last row).

5.E.3 More general block-structured models

5.E.3.1 General block-structure with one static nonlinearity

This structure will be used in Chapter 7, where the reduction of a PNLSS
model into the so-called Linear Fractional Representation (LFR) is discussed.
Note that this structure contains some of the above ones: Wiener, Hammerstein
and Wiener-Hammerstein. An extra asset of this structure is its possibility to
model nonlinear feedback.

Figure 5.12: Nonlinear LFR block-structure.

In the following equations, the four linear dynamic blocks are regarded as
one MIMO dynamic block. Its state-space representation, in which an explicit
distinction between the contributions from u1, u2 to y1 and y2 is made, is given
by:

x(t + 1) = ALTI x(t) +
h

BLTI BNL

i
"

u1(t)
u2(t)

#

"
y1(t)
y2(t)

#

=

"
CLTI

CV

#

x(t) +

"
DLTI DNL

DV D22

# "
u1(t)
u2(t)

# (5.42)

Sinceu2 is the output of the SNL,

u2(t) =
dX

p=1

� pyp
2 (t)



128 Chapter 5. Preliminaries

Rewriting the state- and true output ( y1) equations yields

x(t + 1) = ALTI x(t) + BLTI u1(t) + BNL u2(t)
y1(t) = CLTI x(t) + DLTI u1(t) + DNL u2(t)

with

u2(t) =
dX

p=1

� p (CV x(t) + DV u1(t) + D22u2(t))p

In Chapter 7, it will be assumed that D22 = 0 . With that choice,

A = ALTI + BNL � 1CV

B = BLTI + BNL � 1DV

C = CLTI + DNL � 1CV

D = DLTI + DNL � 1DV

and
E� (t) = BNL P2:d(CV x(t) + DV u1(t))
F � (t) = DNL P2:d(CV x(t) + DV u1(t))

The rank of [ E
F ] is one because the SNL has only one output:[ E

F ] can be
written as a product between the column

� B NL
D NL

�
and a row vector that depends

on P2:d.

5.E.3.2 Structured-PNLSS

Figure 5.13: Schematic of the Structured-PNLSS system.

The structured-PNLSS model was introduced in Harnacket al. (2009) and
consists of a linear dynamic block in the feedforward path and a PNLSS block
in the feedback path. Denoting the LTI G with subscript 1 and the PNLSS
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block with subscript 2, the equations are

x1(t + 1) = A1x1(t) + B1 (u(t) � C2x2(t) � D2y(t) � F2� (t))

x2(t + 1) = A2x2(t) + B2y(t) + E2� (t)

y(t) = C1x1(t) + D1 (u(t) � C2x2(t) � D2y(t) � F2� (t))

In order to avoid algebraic equations, setD1 = 0 (at least one tap of delay in
the loop), such that y(t) = C1x1(t). The output can then be substituted in
the state equations and the parameter matrices of the corresponding PNLSS
model are

A =

 
A1 � B1D2C1 � B1C2

B2C1 A2

!

B =

 
B1

0

!

C = C1

D = 0

E =

 
� B1F2

E2

!

F = 0

The largest gain in number of parameters is in theE- and F -matrices:
compared to the full PNLSS model, there are noE1- and F1-matrices. The
rank of the E-matrix is given by

rank(E) 6 rank(� B1F2) + rank(E2)

with rank (� B1F2) 6 1. Hence, the reduction depends on the model order of
the linear block. This structure is especially suited for systems that are known
to have a nonlinear feedback.



Figure 6.0: Illustration complementing the abstract and ideas of Chapter 6.
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Chapter 6

Reduction to a
Wiener-Hammerstein model

As pointed out earlier, the main goal of this part of the thesis is to re-
trieve a structure that might be hidden inside a PNLSS model, hereby reduc-
ing the model complexity (i.e. the number of parameters). In practice, the
internal structure of the true system is usually unknown. In this chapter how-
ever, it is assumed that the system is known to be a Wiener-Hammerstein
block-structured model, which consists of two linear dynamic subsystems that
are separated by a static nonlinearity. The described method can convert a
black-box PNLSS model into a Wiener-Hammerstein model by imposing cer-
tain properties. It can be considered as a reduction technique or an identi�-
cation method. Both simulation and measurement examples (on benchmark
data) illustrate the technique.

The method involves more craftsmanship than some methods that identify
a Wiener-Hammerstein system directly. It can be regarded as a step towards
the more general and less complicated method of the next chapter.

Introduction and motivation

For a general data set, the higher �exibility of the PNLSS model (see Sec-
tion 2.4, and Paduart (2008)) and its ease of �nding initial estimates often
leads to better minima compared to a block-structured identi�cation. On the
other hand, the model complexity is increased. Even though the PNLSS model

131
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Figure 6.1: Wiener-Hammerstein system.

can perfectly describe several block-structured systems, such as the Wiener-
Hammerstein (WH) system (see Figure 6.1) with polynomial nonlinearities, the
underlying structure � if present � will not be visible at �rst sight. The method
that is presented in this chapter imposes certain properties that should be ful-
�lled in order to convert the PNLSS model into a WH block-structure. One
could think that, if the system truly is a WH system, the conversion involves a
simple rede�nition of the states (e.g. a permutation or linear transformation)
such that the block structure pops up in the equations of the PNLSS model
and hence can be distilled from them. However, it will be shown that a simple
rede�nition is not enough, because a general nonlinear state transformation is
involved.

6.1 Outline

Section 6.2 describes some assumptions and properties of the WH model.
Section 6.3 gives a short overview of the four steps of the method. Sections
6.4 (step 1 and 2), 6.5 (step 3) and 6.6 (step 4) explain in more detail how
to perform the reduction steps. In addition, Section 6.4.1 illustrates how the
proposed approach can avoid local minima that might be created by the more
straightforward intuitive approach.
Section 6.7 shows a simulation example and Section 6.8 illustrates the method
on the SYSID'09 �WH� benchmark data (Schoukenset al., 2009).

6.2 Target model: some assumptions and prop-
erties

The target model is a WH model as shown in Figure 6.1, which consists of
two linear dynamic subsystems that are separated by a static nonlinearity.
The intermediate signals before and after the static nonlinearity (SNL) are not
available for measurement. The linear dynamics at the input and the output
will be denoted asG1 and G2 with states x1 and x2 and state-space quadruples
(A1; B1; C1; D1) and (A2; B2; C2; D2) respectively. Recall from Section 5.E.2.2
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that the parameter matrices of the corresponding PNLSS model can be written
as

A =

 
A1 0

B2� 1C1 A2

!

B =

 
B1

B2� 1D1

!

C =
�

D2� 1C1 C2

�

D = D2� 1D1

(6.1)

and

E� (t) =

 
0

B2P2:d(C1x1(t) + D1u(t))

!

F � (t) = D2P2:d(C1x1(t) + D1u(t))

(6.2)

This is essential to a good understanding of the rest of this chapter.

Assumption 6.1. The global model fromu to y can be Multiple Input � Multi-
ple Output (MIMO, nu > 1, ny > 1), but the static nonlinearity is assumed to
be Single Input � Single Output (SISO). This means that, generally speaking,
G1 and G2 are respectively MISO and SIMO blocks, andC1, D1, B2 and D2

are vectors.

Assumption 6.2. The linear dynamic subsystems at the input and output are
resp. observable and controllable, or equivalently, the rank of the observability
and controllability matrices

R1 =

2

6
6
6
6
6
6
4

C1

C1A1

C1A2
1

...
C1An 1 � 1

1

3

7
7
7
7
7
7
5

2 Rn 1 � n 1 (6.3)

R2 = [ B2 A2B2 A2
2B2 : : : An 2 � 1

2 B2] 2 Rn 2 � n 2 (6.4)

is maximal.
Under Assumption 6.2, the linear dynamic subsystems at the input and

output can be written in resp. an observable and controllable canonical form,
in which the vectors C1 and B2 contain only one nonzero entry (with value 1).

Consequently, without any loss of generality, it can be assumed that the
elements in (6.1) and (6.2) have the following properties:
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ˆ B2� 1C1 (which corresponds to the left bottom part in the A-matrix, see
(6.1)) has exactly one nonzero element;

ˆ D2� 1C1 (which is the left part in the C-matrix, see (6.1)) has exactly
one nonzero column;

ˆ B2� 1D1 (which is the bottom part of the B -matrix, see (6.1)) has exactly
one nonzero row;

ˆ B2P2:d(C1x1 + D1u) contains monomials in exactly one state ofx1 and
input u and the E-matrix in (6.2) has exactly one nonzero row;

ˆ D2P2:d(C1x1 + D1u) contains monomials in exactly one state ofx1 and
input u.

The last two properties can be interpreted as follows:

ˆ only one state component of LTI block G2 depends nonlinearly on one
state component of LTI block G1 and the input, at the previous time
instant;

ˆ the output depends nonlinearly on one state component of LTI blockG1

and the input.

It is clear that the PNLSS matrices of this WH system contain many zeros and
dependencies (a few matrices determine completely all coe�cients in (6.1) and
(6.2)). One such a dependency is

rank

 "
E
F

#!

= 1 (6.5)

as can be shown from (6.2), see also Section 5.6. Retrieving all these depen-
dencies will �nally lead to the structured version, with two linear state-space
systems and a polynomial description of the nonlinearity.

Since the monomials of the WH equations (6.2) are of the same form, it is
assumed in the following that � = � .

Visually, the (desired) PNLSS model corresponding to the WH model, is
represented as in Figure 6.2.

6.3 Overview of the method

Several steps are proposed to distill a WH model from a PNLSS model. They
are summed up below and illustrated in Figure 6.3.
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Figure 6.2: Schematic representation of the desired PNLSS model. The dark
grey, white and gradient-�lled rectangles represent resp. nonzero matrix ele-
ments, zeros and structured matrices (low rank or nonlinear dependencies).q
denotes the forward time shift operator: qx(t) = x(t + 1) .

ˆ Step 1 (Sections 6.4.2 and 6.4.3): a reparameterization and optimization
transforms the PNLSS model, such that a rank reduction (of [ E

F ]) is
achieved (suggested by the gradient �ll in Figure 6.3).

ˆ Step 2 (Section 6.4.4): zero rows are created in theE-matrix (via a
linear transformation), such that only one state will evolve in a nonlinear
way. This is illustrated by the white part in front of the vector � (x; u)
(composed of nonlinear combinations inx and u, to be de�ned later on)
in Figure 6.3.

ˆ Step 3 (Section 6.5): a suitable linear state transformation is determined
or a constrained optimization is performed, such that the nonlinear terms
are further reduced to a nonlinear dependency on a single state and the
input.

ˆ Step 4 (Section 6.6): a constrained optimization is used to impose rela-
tionships between parameters such that the model can be split in parts
directly. Those parts are the two state-space descriptions of the linear
blocks and the coe�cients of the nonlinear terms of the nonlinear block.

6.4 Steps 1 and 2: rank reduction and zero rows

This section uses rank information about block-structures in order to reduce
the complexity of the more general PNLSS model.

Even in noiseless simulations, a PNLSS model identi�ed from WH data,
has usually a full rank E-matrix. However, when directly constructing (analyt-
ically) a PNLSS model from WH equations, this rank is only 1, as is illustrated
in Section 6.2. This rank increase, while not a�ecting the input-output behav-
ior, indicates that a nonlinear transformation of the states has taken place. By
reducing the rank back to 1, all rows of E , except one, can be made zero. This
(�rst) parameter reduction is the goal of this section.
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Step 1

Step 2

Step 3

Step 4

Figure 6.3: Schematic representation of the state-space equations in the di�er-
ent steps of the method. The dark grey, white and gradient-�lled rectangles
represent resp. nonzero matrix elements, zeros and structured matrices (low
rank or nonlinear dependencies).

The SVD (Singular Value Decomposition) truncation and reparameteriza-
tion described in this section can not only be applied to WH data, but also
to data from many other types of nonlinear block-structured systems, such
as nonlinear feedback systems, because they as well are characterized by e.g.
a low rank E-matrix (see also Table 5.2 on page 105 and Section 5.6.2 on
page 106). Therefore, the following sections (except Section 6.4.3) discuss a
reduction to an arbitrary rank r instead of (special case)r = 1 . The reduc-
tion method enables a signi�cant parameter reduction for nonlinear state-space
models of several types of block structures. If the block-structure assumption is
not exactly satis�ed (i.e. there exists no rank-r representation of the system),
this parameter reduction generally comes at the expense of an increase of the
weighted least-squares cost (2.4).

Remark. The rank reduction that is discussed in this section di�ers from a
model order reduction (Fortuna et al., 1992), where the model complexity is
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Figure 6.4: Schematic representation of the result of a rank reduction.

reduced by removing one or more states.

6.4.1 Intuition falling short

Since an unknown nonlinear transformation is needed to transform a given
PNLSS model into a (PNLSS-type) WH model and the model equations are
recursive (both the left and the right hand sides of the state equations undergo
a nonlinear state transformation), analytical solutions are very complex (see
Appendix 5.A) and an optimization routine imposes itself. Simply restarting
the identi�cation with the BLA as starting point and leaving only r rows of free
entries in E , or gradually forcing extra zero rows in theE-matrix (of the initial
PNLSS model), is not a good option. Simulations have shown problems with
local minima and this method cannot impose the linear dependency between
E and F .

E.g. when a rank-1 E-matrix is sought, i.e. E = U1V T
1 , forcing zero rows

corresponds to �xing the elements inU1 and only optimizing over V1, with

U1 =

2

6
6
6
6
4

1
0
...
0

3

7
7
7
7
5

(6.6)

V1 = E(1; :)

In the following example, it is shown how the use of an identi�able parameter-
ization (such as (6.6)) can lead to local minima of the cost function. In this
parameterization, the convexity of the cost function can be destroyed due to
nonlinear degeneracies. The example, shown in Figure 6.5 on the next page, is
2-dimensional. Parameter � 1 plays the role of U1 and � 2 plays the role of V1.
The cost is parabolic (which is a simpli�cation of reality), depending on � 1 and
� 2 only via the scalar variable � :

V (� ) = � 2 + 1 (6.7)

with variable � de�ned as

� = � � 1 � (2� 2 � 2) + (2 � 2 � 2)3 � 1 (6.8)
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Figure 6.5: Example with a cubic degeneracy in parameters� 1 and � 2. The
cost function V (� 1; � 2) is (globally) minimal on the deep blue line, but if � 1 is
�xed to 1, represented by the black line, there is a local minimum inV .

This corresponds to a cubic degeneracy1. Under these conditions, V (� ) =
V (� 1; � 2) has a cubically shaped global �minimum� (according to the degen-
eracy) and no local �minimum� in parameter space(� 1; � 2). Nevertheless, the
black line V (� 1 = 1 ; � 2), which corresponds to the identi�able representation
(6.6), has apart from the global minimum also a local minimum. If for instance
the initial estimate (e.g. the BLA) would be at the outer left point (with � 1 = 1
and � 2 = 0 ) of the black line, the optimization with restriction to the black line
will end up in a local minimum, whereas keeping the nonlinear degeneracies
(i.e. leaving both U1 and V1 totally free) avoids this issue.

6.4.2 Starting from a fully identi�ed PNLSS model

First, a rank- r approximation will be generated, and next, it will be used as an
initial estimate in an optimization over a new parameterization.

1The cost is function of one scalar variable � , such that, for � = c, V (c) is constant.
Hence, this cost function value corresponds to any � 1 ; � 2 satisfying the cubic function � 1 =
� c � (2� 2 � 2) + (2 � 2 � 2)3 � 1.
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6.4.2.1 Generating the initial estimate

A rank-r approximation [ E
F ]r of [ E

F ] 2 R(n + n y ) � n � can easily be obtained via
the singular value decomposition

"
E
F

#

= U� V T (6.9)

De�ne
Ur = U(:; 1 : r )

and
Vr = V(:; 1 : r )diag(� 1; : : : ; � r )

(with diag (� 1; : : : ; � r ) = �(1 : r; 1 : r )). The SVD truncation of (6.9) to rank
r is de�ned as: "

E
F

#

r

= Ur V T
r (6.10)

However, the quality of this approximation essentially depends on the rel-
ative size of the(r + 1) 'th singular value: � r +1

� r
.

6.4.2.2 Reparameterization of the nonlinear coe�cients

Equation (6.10) is now used to propose a new parameterization, allowing for
an optimization of the rank-r (truncated) model. (The truncation induces an
additional model error which can be reduced or eliminated via optimization.)
The elements in Ur and Vr are used as parameters instead of the elements of
E and F , taking [ E

F ]r = Ur V T
r into account:

~� T = [ vec(A)T vec(B )T vec(C)T vec(D)T vec(Ur )T vec(Vr )T ] (6.11)

Although Ur and Vr consist of orthogonal columns when obtained via the SVD
truncation, the orthogonality of these parts of the parameter vector is not
imposed during the optimization and hence will typically not be preserved. This
orthogonality need not be present if the initialization is implemented di�erently
(e.g. see Section 6.4.3).

The implementation with the new parameters Ur and Vr , requires hardly
any modi�cations of the original algorithm: essentially, the Jacobian matrix,
with columns previously corresponding toE and F becomes:

@y
@f vec(Ur )g

=
@y
@�

@�
@f vec(Ur )g

(6.12)
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The equation for the derivative to Vr is similar. Therefore, only a right-
multiplication (determined via (6.10)) has to be added to the standard Ja-
cobian @y

@� (see (2.10)). A Levenberg-Marquardt routine can be used. It is
faster than the identi�cation of the fully parameterized PNLSS model (also via
Levenberg-Marquardt), since this description contains less parameters, which
reduces the number of columns in the Jacobian matrix. The result of

arg min
~�

~VWLS ( ~� ) (6.13)

with

eVWLS ( ~� ) = VWLS

 

�

�
�
�
�
�

"
E
F

#

= Ur V T
r

!

(6.14)

and VWLS as de�ned in (2.8) yields the best rank-r representation of the PNLSS
in least-squares sense.

6.4.3 Starting from the data (no PNLSS model available)

Since the matricesE and F have not been identi�ed previously, it is possible
to use the f Ur ; Vr g-parameterization (6.11) directly (instead of a fully parame-
terized PNLSS model), with the (parametric �t on the) BLA as initialization.
One could be tempted to set the parameters inUr and Vr to zero. However,
this is a bad option, because the Jacobian, based on the variation of one pa-
rameter at a time, would contain @y

@Ur
and @y

@Vr
= 0 and hence, neitherUr nor

Vr will change during the optimization.
For rank r 6 ny , a better option is to perform (in one step) a linear

least-squares �t of the parameters C, D and F in the output, by �xing the
states to their BLA value (which produces an initial model with maximally
rank-ny [ E

F ]). A proper choice can then for instance beVr = F and Ur =
h

0 : : : 0 1 : : : 1
i T

with n zeros andny ones2. This rank-r model has to
be optimized according to Section 6.4.2.2.

6.4.4 Creating zero rows via a linear similarity transfor-
mation

Since the rows ofE are now linearly dependent, it is possible via one linear
transformation to put n � r of the n rows in E equal to zero. Performing a
singular value decomposition ofE

2Since the resulting model only has nonlinearities in the output equation, it is a Wiener
model (with a MISO SNL, see Section 5.E.2.5).
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Figure 6.6: Schematic representation of the expected result according to (6.2).

Figure 6.7: Schematic representation of the actual result of creating zero rows.

E = UE � E V T
E (6.15)

with only r singular values in � E nonzero, and usingUE as the transformation
matrix

T = UE (6.16)

the new E is (see Appendix 5.B)

ET = T � 1ET� (6.17)

= UT
E ET� (6.18)

= UT
E UE � E V T

E T� (6.19)

= � E V T
E T� (6.20)

This transformed version of E has only r nonzero rows, because� E (with r
nonzero diagonal elements) is only multiplied at the right hand side in (6.20).
The other transformed parameter matrices can be calculated using the proce-
dure described in Appendix 5.B by choosingT = UE . Note that the input-
output behavior, and therefore also the cost function is una�ected by this
operation.

Comparing Figures 6.6 (related to the WH model equation (6.2)) and 6.7
(which is the result of applying (6.16)) shows that, after application of trans-
formation T, a di�erent row of ET is nonzero. This simply means that the
states are permuted. One has to take this into account in step 4 (Section 6.6).
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Figure 6.8: Schematic representation of the result of a monomial reduction.

6.5 Step 3: reducing the number of monomials

Since it was our motivation to �nd a block-structured model of a WH system, it
is assumed that the method of Section 6.4 has been applied withr = 1 . The goal
of this section is to end up with only nonlinear dependencies in one of the states
(in the state- and output equations). This goal is schematically represented by
Figure 6.8, assuming that a permutation of the states was performed (after
zeroing n � 1 rows of matrix E). First, an analytical method to reduce the
number of monomials in the nonzeroE- and F -row is explained. The second
part of this section discusses a monomial reduction via optimization, i.e. a
constrained minimization of the least-squares cost function.

The presence of a generalC1-row in (6.2) creates nonlinear terms in all
states, while aC1 with only one nonzero element (when the �rst linear block is
written in its observable canonical form) leads to terms in only one state (and
the input when D1 6= 0 ). This clearly is the intended sparse representation,
according to Assumption 6.2 (observability of G1).

Two analytical methods (the �rst one is simple, but not always applica-
ble; the second one is general and less straightforward) and an optimization
approach will be presented. The analytical methods will again seek for a well-
suited transformation to simplify the model equations.

6.5.1 Analytical method for D1 6= 0

When the only nonzero element inC1 is C1;k , and B2 reduces to a vector with
a single nonzero elementB2;l (after reduction of E to one row), the target
expression in (6.2) is reduced to

E� =

 
0

B2P2:d(C1;k xk + D1u)

!

F � = D2P2:d(C1;k xk + D1u)

(6.21)

with xk one state instead of the state vectorx1 (see (6.2)).
Let x be the states of the sought, sparse representation, where only a single

state xk is present in the monomials, andxT the states of the model obtained
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after step 2. The sparse representation can be found via a linear state transfor-
mation T, with x = TxT . The idea is to use the cross state-input coe�cients
(a�ne in the states, e.g. xT 1u; xT 2u; : : :) in the model obtained after step 2 as
elements of this transformation matrix. This will be explained in the following.

Consider a very simple example of a state transformation that maps a sparse
representation in a single statexk to a less parsimonious representation inxT 1

and xT 2 via xk = a1xT 1 + a2xT 2. The 3 monomials at the left of (6.22),
corresponding to the full, but sparse representation of a2nd degree nonlinearity
are then transformed in the 3 + 2 + 1 = 6 monomials at the right:

x2
k =) a2

1x2
T 1 + 2a1a2xT 1xT 2 + a2

2x2
T 2

xk u =) a1xT 1u + a2xT 2u
u2 =) u2

(6.22)

From the second line, it is obvious that statesxT 1 and xT 2 should be combined
asa1xT 1 + a2xT 2 in order to get back to the representation with only one mono-
mial (linear in the input) at the left. Candidates for similarity transformations
that lead to the sparse representation are thus

T1 =

 
a1 a2

0 1

!

and T2 =

 
1 0
a1 a2

!

(6.23)

(either state 1 or 2 can be retained unchanged).
This idea can be easily generalized to the situation

xk =
nX

i =1

ai xT i (6.24)

for which transformation matrices of the form

Tk =

0

B
B
B
B
B
B
B
@

1 0
. . .

a1 � � � ak � � � an

. . .

0 1

1

C
C
C
C
C
C
C
A

 k'th row (6.25)

(with ak 6= 0 , ensuring invertibility) should be chosen.
If no 2nd degree monomials are available, any other monomials of the form

xT i us (3 � s + 1 � d) can be used.
One needs to be careful when selecting a good candidate if some of the

ai are zero (or very small): some choices ofk might deteriorate the condition
number of Tk .
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k = 1 k 6= 1

a1 = 0 Tk is not invertible X (no problem)

a1 6= 0 there is no monomial
reduction

extra nonzero row in E
and nonlinear feedback in

x1

Table 6.1: Brief overview of the problems with certain choices ofTk . Only the
casek 6= 1 and a1 = 0 results in equations that are compatible with the WH
assumption.

Note that in general, a constant factor is present in front of xk us. Such a
factor however does not a�ect the method, since scaling of the transformation,
and hence the states, does not in�uence the model complexity.

After steps 1 and 2 (the rank reduction and zeroing all rows in matrix
E , except for the �rst one, see Section 6.4), only the �rst state will evolve
nonlinearly (see also Figure 6.7). When applying the transformation

x = Tk xT (6.26)

the e�ect depends on whether a1 = 0 or not and whether k = 1 or not.
As shown in Table 6.1, the only correct situation which yields a monomial
reduction and does not render other rows ofE nonzero, occurs whenk 6= 1 and
a1 = 0 . However, if noise is present on the data, the obtained value ofa1 is
nonzero. In order not to render other rows inE nonzero, its value is �xed to
zero.

6.5.2 General analytical method

In the special case ofD1 = 0 , there are no monomials available that are linear
in xT i and the previous method does not work. The output of the �rst linear
block in Figure 6.1 can be chosen to be one statexk of this block. This state
directly pops up in the expressions of the WH system (6.2):

E� =

 
0

B2P2:d(xk )

!

F � = D2P2:d(xk )

(6.27)

Again, a linear similarity transform can further reduce the expression in
(6.27) so that only one row, function of xk , remains in both E and F . There is
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thus only one state that transforms nonlinearly in the state- and output equa-
tion. Appendix 6.A demonstrates how one can �nd the inverse transform to
get back to the sparse representation with only one state transforming nonlin-
early. The method is based on the construction of a matrix that has rank1 if
the WH assumption is true. The singular value decomposition of this matrix
leads directly to the necessary similarity transform. This transform can then
be applied as described in Appendix 5.B.

Note that none of the analytically found linear transformations a�ect the
input-output behavior. Besides, no data is used.

6.5.3 Improving the analytical methods

If the analytical methods do not lead to zero monomials3, the optimization
method of the next section can be used. A good starting value can be the model
transformed via an analytical method. The analytical methods of the previous
sections only focus on some types of monomials, but in fact, all monomials can
be used. Ideally, one would like to use all available information (from both the
state- and output equations) to end up with the best possible starting values.
There are two options:

ˆ The methods in Sections 6.5.1 and 6.5.2 can also be applied to other types
of monomials: respectively a�ne in the states (x i u; x i u2; : : : ; x i ud� 1) and
monomials such asx2

i u, x3
i u, x2

i u2 or x i x j u. Only those monomials that
are just function of the input (i.e. u2, u3, ...,ud) cannot be used. By con-
structing one tall matrix and performing a singular value decomposition,
all this information can be used.

ˆ A di�erent method, closely related to the one in Section 6.5.2, is proposed
in Section 7.6.1 and Appendix 7.A. The method looks for the input of
the SNL, namely C1x1(t) + D1u(t) (see (6.2)). The elements inC1 are
then used instead ofai in (6.25). With this method, also the information
in the coe�cients of u2, u3, ...,ud is used.

The analytical methods only work perfectly under noiseless conditions and in
the absence of model errors. A bias is introduced due to the uncertainty on
the model parameters. The bias error can be compensated as in Hjalmarsson
and Schoukens (2004). This method needs the covariance of the parameters,
which can be estimated via the asymptotic Cramer-Rao bound(2J T J )y with
J = @�=@�.

3This occurs when the PNLSS model does not have exactly the same input-output be-
havior as a WH system.
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6.5.4 Via optimization

In practice, data will usually not satisfy (exactly) the WH assumption (possibly
due to noise, interactions between blocks or e.g. nonlinear feedback) and a
simple linear transformation cannot remove the necessary elements inE . It
is thus impossible to �nd a transformation x = TxT as in Sections 6.5.1 and
6.5.2.

A constrained optimization with linear equality constraints, imposing zero
parameters at the right positions, can then solve the problem. E.g. the interior-
point method in the optimization toolbox of Matlab — can be used.

The optimization problem can be formulated as follows,

b� CLS = argmin �� VWLS ( �� )
s.t. csel

�� = 0
(6.28)

with csel 2 Rn sel � n � a binary matrix containing a single 1-entry per row and

�� T =
h

vec(A)T vec(B )T vec(C)T vec(D)T E(1; :) vec(F )T
i

which results in imposing zero parameter entries�� j = 0 , j 2 Ssel � f 1; 2; : : : ; n �� g.
If the user chooses to retain statexk , then only monomials such as
x2

k ; xk u; u2; x3
k ; x2

k u; : : : should be present in the �nal model equations. The
indices �sel� then correspond to that set of remaining nonlinear coe�cients.

A practical advantage of this formulation is that the constrained optimiza-
tion can be started up in the model obtained in the previous step (not satisfying
the sparsity constraint) and, therefore, smoothly introduces sparsity by impos-
ing the constraints. An unconstrained optimization after setting coe�cients to
zero would in general have created a large (and uncontrollable) jump in the
parameter space, which could deteriorate the model's quality. In some sense,
this means that the previous e�orts are wasted.

Remark. The data-dependent cost functionVWLS (2.4) is used in (6.28). Alter-
natively, an unconstrained optimization on model level (without using the data)
could be performed overa1 : : : an (of the transformation matrix Tk ), viewed as
optimization variables, and choosing the sum of squares of the constraints in
(6.28) as a cost function, viz.

P
j 2 Ssel

�� 2
j .

In contrast to the alternative (unconstrained) optimization, the chosen opti-
mization (6.28) is not uniquely based on the model, but also depends on the
measurement data. This choice has certain advantages. When the WH assump-
tion is not met or when there is noise that a�ects the values of the parameters,
the alternative method will not be able to set several columns inE and F to
zero. The solution of the constrained approach on the other hand will ful�ll
the constraints perfectly (as desired) and at the same time, it will �t the data
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as close as possible (with some cost increase). Secondly, the optimization gains
in �exibility: it is not restricted to the model's input-output behavior, but can
deviate, depending on the data.

6.6 Step 4: splitting up the model in blocks

Once the previous sections have been dealt with, the initial model will already
have become much more parsimonious:n � 1 rows of E are zeroed as well
as many nonlinear terms of the remaining nonzero elements ofE and F (see
Figure 6.8). However, in general, the conditions (see (6.1) and (6.2)) for an
immediate split-up of the WH model (viz. mathematical identi�cation of the
matrices A1, B 1, ..., D2 and the SNL coe�cients � from the model equations)
are still not ful�lled. For that, more dependencies need to be imposed and the
most straightforward way is (again) via a constrained optimization, similar to
the idea of Section 6.5.4.

Again, as in Section 6.5.4, an unconstrained optimization on a model level
is possible, but has the serious disadvantage that in practice, the optimization
will end in a minimum where the dependencies are not exactly ful�lled (i.e. an
unfeasible minimum).

The dependencies (see (6.1) and (6.2)) are determined by the model orders
of the blocks and hence (as in block-structured modeling, see Sjöberg and
Schoukens (2012a)) a scan over the possible split ups of the total model order
has to be performed:

f n + 0 ; (n � 1) + 1 ; : : : ; 0 + ng

Note that the �rst and last case correspond respectively to a Wiener- and
Hammerstein model.

The structure of the PNLSS model of a WH system is shown in Section
6.2. It is clear from (6.1) and (6.2) that several zeros should be imposed. The
constraints to these parameters are equality constraints that are linear in the
parameters (� j = 0 ). Other necessary (nonlinear) constraints are due to the
dependencies between the coe�cients of nonlinear and linear terms4. To take
them into account, the unknowns that do not pop up in the � -vector in a trivial
way, are included in the parameter vector:

4For example B 2;l � 1C1;k is equal to the element that should be nonzero in the left lower
part of A and e.g. 2B 2;l � 2C1;k D 1 is equal to the coe�cient of the second degree monomial
x1u, at the l th row of B 2P2:d (C1x1 + D 1u), i.e. equal to an element of matrix E . In these
expressions, C1;k is the only nonzero element of C1 , according to the observability of the �rst
linear block.
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~� =

"
��

� extra

#

=
h
�� T vec(D1) B2;l D2 � 1 : : : � d

i T
(6.29)

with
�� = vec

� �� k j k 2 f 1; : : : ; n �� g nSsel
�

containing the non-zeroed PNLSS matrix entries andB2;l being the lth element
of vector B2. This is, according to the controllability of the second linear
block, the only nonzero element inB2. Note that C1;k was not added to� extra ,
although it is present in many of the terms. This is because it is assumed that
C1;k = 1 . This assumption does not a�ect the generality of the model, but
reduces the nonlinear degree of the nonlinear constraints. (Another possibility
would be the choice� 1 = 1 and the inclusion of C1;k in � extra instead of � 1,
but this in�uences less the nonlinearity (number of factors in the terms) of the
constraints.)

The big advantage of extending the parameter vector� by � extra , is that it
renders the �nal split-up straightforward. There is immediate access to all the
unknowns:

ˆ A1 and A2 are part of A (see (6.1));

ˆ B1 is part of B (see (6.1));

ˆ C2 is part of C (see (6.1));

ˆ the only nonzero element inC1 is chosen (C1;k = 1 );

ˆ D1 and the other elements in� extra are a direct result of the optimization.

This time, the optimization is trickier, since it is nonlinear in the parameters.
Even though, it worked well on simulation and real data examples with the
interior-point method of the optimization toolbox in Matlab —.

The problem is formalized as follows:

b� CLS = arg min ~� VWLS ( ~� )
s.t. c(~� ) = 0

(6.30)

with c(~� ) a vector containing all necessary constraint equations according to
(6.1) and (6.2), including e.g. zero elements in matrixA and products such as
B2� 1D1.

Note that all the previously zeroed parameters are withdrawn from the
model, so that the optimization gains in speed. Since this is a rather time-
consuming optimization, one might consider stopping once the constraints are
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met and continue with a much faster, unconstrained optimization on the WH
model parameters only. Those parameters are the numerator and denominator
coe�cients of the two linear dynamic blocks (translated from the state-space
descriptions) and the polynomial coe�cients of the static nonlinearity. Clearly,
this is one of the sparsest possible representations of a WH system and the
optimization (e.g. via a Levenberg-Marquardt routine) can easily be done on
a large amount of data in little time. In fact, it is recommended to always end
with such a last, simple optimization in order to eliminate residual errors on
the parameter values with respect to the optimum.

6.7 Simulation

6.7.1 Presentation of the simulation example

The example is a WH cascade of a Butterworth �lter, a polynomial nonlinearity
and a Chebyshev �lter:

1. A 2nd order lowpass Butterworth �lter G1 with normalized cuto� fre-
quency 0:3 (relative to the Nyquist frequency).

2. A 3rd degree nonlinearity, with � 1 = 1 , � 2 = 0 :5 and � 3 = 0 :3:
P1:3 (y1(t)) =

P 3
i =1 � i yi

1(t).

3. A 2nd order lowpass type I Chebyshev �lter G2 with normalized passband
edge frequency0:1 and 1 dB of peak-to-peak ripple in the passband.

The excitation signal for estimation is a full multisine of length Nest = 1024,
with 2 periods and 2 realizations. Its highest excited frequency line lies at
a normalized frequency of about0:9. The root mean square (rms) value of
the input is 1 and 1 percent white Gaussian noise is added to the output
(� n = 0 :01� y ). The input of the validation data is a set of Nval = 5000 points
of random noise with the same input rms value as for the estimation.

6.7.2 Results

In this case, it is assumed that no initial, fully parameterized PNLSS model
is available. The initial step is thus the estimation of the BLA and this will
be used as starting point for the rank1 parameterization (as in Section 6.4.3).
The results for all the identi�cation steps are shown in Table 6.2. The relative
rms errors are de�ned as RMSE

� y
, with RMSE the rms value of the residual

y(� ) � ym . The output signal-to-noise ratio being 100, relative rms errors of
0:01 are at the noise level, while higher relative errors indicate model errors.
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ˆ The BLA gives an error that is about 40 times higher than the errors of
good, nonlinear models. Its number of parameters is25 in a state-space
representation, but can be reduced to10 by using a rational transfer
function.

ˆ Step 1
The special (U1; V1)-parameterization (6.11) increases the number of pa-
rameters to 80, but results in an error at noise level. This should be
compared with a fully parameterized PNLSS model (with n = 4 and
d = 3 ), which would contain more than 3 times as much parameters,
namely 275.

ˆ Step 2
The zeroing rows step involves rewriting the special parameterization into
a regular PNLSS parameterization (with rank-1 [E

F ] matrix) and subse-
quently performing a linear state transformation (Section 6.4.4). This
step does not in�uence the error and provisionally increasesn� because
each element in the nonzero rows ofE and F is counted as an individual
parameter, although these rows are linearly dependent. It is an inter-
mediate step towards the next model representation: the model with a
reduced number of monomials (Section 6.5).

ˆ Step 3
In this example, only the analytical method for the monomial reduction
(Section 6.5) was applied. This is not ideal in noisy situations (the relative
rms error increases) and it might still need optimization as explained
in Section 6.5.4. Nevertheless, in this simulation example, the model
resulting from the analytical method is used directly as initial value for
the �nal optimization of Section 6.6.

ˆ Step 4
The �nal result again reaches the noise level: we have found a good WH
model.

Once the DC gains of the linear blocks are equated to the gains of the
true Butterworth and Chebyshev �lters G1 and G2 (and this is compensated
for in the nonlinearity), the estimated and true frequency responses can be
plotted on top of each other, together with the complex di�erence between
both. Figure 6.9 shows the results for the �rst linear block and Figure 6.11
shows a similar plot for the second linear block. The true and estimated cubic
static nonlinearities are shown in the top plot of Figure 6.10, while the di�erence
between both is shown in the bottom plot. Note that the complex di�erences
of the FRFs and the di�erence of the static nonlinear functions are several
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RMSE est
� yest

RMSE val
� yval

n�

initial, linear model (BLA) 0:416 0:412
25

(10)

result of step 1:
(U1,V1)-parameterization

0:00987 0:0103 80

result of step 2:
zeroing rows (E1;:,F )

0:00987 0:0103 125

result of step 3:
monomial reduction

0:0394 0:0351 39

result of step 4:
split-up (WH)

0:00992 0:0102
21

(15)

Table 6.2: Relative rms errors (for estimation and validation) and number of
parametersn� of the state-space formulation (in between brackets the equiva-
lent for a rational form parameterization) in the di�erent steps of the method.

orders of magnitude lower than the functions themselves, which shows that the
estimations are in good agreement with the true behavior.

6.8 Experimental results (Wiener-Hammerstein
benchmark)

In this section, the e�ect of the previously explained steps on a PNLSS model
based on the SYSID'09 benchmark data (Schoukenset al., 2009) is shown.
The initial PNLSS model (see Section 3.13) is a sixth order model with2nd

and 3rd degree nonlinearities. It is fully parameterized and thus contains the
high number of 833 parameters. The validation error of the model is0:46mV.
This result is comparable to the results in Wills and Ninness (2009), using a
generalized Hammerstein-Wiener model with hinge basis functions, and Pad-
uart et al. (2009), using a PNLSS model too. It is about100 times smaller
than the validation error of the Best Linear Approximation ( 56:2 mV).

6.8.1 Steps 1 and 2: rank reduction and zero rows

Before rank reduction, the rank of E is clearly not 1: its 6 singular values vary
between6:87 and 0:55. After the optimization (6.13) of Section 6.4 (step 1), the
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Figure 6.9: Frequency response function of the �rst linear blockG1 of the WH
system.

Figure 6.10: Static nonlinearity (SNL) of the WH system. Top: true and
estimated polynomial; bottom: di�erence between both.
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Figure 6.11: Frequency response function of the second linear blockG2 of the
WH system.

rank of [ E
F ] is reduced to1, hereby increasing the validation error to 2:14 mV.

This value still lies well below the error of the best linear approximation which
is 57:3 mV. Just as the original PNLSS model, the new model (as function ofE
and F ) contains 833 parameters. A linear transformation (step 2) can reduce
the number of parameters to273 (= 49 + 2 � 112), without modifying the error.
The parameterization in U1 and V1 (i.e. ~� ) leads to an even sparser model with
168 (= 49 linear parameters+ 7 in U1 + 112 in V1) parameters.

6.8.2 Step 3: reducing the number of monomials

To increase the computation speed, in a �rst step, the data were restricted to
only 1000 points (while actually 95000 points � minus some validation data
� are available for estimation). Nevertheless, after optimization (see Section
6.5.4), this provided a seemingly good validation error of about15:1 mV. It
is however likely that this is not a global minimum, given the number of data
that were used. The parameter reduction of this step in practice increases the
model error.
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6.8.3 Step 4: splitting up the model in blocks

6.8.3.1 Constrained optimization of the sparse PNLSS model

Since extra constraints are imposed, this step too will in general increase the
model error. In fact, if no knowledge is available, all possible combinations
for splitting up the model order (i.e. 6 = f 1 + 5; 2 + 4; 3 + 3; 4 + 2; 5 + 1g)
should be checked. Here, the right option (3+3) is tried out immediately since
the benchmark provides this information. Although the computation time of
this optimization (see (6.30)) is comparable to the previous one, this time,
50000 points were used in the optimization. After some iterations, the con-
straints were met (the model became exactly WH) and the error even went
below the previously obtained 15:1 mV, meaning that this value was a local
minimum. At that moment, the decision was taken to stop the heavier con-
strained optimization and start up the unconstrained optimization. In this �nal
optimization, the (LTI) state-space expressions of the linear WH model blocks
are replaced by their equivalent rational form.

6.8.3.2 Final, unconstrained optimization over the WH parameters

This last step is a fast optimization and the nonlinearities can be easily altered.
Here, the parameters were �rst optimized for nonlinearities up to degree3. Note
that a DC term is now introduced � without any e�ort � in the SNL. This can
help to improve the model if there is an o�set on the output data (which is
visible by zooming in on the time-domain input signal which should have zero
mean). A test (or validation) error of 8:73 mV was obtained.

A third degree polynomial is a bad approximator for the type of nonlinearity
present in the benchmark system (which is rather hinge-shaped, see Figure
6.13). Increasing the degree can render the model more sensitive to outliers (the
model tends to follow the outliers in the estimation data, such that the large
amplitude behavior of the approximating polynomials becomes unreliable), but
it is done here by way of demonstration5. The nonlinear degree is increased up
to 17 (via degrees9 and 12, but it can also be done at once) and the �nal test
error is 0:813 mV. This might still be a local minimum, but it is certainly not
a bad result for a model with only 34 (= 4 � 4 + 18) parameters. The amount
of parameters can even be further reduced to30 by setting the �rst numerator
and denominator coe�cients of the two linear �lters to one. This is possible
since the gain factors of the three blocks can be merged into the SNL.

5An alternative could be to change the polynomials to another type of basis functions,
preferably in a way that the model is less sensitive to outliers.
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eRMSt � t st eRMSe

[mV ] [mV ] [mV ] [mV ]

d = 3 8:73 � 0:436 8:72 8:64

d = 12 1:13 0:0375 1:13 1:14

d = 17 0:813 0:0553 0:811 0:720

Table 6.3: Overview of the results of the WH block-structured model for several
nonlinear degreesd. Subscripts t and e refer resp. to the test and estimation
data sets.

6.8.4 Results

The �nal results for nonlinear degree d = 17 on the test data are displayed in
Figure 6.12. The properties and those of models at nonlinear degrees3 and
12 can be found in Table 6.3. Those properties are de�ned as in Section 3.13
(and in the benchmark (Schoukenset al., 2009)) and are the root mean square
(RMS) value of the simulation (test) error ( eRMSt ), its mean value (� t ), its
standard deviation (st ) and the RMS value of the estimation error (eRMSe ).

Figure 6.13 shows the theoretical input-output behavior of the SNL, based
on the datasheet of the 1N4148 diode as mentioned in Schoukenset al. (2009).
On the same plot, on top, the estimated17th degree polynomial is displayed
and at the bottom, one can see the di�erence between both. This illustrates
the limitations of a (�nite-degree) polynomial: at the tails, the error increases
drastically, whereas in between, some oscillations can be seen. Note that the
tails automatically get less weight during the estimation, because the input of
the static nonlinearity has a Gaussian distribution.

6.8.5 Comparison of methods

The validation results for di�erent modeling approaches are shown in Tables
6.4, 6.5 and 6.6 on pages 159, 160 and 162 and in Figure 6.14 on page 161. It is
rather positive news that the results for degree12 (number (6) in Figure 6.14)
are very similar to what is found in Lauwers (2011). This at least means that a
comparable minimum was found. Another good sign is that several polynomial
block-structures produce results that seem to lie on a smooth curve (points (2),
(10b), (16), (3) and (4) in Figure 6.14): as the nonlinear degree increases, the
RMSE decreases and the number of parameters increases. The method in this
chapter (point (4)) provides a model with few parameters, but the validation
RMSE is still quite far (a factor 3) above the best models. This can be explained
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Figure 6.12: Validation result for the 6th order, 17th degree WH block-
structured model: modeled output (black) and simulation error (grey); time
(top) and frequency domain (bottom).
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Figure 6.13: Top plot: input-output maps for true (grey dots) and estimated
17th degree (black dots) memoryless nonlinearity block; bottom plot: di�erence
between the two input-output maps.
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by the type of nonlinearity: the piecewise linear function models are better
suited to describe the behavior of the true SNL. The model of this chapter can
therefore be improved by �tting other basis-function parameterizations, such
as hinges or (linear) splines, on the high degree polynomial and using this as
starting value. The resulting model will moreover be less sensitive to outliers.
Semiparametric descriptions of the nonlinearity, such as the splines in Sjöberg
and Schoukens (2012a), might also be considered.

As can be noted, the RMSE of the best model (number (8) in Figure 6.14)
is still a factor 1:35 above the output noise level. Possible explanations include
local minima of the optimization, the presence of model errors, input noise,
a time-varying behavior of the system (e.g. due warm-up) and the limited
number of data points.

The LSSVM methods (numbers (13) and (14)) probably get into di�culties
because there is no direct access to the nonlinearity (a WH system has a linear
dynamic block at the in- and output). The SVR model (15) might have bad
luck with a local minimum, but also contains only 32 delays of the input signal
(and none of the output), reducing the model �exibility.

The PNLSS model (5a) performs better than the polynomial WH models.
This is probably due to one or several of the following reasons:

ˆ The PNLSS model can capture (non-ideal) electrical loading between
blocks (nonlinear dynamics), present in the physical setup.

ˆ The PNLSS model has the ability to generate high-degree nonlinear terms
in the input despite the (low) nonlinear degreed � this in contrast to the
hinge-based or any other WH block-structured model. By transforming
the PNLSS model into a WH model, the information about the associated
nonlinear feedback gets lost and the error increases.

ˆ The optimization might be stuck in a local minimum.

6.9 Conclusions

In this chapter, a successful way of unraveling a (general) polynomial nonlinear
state-space model into an approximating block-structured Wiener-Hammerstein
model has been discussed and demonstrated. This helps to gain insight in the
linear and nonlinear state transformations and how the PNLSS model relates
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Reference Approach eRMSt

[mV ]
n� Nr.

graph

Paduart et al.
(2009)

BLA with model order
n = 6

56.2 13 (1)

own results WH with polynomial
function of degreed = 3 ,
deduced from a PNLSS

model

8.73 16 (2)

WH with d = 12, deduced
from a PNLSS model

1.13 25 (3)

WH with d = 17, deduced
from a PNLSS model

0.81 30 (4)

Paduart et al.
(2009)

PNLSS
(n = 6 and d = 3 )

0.42 797 (5a)

state-a�ne PNLSS
(n = 10 and d = 4 )

1.87 384 (5b)

Lauwers (2011) WH with d = 12,
initialized by poles/zeros

split

1.13 35 (6)

Table 6.4: Validation results of the WH benchmark.
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Reference Approach eRMSt

[mV ]
n� Nr.

graph

David Westwick WH with piecewise linear
nonlinearity with 8 points,
initialized by combining

BLA and QBLA

0.286 26 (7)

Jonas Sjöberg WH with hinge function
of 24 knots, initialized by

partitioning BLA

0.27 62 (8)

Sjöberg and
Schoukens

(2012b)

WH with hinge function
of 8 knots, initialized by

partitioning BLA

0.33 30 (9)

Wills and
Ninness (2012)

Generalized HW with
hinge function of 8 knots

0.481 47 (10a)

Generalized HW with
polynomial function of

degree8

2.14 21 (10b)

Lauwers (2011) WH with hinge function
of 8 knots, initialized by

poles/zeros split

0.30 64 (11)

Anna
Marconato

Nonlinear state-space
with sigmoidal
nonlinearities

2.6 85 (12)

De Brabanter et
al. (2009)

LS-SVM 4.7 5000 (13)

Falck et al.
(2012)

Fixed Size - LS-SVM 3.85 1000 (14)

Marconato and
Schoukens

(2009)

SVM for regression (SVR) 47.4 52 (15)

Tan et al.
(2012)

WH with d = 10 1.55 23 (16)

Table 6.5: Validation results of the WH benchmark (continued).
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Figure 6.14: Some validation results of the WH benchmark: validation RMSE
(eRMSt ) versus the number of parametersn� . Blue dots are results from other
authors; the red dots are results from (or used in) this thesis, see Tables 6.4
and 6.5 on pages 159 and 160. The green line shows the output noise level of
the experiment, i.e. 0:2mV .
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Reference Approach eRMSt

[mV ]

Lopes dos
Santoset al.

(2012)

Hammerstein-bilinear
state-space

9.9

Piroddi et al.
(2012)

Polynomial NARX 13.1

Truon and
Wang (2009)

Simpli�ed NARX: wavelet
based SDP

14.5

Han and
de Callafon

(2012)

WH with polynomial
nonlinearity

34.5

Table 6.6: Validation results of the WH benchmark (continued).

itself to the block structure. The intermediate steps in themselves are valuable
since they bring about signi�cant parameter reductions, thus reducing a major
drawback of PNLSS models. Moreover, some of them, such as the rank, row
and monomial reductions can be directly applied to a vast amount of other
block-structures. It was also illustrated that the rank reduction method of this
chapter is less prone to local minima than a more intuitive approach.

Once a sparser model has been obtained (via one or several steps of the
PNLSS-to-WH-conversion), it is much easier (and less time-consuming) to ex-
tend the nonlinear degree of the model (or simply add extra nonlinear terms in
the state and/or output equations), while at the same time yielding a sparser
model than the initial, fully parameterized one.

The real-data example showed that this PNLSS-to-WH-conversion in prac-
tice often shows an attendant error increase, even if it is known that the system
can be very well approximated as a WH system. This illustrates the limitations
of polynomials in approximating nonlinearities, but on the other hand, the fact
that the initial PNLSS model (on the same data) performed extremely well, also
highlights the power (or �exibility) of the fully parameterized PNLSS model.
It is amongst other things capable of capturing nonlinear dynamics (such as
electrical loadings or feedback phenomena) inside a system. This information
will usually get lost when creating e.g. a Wiener-Hammerstein model.
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Appendix

6.A Analytical monomial reduction

Please remind that both the SNL and the PNLSS model are assumed to have
polynomial nonlinearities. In the following, similar to Section 6.5.1, xT is the
state vector of the current model (after step 2) and x is the state vector of
the model with less monomials. Following the lines of Section 6.2, a WH
model can be written such that only one state (e.g. x1) evolves nonlinearly,
in�uenced by one other state (e.g. xk ). From now on, the notation is changed
to � = xk . Let us �rst consider one element in this polynomial: the monomial
� p. Transforming � linearly via � =

P n
i =1 ai xT i (see (6.24), (6.25)) is nothing

else than focusing on one part of a linear similarity transformationTk where

xT !

(
x i = xT i if i 6= k

x i = aT xT if i = k
(6.31)

with a =

 a1

...
an

!

. This can be written as x = Tk xT with

Tk =

0

B
@

I 0 � � � 0
aT

0 � � � 0 I

1

C
A  kth row (6.32)

This transformation turns the simple expression into one with many extra
monomial coe�cients:

� p = �� : : : �

=
nX

i 1 =1

ai 1 xT i 1

nX

i 2 =1

ai 2 xT i 2 : : :
nX

i p =1

ai p xT i p (6.33)

=
X

i 1 :::i p

ai 1 : : : ai p xT i 1 T i 2 :::T i p

For p = 2 and n = 2 , this reduces to

� 2 = a2
1x2

T 1 + 2a1a2xT 1xT 2 + a2
2x2

T 2 (6.34)

which consists of3 monomial coe�cients instead of only 1. The coe�cients b
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of the powers in xT are then identi�ed 6:
0

B
@

b1

b2

b3

1

C
A =

0

B
@

a2
1

2a1a2

a2
2

1

C
A (6.35)

Starting from the coe�cients b, the aim is to �nd a1 and a2 such that x can
be reconstructed via T and only one state (� ) enters the �rst state equation
(only the �rst equation, since it is assumed that step 2 in Section 6.4.4 has
been performed) in a nonlinear way. This will allow to retrieve the Wiener-
Hammerstein representation.

All coe�cients bi 1 :::i p = ai 1 : : : ai p of (6.33) are present in a Kronecker power
of the form

a
 [p] = a 
 a 
 : : : 
 a
| {z }

p times

2 Rn p � 1 (6.36)

Reconsidering the example, this would mean the following:

a =

 
a1

a2

!

; a
 [2] = a 
 a =

0

B
B
B
@

a1a1

a1a2

a2a1

a2a2

1

C
C
C
A

=

0

B
B
B
@

b1

b2=2
b2=2
b3

1

C
C
C
A

(6.37)

De�ne now a matrix b(2) based on the entries of the vectora
 [2] , by replacing
the last Kronecker product by a product with the transpose of a, then all the
entries are still appearing, e.g.

b(2) = aaT =

 
a1a1 a1a2

a2a1 a2a2

!

=

 
b1 b2=2

b2=2 b3

!

(6.38)

Clearly, b is a rank 1 matrix, and if a singular value decomposition is performed,

b(2) = Ub(2) (:; 1)Sb(2) (1; 1)Vb(2) (:; 1)T (6.39)

a will be up to a scaling factor (here, the square root of the �rst singular value
and possibly a minus sign) equal to eitherUb(2) (:; 1) or Vb(2) (:; 1).

For a higher nonlinear power, such asp = 3 , the singular value decomposi-
tion is still a good tool, with

b(3) = ( a 
 a) aT (6.40)

6bi are the coe�cients of xT in E (1; :) � (xT ; 0) (after step 2).
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such that Vb(3) (:; 1) will be up to a scaling factor equal toa. In general, for any
p, the following de�nition is used:

b(p) = a
 [p� 1]aT (6.41)

with b(p) 2 Rn p � p.
Since the nonlinearity is polynomial, viz. a weighted sum of monomials,

e.g.
P d

j =1 cj � j , all the matrices b( j ) stacked on top of each other result in a
matrix of rank 1, since from all elementsaT can be taken out:

b =

0

B
B
B
B
@

b(1)

b(2)

...
b(d)

1

C
C
C
C
A

=

0

B
B
B
B
@

aT

aaT

...
a
 [d� 1]aT

1

C
C
C
C
A

=

0

B
B
B
B
@

1
a
...

a
 [d� 1]

1

C
C
C
C
A

aT

(6.42)

Note that the �rst left singular vector of b = Ub� bV T
b (6.42), namelyUb(:; 1),

is proportional to the long vector with Kronecker products, while the �rst right
singular vector, namely Vb, is proportional to a:

a � Vb(:; 1) (6.43)

This scaling factor is of no importance, since scaling of states is always a
degree of freedom of a state-space model and such a scaling does not a�ect the
number of model parameters.

Construction of b: the implementation

In the routine, for every nonlinear power p > 2, a matrix b(p) is formed and
these matrices are stacked on top of each other as in (6.42). In theory, taking
the singular value decomposition of only one of theb(p) 's would be su�cient,
but by using all of them, a better compromise should be found in case the rank
of the complete matrix is not exactly 1 (which might result from modeling
errors). b(1) is not formed because we do not have access to it: the linear
terms that are caused by the nonlinearity are summed together with the linear
terms coming from the linear dynamic blocks, which makes it impossible to
distinguish between them. A possible way to constructb(p) is described below.
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1. Create a matrix M 2 Np� n p
such as forp = n = 3

M =

0

B
@

1 2 3 1 2 3 1 2 3
1 1 1 2 2 2 3 3 3
1 1 1 1 1 1 1 1 1

� � �
3
3
3

1

C
A

or e.g. for p = 2 and n = 3

M =

 
1 2 3 1 2 3 1 2 3
1 1 1 2 2 2 3 3 3

!

This can be obtained via e.g.

M ij = 1 + ceil
�

j
ni � 1 � 1

�
mod n

with i and j resp. the row and column number. Every column represents
a monomial, and the rows contain the state indices.
The resulting matrix has columns that correspond to the monomials
xT 1xT 1xT 1 = x3

T 1, xT 2xT 1xT 1 = x2
T 1xT 2, xT 3xT 1xT 1 = x2

T 1xT 3 etc.
To enforce uniqueness of the monomials, remove from this matrix the
columns where the numbers do not increase row by row (all the columns
that are not in bold in the examples). For every monomial, a parameter
bi (element of the �rst row of ET in (6.20)) has been identi�ed and is
available to the reduction procedure.

2. The elements in the matrix are now regarded as tensor-indices. A tensor

T 2 R

n � n � : : : � n| {z }
p dimensions

is (partially) �lled up with the bi . For each column of the matrix M ,
the tensor T gets an entry �lled. E.g. for p = 3 , if a column containing�

r
s
t

�
corresponds to parameterbi (which is also the monomial coe�cient

of xT r xT s xT t ), the tensor entry is T(r; s; t ) := bi .
In Matlab, this can be done vectorially by using the colon numbering of
tensors. E.g. forp = 3 ,

T
�
(M (1; :) � 1) n0 + ( M (2; :) � 1) n1 + ( M (3; :) � 1) n2 + 1

�
:= b

3. Next, the partially �lled tensor T is symmetrized by summing up all
possible permuted versions of the tensor. This way, the relative weights
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in b(p) (see e.g. (6.38)) are also respected: e.g., forp = 2 and n = 3 , a
matrix

0

B
@

b1 0 0
b2 b4 0
b3 b5 b6

1

C
A +

0

B
@

b1 b2 b3

0 b4 b5

0 0 b6

1

C
A =

0

B
@

2b1 b2 b3

b2 2b4 b5

b3 b5 2b6

1

C
A

is created. The additional factor 2 (in this example, in general it equals
the number of permutations) compared to b(2) in (6.38) is of no impor-
tance.

4. Finally, reshape the tensor into the size ofb(p) , namely (np � n).



Figure 7.0: Illustration complementing the abstract and ideas of Chapter 7.
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Chapter 7

Identi�cation of a structure
with localized nonlinearity

This chapter considers the identi�cation of a rather general nonlinear time-
invariant model, consisting of a MIMO linear dynamic part and one static non-
linear part, also known as Linear Fractional Transformation (LFT) or Linear
Fractional Representation (LFR). This model includes many standard block-
structures, such as Wiener, Hammerstein, Wiener-Hammerstein and nonlinear
feedback. This �exibility reduces model errors, which can result from less op-
timal model structure choices. By imposing the block-structure to a given
PNLSS model (model reduction), a signi�cant reduction of the high number
of parameters can be achieved. All parts of the model structure are treated as
unknowns and no measurability of (internal) signals of the model structure is
needed. The method is illustrated via two experimental-data examples.

7.1 Extending the method of Chapter 6: �rst
attempts

It is tempting to think that the approach of Chapter 6 for the split-up of the
PNLSS model (in Wiener-Hammerstein blocks) can be easily extended to other
block-structures. While this is probably true for certain feedforward types of
block-structures, a split-up of a nonlinear feedback system appears to be more
involved.

169
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Figure 7.1: Nonlinear feedback structure with a WH system in the feedback
branch.

Consider the nonlinear feedback (NLFB) system in Figure 7.1, which con-
sists of a linear dynamic blockG1 in the feedforward branch and a WH system
in the feedback branch (involving 2 LTI blocks, G2 and G3). Since the struc-
ture should �t into the class of PNLSS models, which does not allow nonlinear
algebraic equations (Paduart, 2008), it is assumed that there is at least one
sample delay in the loop. This requires at least one of the direct feedthrough
coe�cients of the LTI blocks to be zero: either D1, D2 or D3 are equal to zero.
By choosing D2 = 0 , the state- and output equations have nonlinear terms
in only one of the states and no input1 (in contrast to the choices D1 = 0
or D3 = 0 ) and a direct feedthrough from input to output is still present (in
contrast to the choice D1 = 0 , the output has a term D1u).

Remind from Section 5.E.3.1 that the rank of the [ E
F ]-matrix associated

with a nonlinear LFR model (also shown in Figure 7.2) is one. Although at
�rst sight, in Figure 7.2, the static nonlinearity of the LFR model seems to
be in the feedforward path, it can also represent a nonlinearity in the feedback
path. The NLFB model is thus a special case of the LFR model, with (notation
of Figures 7.1 and 7.2):

G11 = G1

G12 = � G1G3

G21 = G2G1

G22 = � G2G1G3

Hence, the rank reduction via reparametrization (Section 6.4.2) can be used.
Since, due to the choiceD2 = 0 , only one state appears nonlinearly in the
state- and output equations, the monomial reduction technique (Section 6.5)
will result in a model that is much sparser than the original full PNLSS model.

1 In that case, the output of G2 is reduced to y2 = C2x2 and hence, the SNL is a nonlinear
function of x2 only.
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The di�culties arise in the last step: getting the right structure. In Section
6.6, the parameter vector was extended with some of the unknown parameters
of the blocks. Even though these were at that point unknown, one could
get (at least in all the attempts on simulations and experimental data that we
performed) good enough initial estimates for the optimization to end up, during
simulations, in the global (or for the experiments, a very good) minimum. For
the nonlinear feedback system, the simulations and experiments have shown
that the initial estimates are very critical. The overall feedback system can be
unstable2 or simply not converge to an acceptable minimum. Several di�erent
strategies were tried out without success:

ˆ The idea of the Wiener-Hammerstein split-up: extending the parame-
ter vector with some of the unknowns and imposing the target model
equations.

ˆ Numerically (trying to) solve a (necessary and su�cient) set of equations
with a linear transformation matrix as unknown (see also the remark in
Section 6.5.4). This is an optimization on model level, not taking the data
into account. This optimization is very fast, but does not always converge.
In fact, the numerical experiments reveal that, on average, it converges
only once everyq times, whereq increases with the dimensionality of the
problem (i.e. the total model order).

ˆ A constrained optimization on the data with the usual (weighted) least-
squares cost and constraints to impose the dependencies (without adding
extra parameters).

All those attempts failed to �nd the global minimum, but a better (easier and
more general) method was found instead.

7.2 Goal, model description and related litera-
ture

The aim is to reduce3 a nonlinear state-space model to the block-structured
model shown in Figure 7.2, which as from now will be termed �Poly-LFR�,

2 In these cases, a constrained optimization method might be helpfull.
3Except for the time-consuming, limited method described in Vandersteen and Schoukens

(1999), a direct identi�cation method for the LFR model does not exist yet. The technique
of this chapter describes the reduction of a PNLSS model into the LFR structure. In that
sense, it can also be considered as an identi�cation method for the nonlinear LFR.
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Figure 7.2: Block structure with one static nonlinearity, called nonlinear LFR.
Herein, the Gij represent linear dynamic blocks.

from input-output data. The model consists of four linear dynamic blocks
and one static nonlinearity (SNL) and e�ectively separates the linear dynamics
and the static nonlinearity, yielding more insight into the system compared
to a nonlinear state-space model. The attractive aspect of this structure is its
possibility to represent several other nonlinear block-structures, such as Wiener
(G11 = G22 = 0 ; G12 = 1 ), Hammerstein (G21 = 1 ; G11 = G22 = 0 ), Wiener-
Hammerstein (G11 = G22 = 0 ) and nonlinear feedback structures (G22 6= 0 ).
In fact, it is the most general representation of a system with a single SISO
SNL. The presence of a static nonlinearity in feedback is in some cases an
important advantage. Many mechanical systems (e.g. with nonlinear sti�ness)
and physiological systems (Marmarelis, 2004) contain nonlinear feedback, and
it is essential in hysteresis phenomena (Ohet al., 2009).

The aim here is to obtain a model that well describes the data, but without
knowledge of internal signals or parts of the model.

An identi�cation method for this type of model structure is explained in
Vandersteen and Schoukens (1999), but it is based on time-consuming two-tone
excitations and can only handle model orders up to3, whereas this method does
not need any special excitation signal (as long as it is persistently exciting) and
has no limitations with respect to the model order.

The model structure also appears in Hsuet al. (2008), Novaraet al. (2011),
Peponaet al. (2011) and Ishido et al. (2011) and the references herein, where
it is called either Linear Fractional Transformation (LFT) or Linear Fractional
Representation (LFR). In the �rst two references, only the SNL part is iden-
ti�ed, assuming the linear part (and input to the nonlinearity) to be known.
Each of these papers provides a rigorous convergence analysis within a noisy
working framework. In the third reference, a piecewise a�ne nonlinearity and
linear time-invariant block are identi�ed, assuming one interconnection signal
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to be known (y2 in Figure 7.2). That method is applied to the Silverbox bench-
mark problem, presented in this chapter as well. The last reference deals with
the stability analysis.

7.3 Assumptions

In our approach, the following four main assumptions are made:

ˆ there is only one SISO (i.e.y2; u2 2 R) static nonlinearity (SNL) in the
system (signalsu1 and y2 are allowed to be multivariate);

ˆ the direct-feedthrough matrix of G22 is zero, i.e. there is no direct term
in the feedback branch;

ˆ the SNL is of a polynomial kind;

ˆ the excitation used for identi�cation covers the frequency band of interest
and (ideally) has the same amplitude distribution as the signals for which
the model will be used.

The �rst assumption is inherent to the chosen model structure (i.e. the one in
Figure 7.2), the second assumption avoids the need to solve a nonlinear alge-
braic equation in the state and output (see further on) and the third assumption
is connected to the polynomial nature of the state-space representation used.
This assumption can be relaxed: any continuous function on a closed interval
can be uniformly approximated by polynomials. The last assumption, concern-
ing the persistence of excitation, is standard in a (practical) nonlinear modeling
task.

In the next sections, the structure will be called �Poly-LFR�, since the SNL
in the LFR is assumed to be polynomial.

The method does not need explicit knowledge of the model orders of the
four linear blocks.

7.4 Outline

First, in Section 7.5, the target (Poly-LFR) model structure is described in
somewhat more detail, together with a brief recapitulation on its relation to
the PNLSS model. The proposed method entails several steps:

ˆ data-based identi�cation of a nonlinear state-space model with nonlin-
ear parameter matrices of low rank: this has already been presented in
Section 6.4 and is not repeated in this chapter;
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ˆ analytical or optimization-based determination of the linear combination
of the states and input(s) serving best as input of the static nonlinear
block - if needed with some concession on the model error: this is ex-
plained in Section 7.6. In the same section, it is explained how to compute
the parameters of the SNL;

ˆ extraction of the parametric (state-space) models of the four linear dy-
namic blocks (part of one big MIMO linear dynamic block), as can be
found in Section 7.7.

Sections 7.8 and 7.9 describe two experimental-data examples and Section 7.10
provides the conclusions of this chapter.

7.5 Target model

7.5.1 The target (Poly-LFR) block-structure

The target block-structure, shown in Figure 7.2, is more general than most
of the standard block-structures and easier to interpret than the PNLSS mo-
del. However, several structural degeneracies of the blocks yield the same
input-output behavior (Vandersteen and Schoukens, 1999) and hence, the true
underlying blocks (if existing) are unidenti�able. This is not an issue in this
thesis, since the only goal of the identi�cation is to �nd a model that has an
input-output behavior equal to that of the true system. Unless if there is ad-
ditional prior knowledge or if internal signal(s) are available for measurement,
the identi�cation problem has no unique solution due to the unidenti�ability.
These degeneracies will be discussed in Section 7.5.2.

Besides the extra insight o�ered by the nonlinear LFR model and the de-
creased number of parameters, an additional asset of the split in a MIMO linear
dynamic part and an SNL, is the possibility to increase the nonlinear degree
of the model without adding many parameters � which is a drawback of the
PNLSS model.

It can be seen in Figure 7.2 that the target block-structure consists of a
MIMO linear dynamic part with inputs u1 and u2 and outputs y1 and y2.
u = u1 2 Rn u and y = y1 2 Rn y are the (possibly multiple) in- and output
of the total system, u2 2 R and y2 2 R are respectively the (single) out- and
input of the static nonlinearity. G11, G12, G21 and G22 each determine the
linear dynamic relation between these inputs and outputs:

"
y1

y2

#

=

"
G11 G12

G21 G22

# "
u1

u2

#
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The following discussion will show that (state-space representations of)
these relations can be easily obtained once a state-space model with special
features has been identi�ed.

7.5.2 Written as a PNLSS model

In this section, the connection between both models, previously described in
Section 5.E.3.1, will be recapitulated (with, for convenience, a slightly di�erent
notation). This discussion will be the key ingredient to break down the (possi-
bly rank-1) PNLSS representation to the block-structure in Figure 7.2. To do
so, consider the state-space representation of the MIMO linear part, in which
an explicit distinction between the contributions from u1, u2 to y1 and y2 is
made:

x(t + 1) = Ax (t) +
h

B B NL

i
"

u1(t)
u2(t)

#

"
y1(t)
y2(t)

#

=

"
C

CV

#

x(t) +

"
D D NL

DV D22 = 0

# "
u1(t)
u2(t)

# (7.1)

with

u2(t) =
dX

p=1

� pyp
2 (t)

The assumption D22 = 0 avoids algebraic equations in the variabley2(t) to
arise at each time instant. The subscript V refers to the relation with V1

(which will become clear in the sequel). The nonlinear part determines the
relation between y2 and u2, which is in this chapter a polynomial (for every
time instant t). It is static since � p is independent oft.

Rewriting the state- and true output ( y1) equations yields

x(t + 1) = Ax (t) + Bu1(t) + BNL u2(t)
y1(t) = Cx(t) + Du 1(t) + DNL u2(t)

(7.2)

which, knowing that

u2(t) =
dX

p=1

� p (CV x(t) + DV u1(t))p (7.3)

suddenly looks very much like a PNLSS model (with� = � ), except that the
nonlinear terms are less general. They are restricted in two ways:
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1. Apart from a weighting via BNL and DNL , the state- and output equa-
tions have exactly the same nonlinear termu2(t). Written in the form
(2.1), this means that the rows of [ E

F ] are equal up to a scaling factor.
So it is possible to write [ E

F ] as a rank-1 matrix:

"
E
F

#

= U1V T
1 2 R(n + n y ) � n � (7.4)

with U1 a single column andV T
1 a single row.

2. There is also a structure in the rows of[ E
F ] (related to V1):

the coe�cients depend on each other, sinceu2 only depends on the form
CV x(t) + DV u1(t).

It is clear that, in order to split up the PNLSS model in the linear and SNL
parts, the model should ful�ll these restrictions. Once satis�ed, the �nal steps
are simple. The rank reduction (see step 1 in Section 6.4) and monomial
reduction methods (in Section 7.6) exploit the restrictions to convert a PNLSS
model into a Poly-LFR, possibly at the expense of an increase of the weighted
least-squares cost. The �nal steps will be the subject of Section 7.7.

Remark. In the following, without loss of generality, A, B , C and D in (7.2)
are assumed to be rede�ned as

eA = A + BNL � 1CV

eB = B + BNL � 1DV (7.5)

eC = C + DNL � 1CV

eD = D + DNL � 1DV

such that � 1 = 0 in (7.3), and the representation �ts better with the PNLSS
model, in which monomials of degree> 2 are considered. This avoids one
degeneracy of the model. For notational simplicity, the tildes are omitted in
the remainder of this chapter.

Remark. The same input-output behavior can be obtained after linear or
nonlinear state transformations of (7.1). In addition to this, other structural
degeneracies of the nonlinear LFR model exist (not a�ecting the input-output
behavior). As can be seen in formula (7.2), one of them is caused by rescaling
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� p by a factor k1 2 R0 and BNL and DNL by its inverse:

f� p = k1� p (7.6)

]BNL =
1
k1

BNL (7.7)

]DNL =
1
k1

DNL (7.8)

which means that u2(t) is rescaled. Another degeneracy is the interchangeabil-
ity of a factor k2 2 R0 between the elements in� and CV and DV :

f� p = kp
2 � p (7.9)

fCV =
1
k2

CV (7.10)

gDV =
1
k2

DV (7.11)

which means that y2(t) is rescaled.

7.6 Dependencies on the monomial coe�cients

The �rst (rank- 1) restriction in Section 7.5.2 can be satis�ed via the methods
explained in Section 6.4 (without the necessity to zeron � 1 rows in E , one can
simply remain in the f U1; V1g parametrization). Once this is done, the second
restriction (dependencies within each row) should still be imposed. There are
two possible ways:

ˆ analytically retrieve � , CV and DV in the expression (7.3) ofu2. Note
that this will only be possible without errors if the monomial coe�cients
depend on each other. This technique is explained in Section 7.6.1.

ˆ impose via optimization the right relations between the elements ofV1

and at the same time determine� , CV and DV . This is explained in
Section 7.6.2.

7.6.1 Analytical approach

If U1 =
� B NL

D NL

�
and V T

1 � = u2, the identi�ed unit-rank PNLSS model is the
one in (7.2). Assuming that u2 equals (7.3), the current goal is to estimate (up
to a scaling factor) � , CV and DV .
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In Appendix 7.A, it is shown how to retrieve CV and DV analytically from
V1. In fact, with these parameter matrices, the input of the SNL is known. Once
they have been identi�ed, all parameters except row vector� = [ � 1 : : : � d] =
[� 1 � 2:d] have been determined. Since it was assumed thatV T

1 � = u2, or
equivalently, using (7.3),

V T
1 � =

dX

p=2

� p (CV x + DV u1)p (7.12)

= �

0

B
B
@

(CV x + DV u1)2

...
(CV x + DV u1)d

1

C
C
A (7.13)

the vector � (with � 1 = 0 ) can be obtained from (7.13) via the least-squares
method, after generating multiple random realizations of x and u1 and com-
puting the corresponding monomial vectors� (which is similar to the numerical
implementation (5.29) in Appendix 5.B).

Note.
The analytical method only works perfectly under noiseless conditions and in
the absence of model errors. A bias is introduced due to the uncertainty on
the model parameters. The bias error can be compensated as in Hjalmarsson
and Schoukens (2004). This method needs the covariance of the parameters,
which can be estimated via the asymptotic Cramer-Rao bound(2J T J )y with
J = @y=@�.

7.6.2 Optimization-based approach

The previous section showed the analytical solution, but this is only correct if
V1 is such that V T

1 � can exactly be rewritten as in (7.13). If this assumption is
not satis�ed, e.g. due to model errors or noise, the result of the previous section
can be used as a starting value for the following constrained optimization:

arg min ��
�VWLS ( �� )

s.t. c( �� ) = 0
(7.14)

with �VWLS ( �� ) the usual (weighted) least-squares cost function de�ned similar
to eVWLS ( ~� ) (6.14),

�� = [ vec(A)T B T C D U T
1 V1 � C V DV ]T
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and c( �� ) a vector containing all necessary constraint equations (given by (7.13)),
such as, forn = 1 , d = 2 :

0

B
@

V1(1) � � 2C2
V

V1(2) � 2� 2CV DV

V1(3) � � 2D 2
V

1

C
A =

0

B
@

0
0
0

1

C
A

with � =
�

x 2
1

x 1 x 2

x 2
2

�
.

The optimization can be started up with the parameter values of the rank-1
PNLSS model and with � , CV and DV initialized by the values of the analytical
approach (Section 7.6.1). As such, the initial value of the cost is the same
as the rank-1 cost, but the constraints are not yet exactly zero. During the
optimization, the constraints are imposed gradually, avoiding a jump in the
parameter space (similar to what is described in Section 6.5.4). By using a
data-dependent cost, the optimization is again not uniquely based on the model.
This adds �exibility to the optimization and ensures the existence of a feasible
solution (where the constraints are satis�ed).

7.7 The MIMO linear block

All the parameters of the SNL (namely � ) and of the MIMO linear dynamic
block with state-space description (7.1) have now been identi�ed. State-space
expressions for the four linear dynamic blocks in Figure 7.2 are straightforward.
From (7.1), the state-space quadruples can be seen to be:

ˆ G11: (A; B; C; D ) (describing the relation from u1 to y1 for u2 = 0 )

ˆ G12: (A; B NL ; C; DNL ) (describing the relation from u2 to y1 for u1 = 0 )

ˆ G21: (A; B; C V ; DV ) (describing the relation from u1 to y2 for u2 = 0 )

ˆ G22: (A; B NL ; CV ; 0) (describing the relation from u2 to y2 for u1 = 0 )

Recall that several structural degeneracies of the blocks (see Section 7.5.2)
yield the same input-output behavior (Vandersteen and Schoukens, 1999) and
therefore, this result is only one of in�nitely many equivalent models.

For the general MIMO case, in whichnu > 1 and ny > 1, but the SNL is still
SISO, this corresponds to a total of(nu + 1)( ny + 1) SISO transfer functions.
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Figure 7.3: Basic nonlinear feedback structure, associated with the Silverbox
example.

7.8 First experimental result (Silverbox)

The method was �rst tested (with success) on simulations. The models to be
identi�ed were LFR block structures with quadratic and/or cubic nonlinearity,
total model order 4 to 6 and mainly randomly selected parameters (keeping the
model output bounded). The simulations were performed in noisy and noiseless
situations and were meant to test the method and its implementation.

This chapter will only show two experimental results.

7.8.1 The device under test

The DUT is the Silverbox (Schoukenset al., 2005), it is an electronic circuit that
emulates the behavior of a mass-spring-damper system: the inputu represents
the force applied to the mass and the outputy represents its displacement.
The total system, with a hardening spring, can be described by the di�erential
equation

m1 •y(t) + d1 _y(t) + k1y(t) + k3y3(t) = u(t) (7.15)

with m1 the mass,d1 the damping and k1 and k3 the coe�cients of the spring.
The ideal physical block-oriented model consists of a linear part

G(s) =
1

m1s2 + d1s + k1

in the feedforward path and a cubic static nonlinearity

SNL(y) = k3y3

in the feedback path (see Figure 7.3). The Poly-LFR (with y2 = y and u2 =
SNL(y)) will � for equal SNL � exhibit the same behavior if

G11 = G21 = G

G12 = G22 = � G (7.16)
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Note that the actual system behavior slightly di�ers from the above model
equations due to non-idealities of the components.

7.8.2 The measurement data

The data are those that were used at the Symposium of Nonlinear Control
Systems (Nolcos) in2004, where a special session was organized around the
Silverbox device. Di�erent models (ranging from white box to black box) of
the device were created, all based on a multisine excitation for estimation and
Gaussian noise for validation. The amplitude of the validation data (shaped
like an arrow) exceeds from a certain point the amplitude of the estimation
data. In this region, the model is in fact extrapolated, which requires some
luck: it is always possible to create a system that fools the model outside the
domain where it was trained. Fortunately, the system has a cubic nonlinearity
and can be well represented via the model structure considered here.

7.8.3 Results

A good PNLSS model was already available (see Table 7.1). First, a rank-1
description of [ E

F ] is obtained as explained in Section 6.4. In this case, the
singular value decomposition of[ E

F ] is used to generate a starting value for the
optimization. The validation RMSE is 0:35mV .

Secondly, the dependencies on the monomial coe�cients are imposed as in
Section 7.6. Starting from the analytical solution (Section 7.6.1), an optimiza-
tion is used to satisfy the constraint and at the same time minimize the cost
(Section 7.6.2). The resulting model has a validation RMSE that is again more
or less 0:35 mV , but performs somewhat less satisfactory on the estimation
data.

Figure 7.4 shows the transfer functions of the four linear dynamic blocks,
while Figure 7.5 shows the shape of the static nonlinearity. It is worth noting
that the shapes of the transfer functions resemble each other, as expected (see
(7.16)) if the system emulates the behavior of a nonlinear mass-spring-damper.
The di�erences in scaling are caused by degeneracies of the block-structured
system in Figure 7.2.

Higher degrees of the SNL were tried out, but in this particular example,
the improvements of the result were insigni�cant.

7.8.4 Comparison

The validation RMSE of a 2nd order linear dynamic model (corresponding to
the BLA) is 13:7 mV . Some benchmark results are recapitulated in Table 7.1
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Figure 7.4: First application: transfer functions of the four linear dynamic
blocks.

Figure 7.5: First application: the estimated static nonlinearity (output versus
input).
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Figure 7.6: Some validation results of the Silverbox benchmark: validation
RMSE versus the number of parametersn� . Blue dots are results from other
authors; the red dots is the result from this thesis, see Table 7.1 on the next
page.

and Figure 7.6, with RMSE the root mean square error on the validation data
and n� the (�nal) number of independent parameters.

Clearly, the PNLSS model (with n = 2 and d = 3 ) performs very well, and
needs relatively few (independent) model parameters (41� n2: n2 is due to li-
near similarity transformations). The reason for this low number of parameters
is especially the low model order.

As expected, the validation error of the Poly-LFR model (number (4) in
Figure 7.6) lies between0:26mV (PNLSS model, (1b)) and 0:38mV (the phy-
sical block-structure with polynomial nonlinearity, (3)). The number of (inde-
pendent) parameters of the Poly-LFR model is11 (15 linear parameters,2 for
the quadratic and cubic coe�cients, minus n2 = 4 for the linear transformations
and minus 2 for the degeneracies in (7.6) until (7.11)).
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Reference Approach
RMSE
[mV ]

n�
Nr.

graph

Paduart et al.
(2010)

BLA 13:7 5 (1a)

PNLSS 0:26 37 (1b)

Hjalmarsson
and Schoukens

(2004)

Physical block-oriented
model

0:96 5 (2)

Paduart et al.
(2004)

Physical block-oriented
model

0:38 10 (3)

Van Mulders et
al. (2011)

poly-LFR 0:35 11 (4)

Espinozaet al.
(2004)

LS-SVM with NARX 0:32 490 (5)

Espinoza (2006)
PWL-LS-SVM with

PWL-NARX
0:27 190 (6)

Sragneret al.
(2004)

MLP-ANN 7:8 600 (7)

Verdult (2004)
Local Linear State Space

model
1:3 16 (8)

Ljung et al.
(2004)

NL ARX model 0:30 712 (9)

Anna
Marconato

Nonlinear state-space
with sigmoidal
nonlinearities

0:34 23 (10)

Table 7.1: First application: validation results of various models.
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The black-box models typically have a high number of parameters, but
some of them (the nonlinear state-space and NARX models) give very good
approximations of the system behavior.

It is hard to compare the results in Peponaet al. (2011) with the ones in
this paper: here, no knowledge ofy2 is assumed (onlyu1 and y1 are assumed
to be measured), all estimation data are used (in Peponaet al. (2011), only
2000points are selected) and the description of the nonlinearity is polynomial
(instead of piecewise a�ne in Pepona et al. (2011)). The simulation error
of the LFR method is about ten times smaller, meaning that the assumed
prior knowledge in Peponaet al. (2011) did not o�set the reduced number of
estimation points and the non-polynomial, less natural choice of nonlinearity.

7.9 Second experimental result (crystal detec-
tor)

The DUT is an Agilent-HP420C crystal detector. This device was already
discussed in Section 4.7, where it was used to illustrate the partially constrained
optimization method.

The estimation data contain 5 periods of Gaussian noise (each one with
50000 samples at a sampling frequency of10 MHz and with an excitation
bandwidth of 800 kHz) with a slowly linearly-increasing standard deviation.
The only available set of validation data is similar, but with an excitation
bandwidth of 400 kHz. The time domain sequence of the estimation data is
displayed in Figure 7.7. For the validation data, this �gure looks similar.

7.9.1 Further discussion of the prior results

The prior results were already shown in Table 4.4 on page 79. Herein, the block-
oriented (nonlinear feedback) model, identi�ed in Schoukenset al. (2008), con-
sisted of a linear modelG1 in the feedforward path and a Wiener-Hammerstein
system (i.e. 3 blocks: G2-SNL-G3) in the feedback path. Both G1 and G2 had
model order 1, while G3 was a simple gain factor. The SNL was modeled via
a 9th degree polynomial. Good results were obtained: the root mean square
error (RMSE) on the estimation data was only 0:30 mV, while the noise had
a standard deviation of 0:23 mV. In contrast to this paper, the signals with
lower bandwidth were not used as validation data. In Schoukenset al. (2008),
unlike our model (with D22 = 0 ), there was no assumption about any pure
delay being present in the loop (it turned out that this made the calculations
of the model response more involved because a nonlinear algebraic equation
needs to be solved). Up to this di�erence, the nonlinear LFR structure is more
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Figure 7.7: Second application: averaged estimation input sequence with data
selection for the initial models in black.

�exible, since it has an extra direct linear block G11 (compared with Schoukens'
equivalent nonlinear feedback model with SNL in the feedforward branch).

7.9.2 Application of the proposed approach

At �rst, only a part of the estimation data was used. The selection (black
region in Figure 7.7) used one �fth of the total number of data points. The
region (with lower amplitude range) was selected since, for the DUT, the level
of nonlinear distortions increases with the amplitude, such that the nonlinear
degree (in Schoukenset al. (2008), d = 9 ) can be reduced. Moreover, the noise
would hide the nonlinear distortions at (very) low amplitude levels.

Step by step, the LFR structure was identi�ed. Table 7.2 on page 188
summarizes the results described below.

7.9.2.1 Estimation of a linear approximation

The techniques for the estimation of the BLA were used (as in Paduartet al.
(2010)). The selected data were split in10 subblocks and a nonparametric esti-
mate of the BLA was constructed by averaging over those blocks. Afterwards,
a 2nd order parametric estimate was obtained via a subspace routine.

Remark. Constructing a linear model with these amplitude-varying data is
playing with �re. The nonlinearity behaves di�erently on every amplitude level,
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leading to a change in the shape of the BLA. For a nonlinear feedback system,
this change is moreover frequency dependent (Lauwerset al., 2008; Schoukens
et al., 2008). Averaging out the di�erent BLA's of the subblocks will hence
generate a bias. The input amplitude level is approximated as constant in the
selected portion of the data set, which justi�es the averaging over the subblocks.

The result was good. A validation RMSE of 0:338 mV was obtained on the
selected data, while the extrapolation (entire dataset) increased the error to
only 0:705 mV. Paduart (2008) averaged out over the entire amplitude range
and possibly introduced a non-negligible bias (0:89mV, for n = 3 ). We repeated
the same procedure and obtained an RMSE of0:86 mV for n = 2 , with 10
subblocks (by using the entire data range). Another possible error source is
the di�erence in bandwidth between estimated and validated data. Ideally, for
the BLA to have its nice statistical properties, it should have the same power
spectrum. Here, we have no choice but to work with the available data. In
Schoukenset al. (2008), results for one linear model (that should cover the
entire data range) are not available. Herein, as required by the identi�cation
technique, the data were from the beginning split up in5 blocks, with 5 di�erent
BLA's.

7.9.2.2 Identi�cation of a nonlinear state-space model with rank- 1
property

A 2nd order polynomial state-space model with nonlinear degreed = 3 resulted
in a nice �t. The RMSE on the validation data (of the same amplitude range
as the estimation data) was0:253 mV; on the entire validation data set, the
RMSE was 0:334 mV.

7.9.2.3 Analytical determination of the input and output of the
SNL block

Next, the parameters of the nonlinear LFR structure were initialized (via the
analytical method) and used in the constrained optimization. The validation
RMSE increased up to0:256 mV (and 0:343 mV on the entire validation data
set). This is still very good since the nonlinear degree was3 (instead of 9). To
compute the number of independent parameters, the number of degeneracies
is subtracted. For the nonlinear LFR model, this is n2 (state transformations)
plus 2 (see equations (7.6) to (7.11)). The model in this example consequently
contains only 17 � (22 + 2) = 11 independent parameters (while the model in
Schoukenset al. (2008) consists of14 independent parameters). However, this
is the result on only a portion of the data. The model is called �LFR 1� in
Table 7.2.
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Estimation RMSE Validation RMSE n�

BLA 0.442 1.54 0.338 0.705 5

PNLSS-
rank 1

0.253 0.557 0.253 0.334 24

nonlinear
LFR 1

0.255 0.580 0.256 0.343 11

nonlinear
LFR 2

0.257 0.278 0.263 0.286 11

Schoukenset
al.

n.a. 0.30 n.a. n.a. 14

Table 7.2: Second application: comparison of the RMSE (in mV) on the esti-
mation (est) and validation ( val) data, and number of independent parameters.
The RMSE's are evaluated on the selected data (left column) or on the entire
dataset (right column). The numbers in bold refer to the dataset used to create
each model.

7.9.2.4 Final optimization on the full amplitude range

The last test was to extend the estimation and validation data to their full
amplitude range. An optimization was performed, initialized with the previ-
ously identi�ed nonlinear LFR structure (LFR 1). The new model (LFR 2)
has a �nal validation RMSE of 0:286 mV (on the entire validation data set),
which is slightly superior to the RMSE of the 9th degree polynomial nonlinear
feedback structure in Schoukenset al. (2008). This improvement is probably
linked to the additional �exibility, discussed earlier (up to the delay). In fact,
the presence of a delay is an advantage for those who want to use the model: no
algebraic equations need to be solved at every time instant. Moreover, the al-
gebraic equations might even lead to multiple or no solutions for the simulated
output.

7.9.3 Results

An overview of the validation and estimation RMSE's and the number of pa-
rameters is given in Table 7.2. Figures 7.8 and 7.9 show the measured validation
output, the linear simulation error and the nonlinear (LFR) simulation error, in
the frequency and time domain respectively. The split-up of the MIMO linear
block in its four underlying subblocks and SNL yields the results in Figures
7.10 and 7.11.
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Figure 7.8: Second application: DFT spectra of the measured validation output
(black, top), the linear simulation error (grey) and the nonlinear simulation
error (black, bottom).

Figure 7.9: Second application: comparison of the measured and simulated
validation output. The �gure shows the measured validation output (grey),
the linear simulation error (black) and the nonlinear simulation error (white).
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Figure 7.10: Second application: frequency response functions of the four blocks
inside the MIMO linear dynamic part.
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Figure 7.11: Second application: static nonlinear relationship betweeny2 and
u2.

7.9.4 Comparison

The results described in this chapter and results (of the same method) for
model order 1 instead of 2 are compared with some results of other methods
in Table 7.3 on the next page and Figure 7.12 on page 193. In the �gure, two
clusters of points can be found: the linear models and the nonlinear models.
The polynomial LFR models make a good compromise between the number of
parameters and the RMSE. In this case, all the nonlinear models even have
more or less the same RMSE, which lies quite close to the noise level.

7.10 Conclusion

The method that is proposed in this chapter is more general than the previous
method for unraveling a state-space model in WH blocks (Chapter 6). It is no
longer necessary to choose a block-structure beforehand. Moreover, no choices
have to be made concerning model orders of the linear dynamic blocks (this
was a drawback of the WH reduction method). Compared to the standard
block-structure identi�cation methods, the poles and zeros need not be divided
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Reference Approach RMSE
[mV ]

n� Nr.
graph

Paduart (2008) �BLA�
(treats subblocks of the
arrow-shaped data as
realizations; n = 3 )

0.89
7 (1)

own results �BLA�
(uses only low-amplitude

subblock; n = 2 )

0.705 5 (2a)

�BLA�
(uses only low-amplitude

subblock; n = 1 )

0.718 3 (2b)

Paduart (2008) PNLSS
(n = 3 and d = 3 )

0.267 127 (3a)

State-a�ne PNLSS
(n = 4 and d = 3 )

0.259 59 (3b)

own results PNLSS
(n = 2 and d = 3 )

0.26 53 (4a)

PNLSS
(n = 1 and d = 3 )

0.265 17 (4b)

own results poly-LFR
(n = 2 and d = 3 )

0.278 11 (5a)

poly-LFR
(n = 1 and d = 3 )

0.295 7 (5b)

own result PNLSS-rank 1
(n = 1 and d = 3 )

0.273 12 (6)

Schoukenset al.
(2008)

2nd order nonlinear
feedback

(with WH branch; d = 9 )

0.30? 14 (7)

Anna
Marconato

Nonlinear state-space
with sigmoidal
nonlinearities

0.270 17 (8)

Table 7.3: Validation results of the crystal detector. Note that only the results
for n = 2 are described in detail. The RMSE (indicated by ?) of Schoukenset
al. (2008) was the result on the estimation data.
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Figure 7.12: Some validation results of the crystal detector: validation RMSE
versus the number of parametersn� . Blue dots are results from other authors;
the red dots are results from this thesis, see Table 7.3 on the facing page. The
green line shows the output noise level of the experiment, i.e.0:23mV . Note
that also input noise is present, with the same standard deviation as the output
noise.
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among the separate linear blocks (Lauwers, 2011), which is a plus. On the other
hand, to obtain the sparsest representation, in case the individual model orders
are lower than the total model order (no common dynamics), some pole/zero
cancellations should still be performed. Hereby, the model degeneracy associ-
ated with (7.5) on page 176 should be taken into account, since they can change
pole/zero locations.

With the current method, good results were obtained, both on simulations
and two real measurement examples.

Appendix

7.A How to determine CV and DV from V1

What is described below is very similar to the analytical monomial reduction
in Appendix 6.A, but more general: � is now a linear combination of states
and inputs, whereas previously, it was only a linear combination of states. For
completeness and clarity, this appendix gives again the full explanation.

7.A.1 Goal

Let us �rst consider one term of the polynomial
P d

p=2 � p� p, namely � p(� (t))p,
with, from (7.3), � = CV x + DV u1, Hence, the monomial types and their
coe�cients are given by:

� p� p = � p�� : : : � (7.17)

= � p

nX

i 1 =1

ai 1 zi 1

nX

i 2 =1

ai 2 zi 2 : : :
nX

i p =1

ai p zi p (7.18)

= � p

X

i 1 :::i p

ai 1 : : : ai p zi 1 : : : zi p (7.19)

=
X

i 1 :::i p
i 1 6 i 26 ::: 6 i p

bi 1 :::i p zi 1 : : : zi p (7.20)

where

a =

0

B
B
@

a1
...

an

1

C
C
A = [ CV DV ]T (7.21)
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and

z =

"
x
u1

#

(7.22)

All coe�cients of (7.20) are present in a Kronecker power of the form

a
 [p] = a 
 a 
 : : : 
 a
| {z }

p times

(7.23)

Given the entries bi 1 :::i p of V1, the goal is now to retrieve a.

7.A.2 A simple example

For p = 2 and dim(z) = 2 , the form of � 2 is a2
1z2

1 + 2a1a2z1z2 + a2
2z2

2 , which
consists of3 monomial coe�cients. The coe�cients b of the powers inz (x and
u1), to be retrieved directly from V1, are then identi�ed:

0

B
@

b11

b12

b22

1

C
A = � 2

0

B
@

a2
1

2a1a2

a2
2

1

C
A (7.24)

In this example, with a = ( a1
a2 ):

� 2a
 [2] =

0

B
B
B
@

b1

b12=2
b12=2
b22

1

C
C
C
A

(7.25)

De�ne now a matrix b(2) based on the entries of the vectora
 [2] , by replacing
the last Kronecker product by a product with the transpose of a, with all the
entries still appearing, e.g. in the example

b(2) = � 2aaT =

 
b11 b12=2

b12=2 b22

!

(7.26)

Clearly, b is a rank-1 matrix, and if a singular value decomposition is performed,

b(2) = Ub(2) (:; 1)Sb(2) (1; 1)Vb(2) (:; 1)T (7.27)

a will be equal to either Ub(2) (:; 1) or Vb(2) (:; 1) up to a scaling factor.
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7.A.3 Generalization and proposed method

For a higher nonlinear degree, such asp = 3 , the singular value decomposition
is still a good tool, with

b(3) = � 3 (a 
 a) aT

= � 3

0

B
B
B
@

a3
1 a2

1a2

a2
1a2 a1a2

2

a2
1a2 a1a2

2

a1a2
2 a3

2

1

C
C
C
A

=

0

B
B
B
@

b111 b112=3
b112=3 b122=3
b112=3 b122=3
b122=3 b222

1

C
C
C
A

such that Vb(3) (:; 1) will be, up to a scaling factor, equal to a. In general, for
any p, de�ne the (dim(z))p� 1 � dim(z) matrix

b(p) = � pa
 [p� 1]aT (7.28)

If the nonlinearity is polynomial, viz. a weighted sum of monomials, e.g.P d
p=2 � p� p, all the matrices b(p) stacked on top of each other result in a matrix

of rank 1, since from all elementsaT can be taken out:

b =

0

B
B
@

b(2)

...
b(d)

1

C
C
A =

0

B
B
@

� 2aaT

...
� da
 [d� 1]aT

1

C
C
A

=

0

B
B
@

� 2a
...

� da
 [d� 1]

1

C
C
A aT

(7.29)

Note that the left singular vectors of b (7.29), namely Ub, are then pro-
portional to the long vector with Kronecker products, while the right singular
vectors, namely V T

b , are proportional to aT . Therefore, a is, up to a scaling
factor, equal to Vb(:; 1):

a � Vb(:; 1) (7.30)

This scaling factor is of no importance, because it can be accounted for by
� . CV and DV can now be immediately retrieved froma, sincea = [ CV DV ]T .
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Chapter 8

Conclusions

The main goal of this thesis was to tackle two speci�c drawbacks of the
Polynomial Nonlinear State-Space (PNLSS) model: local minima during the
optimization due to model instabilities and the high number of parameters
of the model. The drawbacks and proposed solutions are summarized below,
together with some ideas for further research.

8.1 Part I: How to deal with model instabilities

A �rst drawback is related to the identi�cation of the model: during the iter-
ations of the identi�cation method, the model can respond in an unbounded
way to a bounded input signal. When this happens, the existing, prior devel-
oped identi�cation gets stuck in a local minimum (right next to the region of
the parameter space where the model behaves unstably). With the method as
presented in Part I, it is still possible to continue the optimization and �nd a
better minimum. The method was successfully tested on the PNLSS model,
both on simulation and on experimental examples. Moreover, the same idea
can be applied to other (non)linear models as well.

The problem of the prior identi�cation method is that it calculates the
model output by means of the entire state-space model. This involves a (re-
cursive) simulation of the states in the time domain via the nonlinear state
equation. If the system is unstable, the states and consequently the output
(and output error) can grow unbounded.

In the constrained optimization in Part I, the output does not become un-
bounded, since the states are considered as model parameters, and the output

197
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(and output error) is calculated via a polynomial function of the parametric
states and the input. The state equation is taken into account in the contraint
equations, ensuring the compatibility of the parametric states (after optimiza-
tion). This method can be used to identify an unstable model, captured inside
a stabilizing feedback loop, from bounded input-output data.

Since the method typically needs lots of (computer) memory and time, a
partially constrained optimization method was introduced. As such, a trade-
o� between robustness and speed and memory use can be made. An ad hoc
strategy, combining the positive aspects of the constrained and unconstrained
methods, was proposed and tested.

8.2 Part II: Reducing the model complexity

The second drawback for which solutions were proposed, is the very high num-
ber of parameters of the PNLSS model. As was shown in this thesis, existing
regularization methods can be ine�cient for problems that are nonlinear in the
parameters and exhibit nonlinear degeneracies. The degeneracies are coming
from state transformations leaving the model's input-output behavior unaf-
fected. An alternative approach was inspired by the fact that in reality, a
system often has only few (strongly) nonlinear components. Therefore, the
system can be represented (or approximated) by a block-structure with only
few static nonlinear blocks.

This part of the thesis shows how certain model structures can be imposed
on a given, complex PNLSS model with a high number of parameters. The
result is a model

ˆ with fewer parameters,

ˆ with (consequently) a reduced parameter variability,

ˆ that is easier to handle for controller design and

ˆ that is easier to interpret.

The approach that was presented in Part II consists of several steps, gradually
increasing the structure of the model, but at the same time losing performance.
The stepwise approach has the advantage that it provides a set of models from
which the user can choose his or her own optimal structure/performance-trade-
o�. Moreover, a one-step solution could not be found for this highly nonlinear
problem, in which nonlinear state transformations conceal the structure that
might be hidden inside the model equations.

First, in Chapter 6, a Wiener-Hammerstein model was aimed for. Next, in
Chapter 7, a more general block-structure was imposed: the Linear Fractional
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Representation (LFR), also with a polynomial nonlinearity. Further extension
of the methods is still possible (some algorithms can simply be copied), but is
outside the scope of this thesis. Note also that it was shown that overparam-
eterization (with extra degeneracies, i.e. nonlinear state transformations) can
help to avoid local minima. The method is partly based on this insight.

During this work, a number of algorithms have been implemented in order
to investigate the e�ect of linear and nonlinear state transformations. Also,
the relation between the block-structures and the PNLSS model has been de-
rived. The algorithms were successfully tested on simulations and experimental
examples.

8.3 Ideas for further research

The �rst ideas for further research applies to both parts of the thesis.

1. The starting values are in both cases the linear state-space parameters of
a parametric �t on the BLA, possibly with extension to nonlinear terms
in the output equation. More advanced, nonlinear starting values(i.e. a
nonlinear model) would help to avoid local minima. Think for instance
of the subspace techniques, which have also been applied to nonlinear
state-a�ne state-space models.

2. The impact of noise was not very thoroughly studied throughout this
thesis. This needs more extensive simulation studies and theoretical de-
velopments. Moreover, the methods in this thesis were restricted to an
output error framework. This condition could be relaxed by introducing
additional noise sources at other places in the model, e.g. at the input
or in the state equation (similar to the stochastic framework in Kalman
�ltering 1).

Concerning Part I of the thesis, some improvements can still be made and
certain open issues remain:

1. A constrained method without frequency domain noise weighting (in the
cost function) yields a sparse KKT matrix. However, when weighted, the
sparsity of the KKT matrix is lost. This weighted KKT matrix is build
up by the Hessian approximation2J T

1 J1 (with J1 = @�
@#), the Jacobian of

the constraints J2 = @F
@# and its transpose. A frequency domain weighting

would preserve the sparsity of the Hessian approximation, but lose the

1The state estimates in Part I of the thesis will in general (for nonzero process noise) be
di�erent from the state estimates of the Kalman �lter, since there is no process noise in the
stochastic framework used in this thesis.
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sparsity of J2. For a time domain weighting, the inverse is true. For
a partially constrained method, with few constraints, adding a frequency
domain weighting can still be considered.

2. Since the direct simulation of the output of an unstable model generally
yields an unbounded result, it is up to now unclear how tovalidate an
unstable model. An exception arises when it is inside a closed loop with
a known controller. This is annoying, since the methods in Part I do not
necessarily end in a stable model.
A possibility might be to use a constrained optimization, in which the
model parameters � are kept �xed and only the states are free. This
optimization will �t the states such that the state-equation constraint is
(hopefully) satis�ed. There might be a problem with local minima, since
no good initial values of the states are available. This option still needs
to be investigated.

3. The speed and implementation (numerical conditioning) of the constrained
optimizations can still be improved by means of dedicated sparse solvers.

4. The method can also beapplied to other model structures, such as NAR-
MAX or block-oriented models with nonlinear feedback.

5. The implementation of the partially constrained method can be general-
ized such that not all the states of a time instant should be included in the
parameter vector (i.e. x2(t3) is a parameter, but e.g. not x1(t3)). This
has the advantage that fewer constraints are necessary to either cross an
unstable region or identify an unstable system.

6. In the current partially constrained method, the number of parametric
states is �xed during every step of the strategy. This number could also
be adapted from one iteration to the other, depending on the tendency of
the simulation to blow up. In the case of an increase, choosing the states
to add is not obvious since the Lagrange multipliers are not directly
available.

7. An alternative approach for the strategy of the partially constrained op-
timization (with a stepwise increasing estimation data length), is to split
the data in subblocks, determine the Lagrange multipliers per subblock
(in one step) and select the fraction of states that needs to be included
in the parameter vector per subblock. This o�ers the advantage that all
data are used right from the �rst iterations. On the other hand, it is a
pragmatic approach, which might yield a suboptimal selection of retained
states.
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With regard to Part II, there are probably even more possibilities for future
research:

1. Although the rank reduction method of the nonlinear terms (see Chapter
6) is quite a simple technique, one might also consider other possibili-
ties. One option is to impose therank constraint using a nuclear norm
optimization as in Liu and Vandenberghe (2009). A drawback of this
approach is that the minimization involves a trade-o� between the nu-
clear norm and the cost via a weighting parameter
 2 R+

0 that has to
be chosen:

min
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#
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NX

t =0

ky(�; t ) � ym (t)k2
2

This makes it harder to automate the procedure. Moreover, the prob-
lem remains nonlinear in the parameters� and every iteration yields an
optimization. Also, the result will not necessarily be a rank-1 [E

F ] matrix.

2. It would be interesting to extend the methods to more general block-
structures, such as a nonlinear LFR with a MIMO SNL.

3. Apart from the time-consuming, limited identi�cation in Vandersteen and
Schoukens (1999), adirect identi�cation of the nonlinear LFR structure
is still not fully solved.

4. Similar to the idea in Lauwers (2011), in which certain block-structured
models can be excluded by examining frequency response measurements,
it would be handy to have an idea of the most probable block-structure
before starting the identi�cation (or reduction). The methods in Lauwers
(2011) should be extended to this end.

5. Using other types of nonlinearities (i.e. non-polynomial) might help to
avoid extrapolation or instability problems. Moreover, the number of
local minima (or the probability to end up in a local minimum) should
be investigated and compared for di�erent basis functions.

6. When splitting up the MIMO LTI part of the nonlinear LFR model into
four LTI blocks, the model orders of the subblocks are equal to the model
order of the MIMO LTI part. If the true individual model orders are
lower, theseorders might still be reduced by making use of the degenera-
cies (hereby canceling redundant poles and zeros).

A �last but not least� remark is that the methods in this thesis can (easily)
be combined: the partially constrained method of Part I can be used to add
robustness to the reduction to a (possibly unstable) LFR model (Part II).
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Tackling two drawbacks
of polynomial nonlinear
state-space models

Anne Van Mulders

System identi�cation aims at �tting a model to our observations. For exam-
ple, you might want to measure the sound of your voice at two places: directly
(in the same room) and behind a wall. The sound behind the wall is then a
damped version of the original sound, with the high tones in your voice usually
more damped than the low ones. The relation between the two measurements
can be described by a model and characterizes the acoustic behavior of the
wall. This model can be used to predict the sound behind the wall when you
say something else. Models hence have the capability to predict real-life phe-
nomena, what makes them very useful in engineering, but also in economics,
in meteorology, etc.

Most of the phenomena or systems behave nonlinearly: a loudspeaker, a
robot arm, a simple pendulum, . . . Therefore, over the years, nonlinear models
have gained more interest and nowadays, a wide variety of nonlinear models is
being studied. One such a model, which has been used successfully in several
experimental data examples, is the Polynomial Nonlinear State-Space (PNLSS)
model. It is highly �exible, but some of its drawbacks need special attention.

The �rst part of this thesis presents an optimization method that is robust
with respect to system and model instabilities. The second part of this thesis
reduces the complexity of the model by imposing structure on it.
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