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1.1 THE NEED FOR CLIMATE RECONSTRUCTIONS 

Past climate was proven to be an evolving system. Fifty million years ago our planet was 

a tropical oasis, with rainforests from Canada in the North to Patagonia in the South. 

However, 2.5 million years ago our planet slipped into a cooler climate with the 

beginning of the ice age. Since then, our climate is characterized by long cold periods, 

called glacials, with big ice sheets, covering most of Europe and Northern America 

alternated by shorter warm periods, similar as today, called inter-glacials. Changes in 

climate are induced by internal forcings such as ocean and ocean-atmosphere coupled 

dynamics and tectonic movements, and external forcings such as solar radiation, 

volcanic activity, and, since the beginning of the industrial revolution, human activity.  

Human society is reliant on knowledge about our climate. Consequently, it is important 

to know how the climate will evolve in the future. Therefore it is important to 

understand what �…�‘�•�–�”�‘�Ž�•�� ���ƒ�”�–�Š�ï�•�� �…�Ž�‹�•�ƒ�–�‡�ä�� ���Šis requires, an investigation into our 

climate�ï�•�� �’�ƒ�•�–. Because instrumental records are very short, we have to rely on paleo-

climate data to reconstruct the climate of the past.  

1.2 PALEO PROXY DATA 

Paleo climate data can be derived from natural climate recorders, such as ocean and lake 

sediments (Herbert, 1994; Huang et al., 2000; Jones et al., 2009; Weedon, 1989), ice 

cores (Augustin et al., 2004; Jouzel et al., 1997), tree rings (Briffa et al., 1990; Graumlich, 

1993; Verheyden et al., 2005), marine organisms with a calcareous skeleton, amongst 

which echinoderms (Borremans et al., 2009), sclerosponges (Lazareth et al., 2000), 

corals (Kuhnert et al., 2002; Marshall and McCulloch, 2002; Sinclair et al., 1998; Wei et 

al., 2000) and bivalves (Fleitmann et al., 2004; Gillikin et al., 2005; Lazareth et al., 2003; 

Vander Putten et al., 2000), speleothems (Fleitmann et al., 2004; Wang et al., 2008) and 

historical records (Lüterbacher et al., 2002; Pfister, 1980; Wang and Zhang, 1988). 

Variables such as, for instance, trace �‡�Ž�‡�•�‡�•�–�•�� �ƒ�•�†�� �•�–�ƒ�„�Ž�‡�� �‹�•�‘�–�‘�’�‡�•�� ���������ï�•���� �‹�•�…�‘�”�’�‘�”�ƒ�–�‡�†��

in an accreting substrate may reflect and archive the temporal variation of 

environmental conditions. In that sense these variables can be useful as proxies of the 

conditions prevailing at the time the archive was constituted. These proxies allow for 

the reconstruction of the history of climate past. In the following sections of this chapter 
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some examples of environmental archives will be discussed. 

1.2.1 OCEAN AND LAKE SEDIMENTS 

Tons of sediment accumulates every year on ocean and lake floors. As such, they record 

�‘�—�”���’�Ž�ƒ�•�‡�–�ï�•���Š�‹�•�–�‘�”�›�ä��Scientists drill cores of sediment (Fig. 1.1) from the basin floors to 

reconstruct this history. These sediment cores are long term 

climate recorders with a low temporal resolution: Core V28-

238, a Pacific deep-sea core, for example is only 16 m long and 

contains up to 870000 years of environmental information 

(Shackleton and Opdyke, 1973). A vast number of sites have 

been cored all over the ocean floor. The proxies present in 

these marine sediment cores can be e.g.: (i) fossils of marine 

animals which carry information as temperature and 

chemical composition of the ocean (de Vernal et al., 2005; Koc 

et al., 1993); (ii) volcanic glass providing information on 

volcanic activity (McGuire et al., 1997); (iii) sediments from 

shelves and continent which inform on ocean currents, dust 

storms, submarine earthquakes, ancient coastlines (Lozano-

Garcia et al., 1993). Sediments also record the magnetic history archiving changes in the 

magnetic orientation of the poles (Verosub and Roberts, 1995).  

1.2.2 ICE CORES 

Ice in mountain glaciers and ice sheets accumulated 

from snow fall over hundreds of thousands of years. 

Consequently, these layers of ice are a rich source of 

environmental information. Scientists drill ice cores 

to investigate the environmental conditions of the 

past (Fig. 1.2). Ice cores are the only environmental 

archives which can provide climate information for 

the highest latitudes and altitudes. They have a 

higher resolution than deep-sea sediment cores: the 

ice core recovered from Dome C in Antarctica, for example, contains 740.000 years of 

 
Fig. 1.1: Sediment core 
from Dillon Reservoir. 
(Photograph by Norman 
Spahr, U.S. Geological 
Survey.) 

 
Fig. 1.2: Ice core sample taken 
from drill. Photo by Lonnie 
Thompson, Byrd Polar Research 
Center. 
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climate information preserved in 3200 m of ice (Andersen et al., 2004; Augustin et al., 

2004). Nevertheless, only a limited amount of ice cores are available. The variety of 

proxies in ice cores is greater than in other environmental archives. Proxies such as 

stable isotopes, radioisotopes, dust composition, snow accumulation rate, air bubbles, 

and volcanic ash or sulfate can provide information on air temperature, atmospheric 

circulation variations, precipitation amount, atmospheric composition, solar activity, 

and records of volcanic activity (Andersen et al., 2004; Etheridge et al., 1996; Jouzel et 

al., 1997; Langway et al., 1995).  

1.2.3 TREE RINGS 

The study which dates and analyses tree rings (Fig. 1.3) is called dendrochronology. 

Trees generally produce one tree-ring a year and record as such environmental 

information . This results in very long and detailed 

records. Trees can contain annually-resolved 

proxy information and can grow thousands of 

years. In Dalarna, Sweden, for example, a tree, 

9,950 years old, was identified (Umea University, 

2008). Proxies such as tree ring width, the number 

of cells, cell size, cell-wall thickness, wood density 

and stable isotope composition tell us something 

about ecological changes, geomorphologic 

variations, biotic effects of increasing CO2, isotopic 

variations, circulation patterns, and climate change 

(Fletcher, 1975; Luckman et al., 1997; Poussart et al., 2004; Verheyden et al., 2005). 

1.2.4 CALCAREOUS MARINE SKELETONS   

Many marine organisms form a calcium carbonate skeleton in oxygen isotopic 

equilibrium with the surrounding water (Epstein et al., 1953; Mook and Vogel, 1968) 

(Fig. 1.4). These carbonates generally show periodic growth lines. In analogy with 

dendrochronology, the discipline which dates and analyses these growth lines is called 

sclerochronology. Different organisms have different characteristics. Corals, for 

example, have more or less constant growth rates, live hundreds of years and can be 

 
Fig. 1.3:Tree rings.Girton College, 

University of Cambridge. 
http://poetry.girton.cam.ac.uk/poe
try-themes. Accessed 05/08/2010 
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sampled with a bimonthly to annual resolution. Bivalves, on the other hand, have 

varying growth rates, the short lived bivalves only live for a few years, while some long 

lived species can live up to 

400 years (Schöne et al., 

2005c). Depending on the 

growth rate, sampling 

along a growth axis 

achieves daily to yearly 

resolution. Proxies such as 

increment width, stable isotopes, and trace elements provide information about 

temperature, salinity, ocean currents, etc. (Hudson et al., 1976; Wanamaker et al., 2007; 

Zinke et al., 2004). 

1.2.5 SPELEOTHEM 

Speleothems (cave formations) are recorders of terrestrial climate (Fig. 1.5). They are 

high resolution records with well known chronologies. The temporal resolution and 

length of the different cave records vary. The 

Shanbao Cave record from China, for example, 

covers 240000 years with a temporal resolution of 

about 100 year (Wang et al., 2008), while the 

records from Kahf Dufore in Oman are shorter but 

have a temporal resolution of one year (Fleitmann 

et al., 2004). Proxies encountered in speleothems 

can be: thickness of annual growth bands which is a 

proxy of the surface precipitation (Fleitmann et al., 

2004); oxygen isotope ratio which is a proxy for the 

variation of cave temperature and rainfall 

properties; carbon isotope ratio which is a proxy for 

changes in overlying plant vegetation and 

vegetation density (Mickler et al., 2004); growth 

intervals which is a proxy to determine wetter or 

drier (Musgrove et al., 2001), warmer or cooler climate intervals; and trace elements 

 
Fig. 1.4: Cross section of an Artica islandica shell 

 
Fig. 1.5: Young speleothem from 

south Australia.  (High - resolution 
climatic and rainfall records 

from Australian speleothems . 
Ansto.  

http://www.ansto.gov.au/high-
resolution_climatic_and_rainfall_r
ecords_from_australian_speleoth

ems. Accessed: 08/06/2010) 
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which are proxies for the rainfall (Ayalon et al., 1999). 

1.2.6 HISTORICAL RECORDS 

Historical records can contain 

an enormous amount of climate 

information ( Fig. 1.6). A variety 

of data can be used such as 

agricultural statistics, records of 

snow fall, freezing and thawing, 

phonological data and sea-ice 

data. By means of this 

information climate variations 

of the last 500 years can be 

determined (Lüterbacher et al., 

2002).  

1.3 FROM NATURAL ARCHIVE TO CLIMATE DATA 

The reconstruction of climate from environmental records requests: 

i. Dating of the material 

ii. Preprocessing the proxy data 

iii.  Reconstructing past climatic conditions 

In this section, these steps will be discussed further . 

1.3.1 DATING OF THE MATERIAL 

Environmental archives are found in numerous places. Since it is not always known 

when these archives were produced, one of the most important steps in climate 

reconstruction from proxy records is dating the environmental archive. Many absolute 

dating techniques exist, the most important techniques for dating environmental 

archives are radiometric techniques, layering techniques and cross-dating techniques. 

 
Fig. 1.6: Average annual date at the beginning of the 
grape harvest 1484-1879 after (Le Roy Ladurie and 

Baulant, 1980). 
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Lundberg, 1999). The 210Pb method is the main method to date recent sediment cores 

(Dorale et al., 1992; Muir et al., 1996), for older cores the 230Th method is the main 

method (Rosenheim et al., 2007).  

1.3.1.2 LAYERING TECHNIQUES 

Layering techniques are based on the seasonal variation in the accretion rate of 

environmental archives. Amongst these layering techniques are tree-ring counts (Fig. 

1.8a) (Niklasson, 2002), growth increment counts in calcareous skeletons (Veinott and 

Cornett, 1996), counting of sedimentary layers (Hardy et al., 1996) and ice layers (Fig. 

1.8b) (Rasmussen et al., 2006).  

Fig. 1.8: Layering 
techniques. (a) Tree rings 

in the mangrove tree 
Rizophora mucronata. (b) 

Layers in an ice core 
(Blogspot  

http://randomblogn.com  
/2008_03_01_archive.htm
l Accessed 10/08/2010.) 

 

1.3.1.3 CROSS DATING 

Cross-dating techniques are based on matching patterns and characteristics amongst 

different proxy records (Fig. 1.9). In trees and bivalves for example, ring and increment 

widths or ring and increment characteristics are matched to obtain long term 

overlapping records (Cook et al., 1995; Marchitto et al., 2000). 

 

Fig. 1.9: Cross-dating. 
Archipelagos, Institute of 
Marine  Conservation 
(http://web.utk.edu/~grissino/Sit
e/images/xdate.gif 08/07/2010). 



CHAPTER 1: INTRODUCTION 

10 
 

1.3.2 PREPROCESSING THE PROXY DATA  

Since models are matched to proxies, proxies need to be as precise and as accurate as 

possible; otherwise the models, as well as the conclusions drawn, will be biased. In other 

words, the proxy data need to be treated in order to eliminate possible errors. 

1.3.2.1 GROWTH ANOMALY 

Proxies are measured on a distance scale, mostly along an axis of maximum accretion. 

Since different environmental archives grow at different speeds and since the growth 

rate may vary during its life-time, it is impossible to compare different proxy records. 

Unless a common axis can be constructed (for example a time axis) proxies from 

different records cannot be compared. Moreover, if we would calculate the annual mean 

of an environmental proxy, without correcting for this growth rate anomaly, the result 

would be biased towards the faster growing part (Wilkinson and Ivany, 2002).  

The transformation from a distance to a time axis requires information about the 

accretion rate. Because the accretion rate is generally unknown, we have to rely on 

indirect information or assumptions. Periodicity is a common assumption, because 

many proxy records exhibit a seasonal cycle.  

A number of methods which describe a periodic time series are described in literature. 

Following de Brauwere et al. (2009) these methods can be subdivided into two classes: 

the mapping methods and the periodic signal model methods. The mapping methods 

generate a time axis by assuming similarity between the proxy record and a reference 

function. Since this mostly concerns periodic time series, this reference function is often 

sinusoidal. The periodic signal model methods generate a time base by fitting a signal 

model onto the data. The periodic signal model methods use a much less stringent 

assumption than the mapping methods. In contrast to the mapping methods, the signal 

model methods do not a priori fix the reference function in advance. Instead, a model is 

proposed for this reference function with parameters which still need to be optimized.  

We will discuss three mapping methods: the anchor point method (Paillard et al., 1996), 

the correlation maximization method (Lisiecki and Lisiecki, 2002; Yu and Ding, 1998) 

�ƒ�•�†�����ƒ�”�–�‹�•�•�‘�•���‡�–���ƒ�Ž�ä�ï�•���•�‡�–�Š�‘�†��(Martinson et al., 1982a; Martinson et al., 1987; Martinson 

et al., 1982b). Three periodic signal model methods will be discussed as well: a time 



CHAPTER 1: INTRODUCTION 

11 
 

domain method (Wilkinson and Ivany, 2002), a frequency domain method (De Ridder et 

al., 2004), and a parametric time base distortion approach (de Brauwere et al., 2008). 

In the anchor point method certain observations, called anchor points, are dated. The 

intermediate dates can then be estimated by linear interpolation, thus assuming a linear 

accretion rate (Fig. 1.10). This method is the most frequently used method (Charles et 

al., 1997; Felis et al., 2000). However, in the presence of stochastic noise it does not 

perform very well, though it does perform reasonably well in the presence of modeling 

errors. The method has 3 major disadvantages: the precision is limited because the real 

maxima and minima sometimes fall between two subsequent samples (discretization 

errors, see Section 1.3.2.4), the assumption of a linear growth rate is unrealistic, the 

number and position of anchor points are arbitrarily chosen by the user and the result is 

thus dependent on this choice (de Brauwere et al., 2009).  

Fig. 1.10: Visualization of the 
Anchor point method. 
Horizontally: the proxy as a 
function of distance; vertically; 
the reference function as a 
function of time. The date of 
some observations is known and 
between these anchor points a 
linear accretion is assumed 
(dotted line). From (de Brauwere 
et al., 2009). 

 

The correlation maximization (Lisiecki and Lisiecki, 2002; Yu and Ding, 1998) also 

works with anchor points. Though, the dates assigned to these anchor points are 

optimized so that the correlation between the proxy record and the reference function is 

maximized. In Yu and Ding (1998) the number of anchor points is equal to the number of 

observations. Consequently, this method is very sensitive to stochastic measurement 

noise. In Lisiecki and Lisiecki (2002), on the other hand, the number of anchor points are 

limited; this reduces the influence to the stochastic noise greatly. In the presence of 

modeling errors the method by Yu and Ding does not perform well, while the method by 

Lisiecki and Lisiecki gives reasonable results (de Brauwere et al., 2009). In Fig. 1.11 the 

method described in Lisiecki and Lisiecki is outlined by means of a simple example.  
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Fig. 1.11: The method of Lisiecki and 
Lisiecki is outlined by means of a 
simple example. The points in series 
A need to be matched to a subset of 
point in series B so as to minimize 
the sum of the square of their 
differences. (a) Series A with n = 4 
points will be matched to a subset of 
the m = 5 points in series B. (b) Each 
point in A is subtracted from each 
point in B, these differences are 
squared and displayed in a table, 
where each column represents a 
point in A and each row represents 
a column in B. The double bordered 
boxes represent the alignment with 
the smallest sum. (c) Series A is 
aligned to series B according to the 
solution shown in the table. From 
Lisiecki and Lisiecki (2002) . 

���ƒ�”�–�‹�•�•�‘�•���‡�–���ƒ�Ž�ä���î�•���•�‡�–�Š�‘�†��(Martinson et al., 1982a; Martinson et al., 1987; Martinson et 

al., 1982b) models the distance-time relationship as a linear combination of some simple 

functions (e.g. sines or splines). As such, the accretion rate is no longer constant 

between two subsequent anchor points. By correlating the proxy record with a known 

reference function (e.g. a harmonic signal with known amplitudes, frequency and 

phase), the distance-time relationship, and accordingly the time axis, can be recovered 

(Fig. 1.12). The method is insensitive to stochastic noise and performs well in the 

presence of modeling errors. Nevertheless, the performance of the method depends on 

the choice of the reference function and the complexity of the model for the distance-

time relationship (de Brauwere et al., 2009).  



CHAPTER 1: INTRODUCTION 

13 
 

 

Fig. 1.12: Visualization of Martinson et 
al.'s method. Horizontally the proxy is 
shown as function of a distance grid; 
vertically the target function is shown as 
function of time. The accretion rate is 
expanded in a set of basis functions with 
unknown coefficients. These coefficients 
are estimated employing a least squares 
estimator. Starting from a constant 
accretion rate (diagonal gray line), the 
parametrized accretion rate can be 
estimated (diagonal black curve). 
Additionally two observations need to be 
�����š������ �~���X�P�X�� �Z�}�[�•�� �]�v�� �š�Z���� �(�]�Œ�•�š�� ���v���� �o���•�š��
observation). From (de Brauwere et al., 
2009). 

The time domain method by Wilkinson and Ivany (2002) is based on the assumption 

that the proxy record on a time axis is sinusoidal. Best-fit sine waves (amplitude, 

frequency and phase) are determined for subsequent subsets of the data, called 

windows. These windows advance by one sample each step until the entire dataset has 

been processed (Fig. 1.13). In De Ridder et al. (2007) an improvement to the method 

was suggested by taking not only the frequency, but also the phase into account. The 

performance of the method depends highly on the choice of the window width. The 

method performs well in the presence of noise, but can be sensitive to modeling errors 

(de Brauwere et al., 2009). 

 

Fig. 1.13: Visualization of the sine 
wave fitting procedure. Altered 
from Wilkinson and Ivany (2002). 

The frequency domain method (De Ridder et al., 2004) is based on a phase 

demodulation technique. The assumption here is that the signal is periodic on a time 

base and bandwidth limited. The signal on a distance scale is distorted and, 

consequently, non-harmonic. When a non-harmonic signal is transformed to the 
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frequency domain via a Discrete Fourier transform (DFT), errors, called leakage, are 

introduced in the spectrum. Due to leakage, peaks in the frequency spectrum are 

broadened. These leakage errors contain information about the distortion present in the 

distance series and thus about the distance-time relationship. The information can be 

extracted by windowing the spectrum around the first harmonic (Fig. 1.14). The 

distortion can then be calculated by translating the resulting window to the origin of the 

spectrum, applying the Inverse Discrete Fourier Transform (IDFT) and taking �‹�–�ï�• phase. 

This method performs well in the presence of stochastic noise and in the presence of 

modeling errors. Nevertheless, the sensitivity to the noise and modeling errors is mainly 

dependent on the choice of the window size.  

 

Fig. 1.14: Visualization of windowing the spectrum around the first harmonic. The 
window is represented by the full line, which covers the first harmonic. Altered from 
De Ridder et al. (2004) . 

The parametric time base distortion method (de Brauwere et al., 2008) is based on a 

�’�ƒ�”�ƒ�•�‡�–�”�‹�…���–�‹�•�‡���„�ƒ�•�‡���•�‘�†�‡�Ž���ƒ�•���‹�•�����ƒ�”�–�‹�•�•�‘�•���‡�–���ƒ�Ž�ä�ï�•���•�‡�–�Š�‘�†�ä�����Š�‡���†�‹�ˆ�ˆ�‡�”�‡�•�…�‡���Š�‡�”�‡���‹�•���–�Š�ƒ�–��

the reference function is not fixed, but modeled as a linear combination of sines and 

cosines with unknown amplitudes, fundamental frequency and number of harmonics. 

The parameterization of the signal model reduces the sensitivity to modeling errors. 

Moreover, to ensure robustness to over- and under-modeling, an automated model 

selection procedure is used to select the optimal number of parameters (de Brauwere et 

al., 2009).  
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1.3.2.2 AVERAGING EFFECTS 

Environmental archives are generally solid substrates. Whether sampling is done by 

drilling a hole and collecting the drilled material, or counting a proxy per unit surface, 

the sample always has a certain volume, or area (the volume of the drill hole or the 

counting window). As a consequence, a given sample will provide the mean value of the 

proxy over a corresponding volume or area. When the width of the sample covers a 

considerable part of the variation, the signal will be averaged and the natural signal 

variations will be systematically underestimated. This is exemplified in a simulation 

(Fig. 1.15) where the averaging effects can cause a severe bias in the measurement. 

Without a correction for these effects, the amplitude shows an apparent decline with 

time, while in reality this is not the case.  

 

Fig. 1.15: The effect of averaging for a descending growth rate. (a) Growth rate. (b) The 
true signal (full black line) and the measured signal (dashed gray line) as a function of 
time. Horizontal lines: sampled time windows.  

To our knowledge, averaging was first described by Harrington (1989) and Krantz, Jones 

and Williams (1989). A detailed investigation into averaging problems was performed in 

Goodwin et al. (2004; 2003). Observations of averaging errors are abundant in literature 

(e.g. Kennedy et al., 2001; Kingston et al., 2008). To overcome averaging effects, 

researchers select for the smallest possible samples, thereby increasing spatial and 

temporal resolution. However, working close to the detection limit will lower the signal-

to-noise ratio, and thus the accuracy of the measurement. Therefore, sampling strategies 

are adapted to the growth rate, choosing small samples for low growth rates and larger 

samples for fast growth rates (Fells et al., 2004; Schöne et al., 2005c). To our knowledge, 

corrections for averaging are not reported in literature.  
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Averaging can also occur during incorporation i nstead of during sampling. An example 

of this type of averaging occurs during amelogenesis, which is the formation of enamel 

on teeth, in mammal teeth. Different layers of enamel are deposited as a mineral poor 

matrix, that gradually accumulates minerals over an extended period of time (Hiller et 

al., 1975; Robinson et al., 1978). Consequently, the minerals in the teeth will be younger 

than the surrounding matrix . A solution to this problem presented by Passey and Cerling 

(2002). Here, the accumulation of minerals is modeled and with inverse modeling 

techniques the unaveraged signal is recovered. A second example of averaging during 

incorporation is air transport in the firn ice. Firn ice is an intermediate state between 

snow and ice in which gas transport is still possible. Consequently, the gases in the ice 

can be a thousand year younger than the surrounding ice (Barnola et al., 1991; 

Schwander et al., 1993). A solution to this is provided by inverse modeling techniques, in 

which the transport of gas in the firn ice is modeled and the gas concentrations at a 

certain time are reconstructed (Rommelaere et al., 1997).  

1.3.2.3 ONTOGENETIC EFFECTS 

For environmental archives constructed by living organisms proxy incorporation may 

also be dependent on the physiology of the organism (Poorter, 1999; Rossi et al., 2004; 

Sosdian et al., 2006). Physiological effects are often translated as representing an 

ontogenetic trend in the proxy record. Since this effect is generally largest at a younger 

�•�–�ƒ�‰�‡���‘�ˆ���–�Š�‡���‘�”�‰�ƒ�•�‹�•�•�ï�•���Ž�‹�ˆ�‡�á���–�Š�‹�•���›�‘�—�•�‰�‡�”���•�–�ƒ�‰�‡���‘�ˆ���–�Š�‡���‡�•�˜�‹�”�‘�•�•�‡�•�–�ƒ�Ž���ƒ�”�…�Š�‹�˜�‡���‹�•���‘�ˆ�–�‡�•���•�‘�–��

measured. Nevertheless, ontogenetic trends are eliminated by detrending the proxy 

record (Butler et al., 2009; Cook and Kairiukstis, 1990).  

1.3.2.4 DISCRETIZATION ERRORS 

Some discretization errors will be present in the measured proxy record. This means 

that the real maxima and minima might not be measured, because only a limited number 

of samples are taken. This is shown in Fig. 1.16�á���™�Š�‡�”�‡���–�Š�‡���î�–�”�—�‡�ï���’�”�‘�š�›���•�‹�‰�•�ƒ�Ž�����„�ƒ�…�•���Ž�‹�•�‡����

and the measured proxy signal (gray line) are plotted as a function of distance.  

Seasonality is generally estimated from differences between maximum and minimum 

values in the data set (Wilkinson and Ivany, 2002). Therefore, when the seasonal range 

of an environmental record is calculated, discretization often leads to under-

representations. Moreover, when one is interested in proxy values at a certain time 
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instance, it is not recommendable to perform a simple linear interpolation. In Fig. 1.16 

the gray line here is linearly interpolated in between two samples, it becomes 

immediately obvious that the gray line is not a good representation of the black signal in 

between two samples. To eliminate these errors, there are two types of solutions.  

The first solution is called band-limited interpolation. The amplitude and the phase of a 

signal can be reconstructed when more than 2 samples per period are measured 

(Shannon theorem). This reconstruction is performed by evaluating the proxy record at 

a denser uniform grid in the frequency domain. The disadvantage of this method is that 

it is very sensitive to stochastic noise. When the signal-to-noise ratio is low, or the 

number of samples is low, the method does not perform well. 

Fig. 1.16: Discrete sampling. The continuous proxy signal (full black line), and the 
discretized proxy signal ( full gray line) on a distance scale.  

The second approach is fitting a signal model onto the proxy record. Methods which fit a 

harmonic signal model on proxy data are described in Section 1.3.2.1. These methods 

are much less sensitive to the noise. 

1.3.3 RECONSTRUCTING PAST CLIMATIC CONDITIONS 

Proxies are indirect measures of the climate; therefore, a calibration of the different 

proxies with instrumental data is necessary.  

Laboratory experiments have been designed to study growth and proxy incorporation of 
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Most relationships between the environmental parameter and proxy are non-linear 

(Cloern et al., 1995). Nevertheless, the most commonly used technique to establish a 

relationship between an environmental parameter and a possible proxy is linear 

regression (e.g. Klein et al., 1996; Wanamaker et al., 2008). Nonlinear techniques have 

been less used, because they are much more difficult to develop. In some papers an 

exponential or an inverse exponential relationship is assumed (e.g. Freitas et al., 2005). 

The most used nonlinear techniques to reconstruct environmental conditions are 

Artificial Neural Networks (Guiot et al., 2005; Juillet-Leclerc et al., 2007; Woodhouse, 

1999). However other techniques such as Support Vector Machines and Manifold 

Learning can also be used (Bauwens et al., 2010b). 

Once the models are tuned, they can be used to reconstruct the climate. Climate 

reconstruction can be validated with independent evidence. In historical records, for 

example, natural disasters are often well documented and consequently can be used to 

validate the results (Linderholm and Molin, 2005; Mann et al., 1998; Stott et al., 2001). 

Independent proxy records, for example terrestrial is marine records, can also be used 

for validation purposes (Baales et al., 2002; Jones et al., 2009). 

1.4 WHAT WILL BE DISCUSSED IN THE THESIS 

This thesis focuses on in the preprocessing step of proxy data. Four problems are 

addressed: the growth anomaly, the averaging effect caused by sampling, the 

discretization errors, and the handling of non-uniform samples. Throughout this thesis, 

averaging caused by sampling will be referred to as averaging. Furthermore, the 

averaging effects are assumed to be in one direction only, that is, the growth direction of 

the axis on which the measurements are performed (Fig. 1.17). Furthermore, the sample 

window is assumed to be rectangular with two negligible dimensions (height and depth) 

and one non-negligible dimension (width). Typical examples for this type of samples are 

the quadrants in dendrochronology (Verheyden et al., 2005) or ice cores or sediment 

cores (Augustin et al., 2004). However, the conclusions of this study also hold for a wide 

variety of other sample shapes. In principle this method can be applied to any proxy 

record, measured with a sample size that is large relative to the variation that needs to 

be reconstructed. Furthermore, the proxy signal on a time scale is assumed to be 

harmonic. This assumption is justifiable, as environmental archives often exhibit a 
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2.1 INTRODUCTION 

Environmental archives are generally solid substrates. Whether sampling is done by 

drilling a hole or counting a proxy per unit surface, the sample always has a certain 

volume (the volume of the drill hole or the count space). As a consequence, a sample will 

give the mean value of the proxy over a corresponding volume. To our best knowledge, 

the volume of the sample has always been neglected till now. However, this is only 

allowed when the width of the sample is small with respect to the variation that needs to 

be reconstructed. Researchers choose intuitively the smallest possible samples; 

however, working near the detection limit will lower the signal-to-noise ratio, and thus 

the accuracy of the measurement. On the other hand, when the width of the sample 

covers a considerable part of the variation, the signal will be averaged and the variations 

will systematically be underestimated. This is exemplified in a simulation, shown in Fig. 

2.1. As can be seen in this illustration, averaging effects can cause a severe bias in the 

measurement. Without a correction for such effects, the amplitude shows an apparent 

decline with time, while in reality this is not the case. It is clear that the problem is an 

underestimation of the amplitude of the signal due to averaging.  

 
Fig. 2.1: The effect of averaging for a descending growth rate. (a) Growth rate. (b) The 
measured signal (dashed gray line), the true signal ( full black line) and the samples 
(horizontal lines).  

Because models are matched on proxies, proxies need to be as precise and as accurate as 

possible; otherwise the models will be biased, as well as the conclusions drawn. In this 

chapter a non-parametric calibration method will be presented which reduces averaging 

errors in the measurements. In a parametric method the data is described by a number 

of parameters; this number of parameters is smaller than the number of data points. In a 
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non-parametric method the data is not described by parameters. 

The outline of this chapter is as follows. In Section 2.2 a simulation with a linear growth 

rate will give a better insight into the problem and will lead to a correction for the 

averaging effect. This correction will then be tested on simulated data with a non-linear 

growth rate in Section 2.3, and finally its effectiveness will be illustrated on real 

mangrove and ice core data in Section 2.5.  

2.2 LINEAR GROWTH RATE 

In this section averaging is outlined by means of a simple example in which the 

simulated proxy signal is equidistantly sampled, is harmonic and has an integer number 

of periods within the measurement window on a time scale. Fig 2.2 shows a 

transformation from a distance scale (horizontal)  to a time scale (vertical) , where the 

growth rate is constant (diagonal). For a constant growth rate, the transformation of 

equidistant data on a distance scale results in equidistant data on a time scale. This 

means that a harmonic signal on a time scale will still be harmonic on a distance scale. 

Consequently, averaging on the time and distance scale is identical. 

 
Fig. 2.2: Conceptual graph showing the transformation over a linear growth rate from a 
distance scale to a time scale. The measured signal (dashed line), true signal ( full line) 
and samples (horizontal / vertical lines). 

In Fig. 2.3a the effects of averaging in the time domain can be seen, where the true signal 

(full black line) and the measured signal (dashed gray line) are plotted as a function of 
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When sampling is non-overlapping the sampling rate can only be as fast as the inverse of 

the sample width. In terms of the Shannon theorem, this means that the highest 

frequency that can be reconstructed, the Nyquist frequency, will be one-half of this 

sampling frequency. When sampling is overlapping there are more samples. More 

samples mean a higher sampling frequency, and therefore a higher Nyquist frequency. 

When the Nyquist frequency exceeds the frequency that coincides with the first zero of 

the sinc-function (physically this is the frequency at which the sample width overlaps 

one period exactly), as in Fig. 2.8a, another limitation will take over, as will be explained 

next. In reality all measured proxies are disturbed by noise. When a noisy frequency 

spectrum is corrected, the signal-to-noise-ratio of the signal stays the same, since we 

multiply the noise as well as the noiseless signal by the same filter value. Due to the 

shape of the filter (Fig. 2.8b) white noise will be transformed into colored noise.  

 
Fig. 2.8: Noiseless signal (a) noisy signal (b). The spectrum of the true signal ( full black 
line + markers), the spectrum of the measured signal (dashed dark gray)  and the filter 
(sinc-function)  (dash-dotted light gray) as a function of frequency. 

Fig. 2.8b is similar to Fig. 2.8a, but with signal-noise ratio of 5. Note that the component 

at the highest frequency (second peak) can hardly be distinguished from the noise (Fig. 

2.8b). In terms of the correction this means that these high frequency noise components, 

when multiplied by the inverse of the sinc-function, will be blown out of proportion. As a 

consequence, frequency components which are higher than a certain threshold value 

cannot be reconstructed and, therefore, will be multiplied by one. This threshold value is 

the frequency that coincides with the first zero of the sinc-function; physically this is the 

frequency at which the sample width overlaps one period exactly. Intuitively, this 

restriction can be illustrated  as follows: if the sample width is, for example, equal to one 
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compressed sine and during transformation the signal is stretched to a normal sine, 

resulting in a periodic signal on the time scale. Not only is the signal stretched, but also 

are the samples. As a consequence, the averaging effect is larger near the end of the 

signal on both the time and distance scales. When the effects of averaging are not taken 

into account, it seems as if the measured signal is fading, due to some physiological or 

environmental factors, and thus may be misinterpreted.  

 
Fig. 2.10: Conceptual graph showing the transformation over a non-linear growth rate. 
The measured signal (dashed line), the true signal (full  line) and the samples 
(horizontal lines) as a function of distance and time.  

In contrast to the case with the linear growth rate, averaging on a time and a distance 

scale is not identical in the case of a non-linear growth rate. Therefore, a choice between 

a correction on distance data or time data has to be made. The filter of interest is a sinc-

function, which only depends on the sample width. The measured data have to be 

multiplied by the inverse of this filter to reconstruct the true value. This worked for 

harmonic data with uniform samples, but what about non-harmonic data (distance data) 

or non-uniform samples (time data)? Distance-samples (samples on a distance scale) are 

of identical width, and as the filter only depends on the width  of the sample, one single 

filter can correct all the samples. The difficulty with distance data is that it is non-

harmonic, even when the time data is harmonic. The difficulty with  time-samples 

(samples on a time scale) is that they are of non-identical widths; this implies that each 

time-sample corresponds to a different filter in the frequency domain. In this case a 

time-varying filter is needed, which corrects every time-sample in the frequency domain 










































































































































































































































































































