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Nonparametric identification of linear time-varying systems 

Péter Zoltán Csurcsia 

Engineers and scientists want a reliable mathematical model of the observed 
phenomenon for understanding, design and control. System identification is a tool 
which allows the user to build models of dynamic systems from experimental noisy 
data. This is an interdisciplinary science which connects the world of control theory, 
data acquisition, signal processing, statistics, time series analysis and many other 
areas.  

In modeling and measurement techniques it is commonly assumed that the 
observed systems are linear time-invariant. This point of view is acceptable as long as 
the time variations of the systems are negligible. However, in some cases, this 
assumption  is  not  satisfied  and it  leads  to  a  very  low accuracy of  the  estimates.  In  
those cases, advanced modelling is needed taking into account the time-varying 
behavior of the model. In this thesis a very important class of systems, namely, the 
linear time varying systems are considered. 

The importance of these systems can be seen through some application 
examples. A good example from the electrical field is, for example a non-
compensated transistor (in an operational amplifier) with a shifting offset-voltage: the 
higher the temperature, the higher the offset drift. The offset variations influence the 
system parameters and result in a time-varying behavior. The changing bio-
impedance in the heart is also a good example from biomedical sciences. In 
chemistry, an interesting example can be the impedance changing due to the pitting 
corrosion in metals. 

It is already shown that LTV systems can be described by a two dimensional 
impulse response function. The challenge is that the time-varying two dimensional 
impulse response functions are not uniquely determined from a single set of input and 
output signals – like in the case of linear time invariant systems. Due to this non-
uniqueness, the number of possible solutions is growing quadratically with the 
number of samples.  

To decrease the degrees of freedom, user-defined adjustable constraints will be 
imposed. This will be implemented by using two different approaches. First, a special 
two dimensional regularization technique is applied. The second implementation 
technique uses generalized two dimensional smoothing B-splines. Using the proposed 
methods high quality models can be built.  

This thesis involves the theoretical and implementational questions of the time-
varying system identification. 
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PREFACE 

„It is not because things are difficult that we do not dare, 
it is because we do not dare that they are difficult.” 

Lucius Annaeus Seneca  

 

 

 

I  started  my  PhD  research  in  the  fall  of  2010  with  Prof.  István  Kollár  at  the  
Budapest University of Technology and Economics, Department of Measurement and 
Information Systems.  

In 2011, during the Spring Doctoral School on Identification of Nonlinear 
Dynamic Systems organized by the Department of Fundamental Electricity and 
Instrumentation (ELEC) at the Vrije Universiteit Brussel, I got a great opportunity to 
collaborate with ELEC as a PhD researcher under the supervision of Prof. Johan 
Schoukens. 

From 2011 on I focused on different smoothing techniques. The basic idea was 
to use them for the identification of linear time-varying systems. As the result of this 
research, I developed a modified B-spline technique, which can be used to estimate 
time-varying systems in the time domain. 

In order to follow the fashion in the system identification, from 2013 on I studied 
and analyzed the regularization technique (as a special viewpoint of the Bayesian 
statistical framework). In one and a half years I was able to develop a complex 
methodology to estimate time-varying systems. As a surprising result, the newly 
developed technique beats the B-spline technique in terms of performance. For that 
reason, this thesis discusses first the regularization approach, then the B-spline 
approach. 
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The reader is expected to have a background in engineering and to know the 
basics of signal processing, systems and signals, linear algebra and statistics.  

To support the reader, the most important and relevant notions related to the 
systems and signals including the basics of the linear time-varying systems and a 
brief introduction to system identification are provided in the first part 
“Preliminaries”. 

The reader will learn the basics of time-varying systems, the regularization 
techniques and that B-splines can be used for system identification purposes as well. 

To guide the reader, simple and straightforward steps will lead to the proposed 
estimation methods starting from simple models and basic assumptions. The long and 
complicated derivations and proofs can be found in the appendices. 

This thesis involves questions of theory and of implementation of time-varying 
system identification and intended to provide ready-to-use solutions for the 
practitioners as well. Using the proposed methods high quality models can be built. 

 

I hope You, the reader of my thesis will enjoy my work. 

 

Brussels, July 3rd, 2015 

Péter  
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 Objectives 1.1

The time-varying systems are split into two classes. The first class consists of 
systems which are inherently time-varying. It means that the time-variations are the 
natural part of the observed phenomenon and in many cases they cannot be 
(significantly) controlled. A well-known example for this class of systems is aging.  

In the second class, time variations depend on one or more special external 
variables (in most cases they are the scheduling variables). A good example can be 
for instance a tower crane, where the cable length can vary at any time resulting in a 
time varying behavior. The length of the cable is set by the operator of the machine.  

This  thesis  mainly  focuses  on  the  first  class  of  the  systems,  but  under  some  
conditions the provided methods can be applied for the second class as well.  

A further distinction can be made between the cases, where the time variations 
follow a periodic behavior or there is no periodicity. The systems with no periodic 
time-varying behavior are the arbitrary time-varying systems. In this thesis the – 
general – arbitrary time-varying situation is studied.  

The common problem in the above-mentioned application examples is that the 
system dynamics can change during the measurements. Think of the tower crane in 
real operating mode: the cable length (and even the weight of the load) can change 
several times during a measurement. The challenge is to build accurate models which 
can track the varying dynamics of these systems, while using as few experiments as 
possible.  

In this thesis, nonparametric models are considered. It is already shown that the 
linear time-varying systems can be nonparametrically described in the time domain 
with a two dimensional impulse response function. However, due to the high number 
of parameters and the underdetermined system of linear equations, it is barely used in 
practice. Let us take a simple example: a measurement of a time-varying system 
contains N samples, which are (in time) equidistantly collected. But during the 
measurement – at these sample times – the system can have N different dynamics (in 
time domain they can be represented by impulse response functions). If we assume 
that the length of each instantaneous impulse response function is L, then we have NL 
different parameters to be estimated. On the other hand, we have only N equations 
(measured samples). Using nonparametric modeling, these equations will have very 
high degrees of freedom. This means that we have infinitely many solutions, which 
are equally possible.  

As a consequence, time-varying systems cannot be uniquely determined from a 
single  set  of  input  and  output  signals  –  unlike  in  the  general  case  of  linear  time  
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  Chapter 2
Signals and systems 

Signals play a key role in understanding the observed phenomenon and in 
designing experiments. From the viewpoint of engineering, this observation is 
basically a measurement process consisting of two steps. In the first step information 
is collected by interchanging signals. In the second step the acquired information is 
analyzed and processed. The information related to the observed phenomenon is 
delivered by signals. This phenomenon can be described by the interactions of 
signals. When observing, we – directly or indirectly – interact with the observed 
object which is further referred to as the system. 

In this chapter the class of observed systems and signals are defined. A detailed 
description about the signals, systems ( [24], [25]) and processing techniques ( [26], 
[27]) are beyond the scope of this thesis. 

 Signals 2.1

The notion of “signal” can be defined in many different ways such as in [28], 
where an engineering definition is given.  

DEFINITION 2.1 A signal is a measurable quantity which provides information on the 
status of the observed phenomenon (system) or influences the properties of a system.  

There are several possibilities to describe signals. In this work the main 
description is done by statistical and probability properties. Unless otherwise stated, 
signals (and systems) are described mainly in the time or alternatively in the 
frequency domain [29]. In this section a time domain based description is given.  

Next, some important definitions and assumptions will be introduced.  
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There is another similar approach to define somehow a transfer function. When 
the time variations are slow, during a short observation time the system can be well 
approximated by a time invariant model. Then it is a common practice to describe the 
system as a series of LTI systems. In these techniques, at each measurement time a 
“frozen” LTI model is built. These LTI systems are called the frozen instantaneous 
systems. These models can describe the time-varying behavior quite well [39], [44] 
[50], [51], [52].  

The drawback of these methods is that there can be a quite significant time 
variation during a single experiment, such that an LTI model is not sufficient to 
describe the system’s behavior.  

DEFINITION 2.21 The transfer functions obtained by using “frozen” coefficients are the 
frozen transfer function (FTF) [41].  

A longer description about the instantaneous and frozen approaches can be found 
in Chapter 10. 

There is also a recently published similar approach in [53]. This method uses a – 
one dimensional – regularization technique (see Chapter 5). In the referred work a 
sliding window is used over different moments. The estimation is done by an 
extended kernel function (see Chapter 5). This is quite similar to the above-
mentioned frozen LTI approaches.  

It is also possible to use different recursion techniques to track the changes of the 
parameters such as in [54], [55], [56]. These techniques typically use a kind of sliding 
window with the assumption that the system is time invariant inside that window. 
The most common techniques use time-varying ARX, ARMAX [57] parametric 
models.  

Related to the parametric representations, some authors expand the time-varying 
coefficient onto a finite set of basis sequences, wavelets [58], [59]. There are some 
interesting wavelets techniques which provide (directly) a good estimation of the 
impulse responses [60], [61].    

There are some distinguished methods where they build a model from the 
complete measured time window and considered frequency band at once using 
difference or differential equations such as in [62], [63], [64], [65]. The basic idea of 
this nonparametric estimation (see Section 3.1.2) is that the parameters need to be 
estimated at once which is similar to the main concept of this thesis. Based on this 
concept two proposed methods (using regularization and B-splines) will be shown in 
this thesis. 

There are some alternatives in control and automation, where they prefer to use a 
state space representation instead. These studies basically describe the effect of the 
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In the following sections, each of these steps will be explained. 

3.1.1 Experiment design and data acquisition 

The experiment design plays an important role in the identification procedure. It 
makes it possible to collect valuable information (data) about the system. This 
measurement allows the user to build a model.  

If the experiment is not well designed, then it cannot be guaranteed that all the 
required information can be extracted from the measurement. Therefore it is 
important to pay enough attention to this step.  

The user has to select an excitation signal that is as close as possible to the real 
experimental conditions, covering the full (frequency) band of interest.  

If the excitation signal is carefully chosen – persistent – then the measurements 
based on this signal provide sufficient information on the observed system to identify 
it. 

The experiment design has many aspects such as the selection of measurement 
devices, questions regarding to the environment and signal design. The latter will be 
detailed in Chapter 4. 

3.1.2 Selection of the model type 

When the data (information) are collected from the observations, a precise model 
type and its structure need to be chosen. This model is supposed to describe the 
observed system quite well. Although at first glance it seems to be easy, although 
there is no doubt that it is the most difficult step [38]. Here some important model 
choices follow. 

3.1.2.1 White, black and gray box modeling  

Sometimes it is possible to use prior information about the system and about its 
internal structure. In this case we are talking about white box modeling – or physical 
modeling.  These  white  box models  –  typically  –  rely  either  on  the  laws of  applied  
sciences (physics, chemistry, engineering, etc.) or on the known physical structure of 
the system. The main disadvantage of this approach is the lack of flexibility: the 
model building process needs to be done for every new problem and it can lead to 
complicated structures.  

When no prior information is available or – it is not taken into account – then we 
are talking about black box modeling. In this case the model is strictly built from the 
observations – such as the input and output measurements. Black box models are – in 
general – more flexible than white box models and they can be used to identify 
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various kinds of systems. The main issue with black box models is that the number of 
necessary parameters can grow dramatically, resulting in a higher computational load 
and storage capacity. 

There is an intermediate step between white and black box modeling. When 
some but not all preliminary knowledge is available or used, then we are talking 
about grey box modeling. The built model is based on both prior information and 
experimental data. Grey box modeling is also known as semi-physical modeling [75]. 

3.1.2.2 Linear and nonlinear models 

Almost every system is nonlinear in real life. The difficulty with these systems is 
that there is no unique solution to describe them. It is due to the many different types 
of nonlinear systems with different behaviors. Consequently, it means that the 
modeling must be extensively involved and – unfortunately – universally usable 
design tools are not yet available.  

For these reasons, nonlinear systems are often approximated by the models of 
linear systems, because this is often a reasonable approximation, and LTI theory is 
well understood. This model is usually closer to real-world phenomena, and it 
simplifies calculations. In most of the cases, it is reasonable to assume this because in 
many cases the linearities are dominating – and the nonlinearities are negligible [72]. 

3.1.2.3 Parametric and nonparametric models 

When a system is described with a model which has a (very) limited number of 
terms, the model is called parametric model. For instance, a parametric model is used 
when a system is described by its poles and zeros. 

In case of a nonparametric representation, the system is described by 
measurements of a system function with high number of samples – in theory with 
infinite number of samples [72]. Such kind of nonparametric model is, for instance, 
the impulse response function or the frequency domain equivalent, the frequency 
response function (FRF).  

In the second part of this chapter a brief overview will be given to the estimation 
of IRF and FRF using classical system identification methods. 

3.1.2.4 Estimation of the model parameters 

Once the type of model is chosen, the actual values of the parameters have to be 
determined with respect to the collected (available) data. In order to assess the model 
quality, an objective criterion (function) is used which is a measure of the goodness 
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of the fit. For this performance check-up there are many well-known statistical 
methods accessible such as the maximum likelihood (ML) framework.  

In the ML framework, the probability density function (pdf) of the observation 
noise [37] and the excitation signal is assumed to be known exactly [76]. In the 
particular case when the disturbing (observation) noise has white Gaussian 
distribution [30] with zero mean and a certain variance, the ML estimation method 
boils down to a least squares (LS) problem [77]. 

3.1.2.5 Validation of the estimation 

Once the model parameters are estimated, the evaluated model must undergo a 
validation test. In this phase the model must be able to predict the behavior of the 
system well under new conditions. When the model cannot predict it, then there are 
some modeling errors left. Several techniques are available to perform this check-up 
[57], [78]. 

The most used method is the cross-validation technique. In this case the whole 
dataset is split into two subsets: estimation and validation sets. The estimation set is 
used to estimate the model and the validation set is used to verify whether the model 
predicts  well  the  behavior  of  the  system.  When  the  modeling  error  is  lower  than  a  
certain value, it is needed to step back to a previous stage. 

 An overview about estimation of 3.2
nonparametric models 

In this section only linear time-invariant estimation methods are taken into 
account. An overview about time-varying system identification will be given later on. 

3.2.1 Transient analysis 

Due to its simplicity, in industrial practice it is still one of the most widely 
known identification method ( [79], [80]). In this case the excitation signal is strictly 
limited to the typical unit step function or to the unit impulse function (see Chapter 
4). The output observation constitutes the model [38]. This is a simple continuous 
time model that describes the main time constants, the static gain, the delay and the 
system dynamics.  

With this method typically – a parametric transfer function of – process models 
can be estimated for designing controllers [81]. An example of a first-order plus time 
delay process model is shown here [80] which has the following form:  
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  Chapter 4
Experiment design 

In the case of a well-designed experiment – by measuring the output of a system 
– it is possible to maximize the amount of the extracted information from a dynamic 
system. This extraction is performed by system identification methods. In this 
particular situation – as in many cases in real-life –, we have the possibility to choose 
the excitation signals – with the limitation that the excitation signal should be in the 
permitted amplitude range. In this thesis some simulation and measurement examples 
are shown to demonstrate the efficiency of the proposed methods using noise and 
random phase multisine excitations. In this chapter some of the most common 
excitation signals – including the random phase multisine – are briefly discussed. 

A detailed description about excitation signals and experiment design can be 
found – for instance – in [72], [84]. Excitation signals can be rapidly and easily 
generated by the recommended user friendly toolbox [73]. The questions regarding 
the instrumentation are beyond the scope of this thesis.  

 Introduction 4.1

Before introducing some typical excitation signals, in this section some 
important quality measures are defined which are important to classify the excitation 
signals.  

The first important notion is the persistency of excitation (PE) [85]. This gives an 
indication of the “richness” of the signal. Our expectation from the excitation signal 
is that it should allow us to give access to as many parameters of the observed system 
as possible. The goodness of the estimation depends strongly (among others) on the 
order of the system and on the persistency order of the excitation signal.  
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