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Notation

Symbols

Symbol Description

a Parameter vector of the denominator of a ra-
tional form describing the transfer function

A Cardinality of the amplitude set
b Parameter vector of the numerator of the ra-

tional form describing the transfer function
bi Signal related to the ith orthonormal basis

vector
b�̂ Bias of the estimated parameter vector
c Parameter vector of a polynomial static non-

linearity
ci it h n-tuple
c Cycle in the graph
C�̂ Covariance matrix of the estimated para-

meter vector
det(�) Determinant of a matrix
ei Signal related to the ith elementary cycles in

the signal generation graph
ex Energy of the signalx
E[�] Expected value operator
f Variable representing frequency
f s Sampling frequency
f max;x Frequency of the highest non-zero frequency

component in the spectrum ofX
f z Probability distribution of the measurement

vector
f 0 Base frequency of the multisine
Ff�g Fourier transform

Continued on next page
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Continued from previous page
F� 1f�g Inverse Fourier transform
g(t) Impulse response at time instancet
G(f; � ) Frequency response at frequencyf
G� Operator of a SISO LTI system
G(X ; V) Directed graph with the node setX and ver-

tices setV
j Imaginary root of � 1
M Fisher information matrix
M n

SA
Set containing all multi-sets of length n that
can be made with the elements ofSA

modP Modulo P operator
n Memory length of a �nite memory model
nx Stochastic noise signal related to the determ-

inistic signal x
N (0; � 2) Gaussian distribution, with zero expected

value and � 2 as variance
N f Number of frequency components in the

multisine
N Set of natural numbers
O(�) Order operator
p Period of the input signal
P Number of samples in a period
Pm Set of permutations that can be generated

with the multi-set m
p Path in the graph
px Power of the signalx
R Set of real numbers
sx Sequence of overlapping tuples of the signal

x
si Signal related to the ith uniquely non-zero

symmetric vector
Su Set of input signals
Sy Set of output signals
SA Amplitude set
S� Chain matrix
t Variable representing time
ts Sampling time
T Duration of the experiment
u Input signal
v Internal signal
v( � ; k) The kth element of the dispersion function

Continued on next page
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NOTATION

Continued from previous page
VD (�u) D-optimal information measure as a function

of the samples of the input signal
(V (�u); S) Optimization problem with V as cost func-

tion and S as search space.
V Set of vertices
ws;f Squarelike signal with frequencyf and pause

duration s
x Arbitrary signal
�xm Vector containing the subsamples of the vec-

tor �x for the subsampling factor m
x(t) Value of the signal x at time instance t
X Set of nodes
X Complex spectrum of the signalx
X 0 Space of normalized frequency vectors
X 1 Space of convex coe�cients
X 2 Elementary convex space
X 3 Uniquely non-zero symmetric space
X k The kth Fourier coe�cient of the periodic sig-

nal x
X (f ) Value of the complex spectrum X at fre-

quency f
X �̂ MSE matrix of the estimated parameter vec-

tor
�x Finite vector containing the samples of x
y Output signal
y(�; � ) SISO model with parameter vector �
y(u; � ) Output of the model with parameter vector

� for a given u
�z Measurement vector containing the meas-

ured samples used for the estimation
Z Set of integer numbers
� l ; � l Linear parameters of the multisine
 e Elementary design vector
 �

e Normalized elementary design vector
 s Uniquely non-zero symmetric design vector
 �

s Normalized Uniquely non-zero symmetric
design vector

� Model parameter vector
� 0 Tue model parameter vector
�̂ Estimated parameter vector
� Multiplicity vector/ frequency vector

Continued on next page
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Continued from previous page
� x Frequency vector of the signalx
� �

x Normalized frequency vector of the signalx
�� Transpose of a vector or matrix
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NOTATION

Acronyms

Acronym Description

OID Optimal Input Design
AS Active Set
IP Interior Point
SQ Sequential quadratic
FD Frequency Domain
TD Time Domain
LTI Linear Time Invariant
SISO Single Input Single Output
i.i.d. independent identically distributed
MSE Mean Square Error
FIR Finite Impulse Response
IIR In�nite Impulse Response
�t fast Fourier transform
i�t inverse fast Fourier transform
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Chapter 1

Introduction

In this chapter, the di�erent aspects of the optimal input design
(OID) problem are brie�y introduced in order to provide the con-
text necessary to address the central research question of this
thesis. A more technical and formal introduction of the import-
ant concepts of system identi�cation and optimal input design, is
postponed to the next chapter.

1.1 Context
To grasp the massive world around us, our mind uses abstract no-
tions to decompose the world in smaller, understandable blocks.
In engineering these abstract building blocks are referred to as
systems. In the most general sense, a system can represent any
relationship between two or more (time) varying quantities. The
quantities that are considered a cause are called the inputs of the
system. The quantities that are considered a result are called the
outputs of the system.
A mathematical representation of a system is called a model. A
model consists of a model structure and a set of model parameters.
The model structure corresponds to the equations that describe
the input-output relationship of the system and contains the qual-
itative information about the system. The model parameters are
the numerical values inside these equations and correspond to the
quantitative information about the system.
The goal of system identi�cation is to construct a model that
describes the behavior of a system based on measurement data
that were obtained during an experiment. The full process of
constructing such a model is called the identi�cation of the sys-
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tem. Once a system is identi�ed, the resulting model can be used
to better understand the inner workings of the system, to predict
future behavior or to direct the system to a favorable future state.

1.2 Four steps of system identi�cation
In general, the system identi�cation process consists of four im-
portant steps. The experiment design, data acquisition, model
estimation, and model validation. Each of these steps is equally
important to get an accurate model of the system. In this work
the focus will be on optimal input design which is a sub�eld of ex-
periment design. However, to understand the consideration made
for the experiment design, it is important to have a notion about
the other steps in the identi�cation process.

Experiment design

The �rst step of the identi�cation process is to design the ex-
periment that is used to collect the measurement data. During
this design both practical and statistical considerations need to
be made. Practical considerations related to how the experiment
is performed and are strongly connected to the physics of the ex-
periment. As a result, the practical aspects of the design or very
�eld speci�c. The statistical considerations relate to the expected
information gained from the experiment and strongly depend on
the processing techniques used during the estimation of the model.
Therefore the statistical aspect of the design can be studied in a
more general and abstract fashion.

Data acquisition

During the experiment, the inputs and outputs of the system need
to be measured. This is done through digital sampling of electrical
signals that are proportional to the measured quantities. To en-
sure that the obtained samples correctly represent the observed
quantities, it is important to carefully choose the sampling fre-
quency and acquisition time of the signals, in order for the data
to correctly represent the signals.

Model estimation

Once the data is acquired, identi�cation of the model consists of
two distinct steps. First the model structure needs to be selected.
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1.3 Aspects of the OID

This can be done based on prior knowledge about the system, or
by performing a model selection step. Once the model structure
is �xed, the model parameters need to be determined.
The numerical tool used to derive the parameter values of a model
from the measurements is called the estimator. The values com-
puted by the estimator are called the estimates of the parameters.
Depending on the assumptions made about nature of the meas-
urement data, di�erent estimator are used. Commonly used es-
timators are the linear least squares, the maximum likelihood, the
errors-in-variables, and the prediction error estimate.
Since the measurement data is corrupted by noise, di�erent meas-
urements of the same system that are processed by the same
estimator can result in di�erent estimated values for the para-
meters. Therefore, the estimates provided by the estimators are
considered stochastic variables. The quality of an estimator is
evaluated based on the average behavior of the estimates it pro-
duces. Ideally, the di�erence between the estimated parameters
and the true system parameters is as small as possible.

Model validation

Through the study of the stochastic properties of the estimator,
the quality of the estimated parameters can be evaluated on aver-
age. However, no guarantees can be given about the performance
of the estimated values of one single experiment. Therefore, it is
important to ensure the quality of estimated model with a valid-
ation step. During model validation, the predicted output of the
model is compared to new measurement data that was not used
in any of the previous identi�cation steps. Based on how good the
prediction of the model corresponds to the measured behavior of
the system, the quality of the model is assessed.

1.3 Aspects of the OID
Designing a good experiment is an important step in the system
identi�cation process, since the quality of the estimated model
strongly depends on the quality of the experiment data. One as-
pect of the experiment that can be optimized is choice of the input
signal that is used to excite the system.
The �eld of optimal input design considers the problem of �nding
an input signal that leads to the most informative experiment,
given some prior knowledge about the system, while respecting
the physical limitations of the measurement setup.
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Mathematically, the OID problem can be formulated as an optim-
ization problem. The cost function of this problem is determined
by the choice of the estimator, the information measure, and the
model structure. The search space of the optimization problem
is determined by the class of input signals and the limitations on
the experimental cost.
In the following subsections each aspect of the OID is explained in
more detail and its relation with the corresponding optimization
problem is further clari�ed.

1.3.1 Class of estimators

The estimated parameters are stochastic variables of which the
probability distribution is shaped by the estimator, the model,
the input, and the measurement conditions. An estimator is clas-
si�ed based on the stochastic behavior of its estimates. Depending
on the assumptions made about the identi�cation steps di�erent
measures are used to quantify this stochastic behavior.

Bias and variance

Under the assumption that the system can be completely captured
by the proposed model structure, it is possible to express the qual-
ity of the estimator based on the bias and covariance of the estim-
ated parameter values [32, 66]. The bias is the di�erence between
the expected estimated parameters and the true system paramet-
ers, while the covariance expresses the variability of the estimated
parameters around this expected value. The mean-square-error
between the estimated parameters and the true system paramet-
ers is completely determined by these two quantities.
It is common in the �eld of OID to assume that the estimator
is unbiased, leaving only the covariance matrix of the estimated
parameters as a measure to evaluate the estimator [47]. Given
two unbiased estimators, the �rst is considered better than the
second if the uncertainty region of the �rst is completely inside
the uncertainty region of the second. Mathematically this can be
expressed as strict inequality between the covariance matrices.

Fisher information matrix

Since the OID design takes place before the actual experiment, the
sample covariance matrix of the estimates is unknown. Therefore,
a theoretical expression for the covariance matrix is needed. To
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1.3 Aspects of the OID

obtain such an expression, it is common to assume that the estim-
ator is asymptotically e�cient. This means that the covariance
matrix of the estimated parameter converges to theinverse of
Fisher information matrix [32, 66, 47] if the number of samples
goes to in�nity. The Fisher information matrix has the advantage
of being independent of the actual realization of the noise on the
measurements and the estimated parameters generated by the es-
timator. As a result, the Fisher information matrix allows for the
prediction of the performance of the estimator, without the need
of performing any experiment.

1.3.2 Information criterion
For an unbiased and e�cient estimator, the simplest OID prob-
lem is equivalent to �nding the input for which some measure of
the Fisher information matrix is maximal. However, �nding the
largest matrix is not a straightforward task since, a matrix is a
higher dimensional object. Moreover, the order relation between
positive de�nite matrices is only partial, meaning that not every
pair of matrices can be ordered [7].
To resolve these issues, a scalar function of the Fisher information
matrix is optimized instead. Each choice of the scalar function
corresponds to a di�erent information criterion. Deciding which
information criterion to use, is strongly related to the envisioned
purpose of the model [24].

Accurate parameter estimates

If the model is used to obtain a better understanding of the sys-
tem, it is sensible to use an information criterion that is related to
the average mean-square-error between the estimated parameters
and the true system parameters. As explained before, the quality
of an unbiased and e�cient estimator is completely determined
by the inverse of the Fisher information matrix.
Three common information criterions used for accurate parameter
estimates are:

� A-optimality : An A-optimal input minimizes the trace of the
inverse of the Fisher information matrix. Geometrically this
corresponds to minimizing the sum of edges of the bound-
ing box surrounding the uncertainty region of the estimated
parameters [10].

� D-optimality : A D-optimal input maximizes the determin-
ant of the Fisher information matrix. Geometrically this
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corresponds to minimizing the uncertainty volume of the
estimated parameters [20].

� E-optimality : An E-optimal input maximizes the smallest
eigenvalue of the Fisher information matrix. Geometrically
this corresponds to minimizing the largest axis of the uncer-
tainty ellipse [15].

From the geometric interpretations, it is easy to understand that a
design that is optimal for one of the criteria will be close to optimal
for all other criteria. Hence, the choice amongst these designs is
not so critical. For a more in-depth study of the di�erence between
these criteria the reader is referred to [72].

Accurate output prediction

If the model is used to make predictions about the future behavior
of the system, the accuracy of the parameters is less important
compared to the accuracy of the predicted outputs of the system.
In this case, it is more sensible to relate the information criterion
directly to the mean-square-error between the predicted and the
true output of the system. Since the uncertainty of the output
can be related to the uncertainty on the parameters, such criteria
still result in a scalar measure of the information matrix.
Two common information criteria used for prediction are:

� G-optimality: A G-optimal input minimizes the maximal
output uncertainty over a prede�ned set of inputs [33].

� V-optimality: A V-optimal input minimizes the average out-
put uncertainty over a prede�ned set of inputs.

It is interesting to notice that for many OID problems, the G-
optimal and the D-optimal information criterion are equivalent
[34, 25]. This implies that for these problems, it is possible to
combine a good parameter estimation with a good output predic-
tion. This is the main reason why D-optimality is considered in
this work.

Application oriented and least costly designs

If the model is used to design a controller for the system, it is more
sensible to consider model derived quantities that are important
for this purpose. This leads to the so called application oriented
design criteria [35]. As with the measures used for prediction, the
application oriented design measures are based on uncertainties
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1.3 Aspects of the OID

which can be derived from the parameter covariance, and therefore
still results in a scalar function of the Fisher information matrix.
A commonly used application oriented criterion is the � -gap [28].
This criterion expresses on a frequency-wise basis how far a model
can deviate from its nominal value before a the controller loses its
stability [68]. However other frequency-wise model speci�cations
are also used [31].
To design a robust controller for the system, it is often su�cient
that a model satis�es a set of minimal requirements. In this case
using an OID may lead to a waste of resources since the optimality
of the design is unnecessary for the application. This lead to the
study of the least costly design, which minimizes the experimental
cost (usually expressed in as a function of the power or maximum
amplitude of the input) while attaining a prede�ned information
level [4, 5]. Mathematically the optimization problem related to
the least costly design is the dual of the optimization related to
the optimal input design [51].

1.3.3 Model structure

The model enters the cost function of the optimization problem,
through the computation of the Fisher information matrix. As
a result, the model has a strong in�uence on the di�culty with
which the optimization problem is solved. First, it is explained
how the models are usually classi�ed based on their input-output
behavior. Next, the di�culty of the OID for each model class is
addressed, based on this classi�cation.

Classifying models

Intuitively, the human mind expects that relations between quant-
ities are proportional. This intuition is perfectly captured by lin-
ear models. A model is called linear if scaling of the input trans-
lates to a similar scaling of the output, and if the sum of two inputs
results in an output that is the sum of the outputs observed for
the two separate inputs.
If the model does not satisfy the properties of a linear model, it
is called nonlinear. Notice, that the class of nonlinear models is
vastly larger than the class of linear models, since the de�nition of
nonlinear models is based on the absence of certain properties. As
a result, the behavior of nonlinear models is much more diverse,
but also harder to study.
A di�erent way to classify models, is based on their memory. If
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the current output value is only a function of the current input
values then the model is called static. If the current output value
is a function of the current and/or previous input values then the
model is called dynamic. Models for which the current output
depends on the future values of the input are called non-causal.
For this type of models the causation between input and output
is inverted.
Finally, models can also be classi�ed based on their behavior with
respect to time. If the properties of the input-output relation of
the model do not change with time, the model is referred to as
time-invariant. If the model properties do change with time, the
model is called time-varying. If the model represents time as a
continuous quantity, the model is called continuous. In contrast,
if the model represents time as a succession of discrete invents,
the model is called discrete.

Shift from linear to nonlinear models

Initially, the �eld of system identi�cation strongly focused on
the identi�cation of linear dynamic time-invariant models [38,
47]. While it was known that in reality most systems are nonlin-
ear and/or time varying, the use of linear time invariant models
provided a strong and �exible framework to approximate a large
range system behaviors.
However, in order to meet the ever increasing technological de-
mands, engineers require more accurate models for their systems.
As a results, the interest of the system identi�cation community
shifted towards more complex model structures, that incorporate
time-varying and nonlinear dynamic behavior.

Commonly used nonlinear models

The following three nonlinear dynamic models are commonly used
to describe nonlinear dynamical systems. Each of these classes
have their own bene�ts and shortcomings. Here, the merits of
the models are determined with respect to the complexity of the
resulting OID problem.

� Volterra models: The Volterra series expansion is the gen-
eralization of the convolution integral for nonlinear systems
[53, 9]. While this model is very interesting from a theoret-
ical point of view it is often impractical due to its large num-
ber of parameters. Recently, regularized estimators have
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1.3 Aspects of the OID

been successfully applied in order to estimate Volterra ker-
nels [3]. But using regularized estimates introduces a bias
on the estimate, which makes it more di�cult to evaluate
the information of the signal.

� Nonlinear state space models: The nonlinear state space
model is a generalization of the classic linear state space
models [60, 45, 54]. This model is both �exible and compact,
and as a result it can describe a large number of nonlinear
systems. Moreover this model class naturally incorporates
systems with multiple inputs and multiple outputs. How-
ever, the nonlinear state space models do not always provide
an explicit relation between the input an the output. In that
case, the derivatives with respect of the parameters need to
be computed based on simulation of the input. This makes
computation of the Fisher information matrix more involved
and computational demanding.

� Block oriented models: The block oriented models consist
of a network of in parallel and in series connected linear
dynamic and nonlinear static models [37, 67, 69]. While
this model class is less general than the class of nonlinear
state space models, it always provides an analytical input-
output relation. This enables an analytical computation of
the Fisher information matrix. Additionally, these expres-
sions can be coded in a modular way.

OID for nonlinear static models

For nonlinear static models, the Fisher information matrix is an
a�ne function of the amplitude distribution. As a result, the OID
can be formulated as a convex optimization problem with respect
to the amplitude distribution. Such a problem can be e�ciently
optimized with a convex optimizer.

OID for linear dynamic models

For linear time-invariant models, solving of the OID problem con-
sists of a two-step method. First, the optimization problem is
expressed based on �nite parametrization of the input power spec-
trum, which reduces the OID problem into a convex optimization
problem. Solving this convex problem yields an optimal spectrum.
The second step then consists of constructing a stationary signal
that realizes this optimal spectrum [16, 25, 55].
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Originally, this two-step method was developed for OID that max-
imize some scalar function of the Fisher information matrix under
a constraint on the power of the input signal [16, 25]. Later, the
method was generalized for more closed loop identi�cation [28, 31]
and application-oriented information criteria [4].
Aside from the two-step method, few results have also been de-
veloped where the optimization is performed directly with respect
to the input samples of the signal in time-domain [73]. How-
ever this approach can not provide the same guarantees regarding
global convergence.

OID for nonlinear dynamic models

Compared to the OID for linear models, the OID for nonlinear
dynamic models remains a largely unexplored area of research.
Nonetheless, the increased interest in nonlinear model structures,
means that the OID problem for nonlinear models is very relev-
ant. Often engineers have little to no feeling about what a good
input design for a nonlinear model is, hence they fall back on the
linear intuition, which tends to be suboptimal in many cases.
The main di�erence with linear models is that the Fisher informa-
tion matrix of the experiment is not only dependent on the second
order moments of the input, but also on the higher order moments.
Based on this insight [30] proposed a two-step method to solve the
OID problem for nonlinear models. In the �rst step, the optimal
probability density of the input is computed. In the second step,
a signal is generated based on this probability density function.
However this approach leads to a non-convex optimization prob-
lem with respect to the properties of the input, which implies
that �nding a global solution of the OID problem for nonlinear
dynamic models becomes much more di�cult.
One subclass of nonlinear models that received a lot of attention
in the recent years, is the class of nonlinear �nite memory models.
By limiting the amplitude of the input to a discrete grid and ex-
ploiting the limited memory of the model, the OID problem can be
approximated by a convex optimization problem, which enables
the global optimization of the OID problem [36]. For the class
of stochastic inputs generated by a Markov chain, the OID for
�nite memory models has been studied in [65]. For deterministic
inputs the OID is covered in [11]. An extension of this approach
to fading memory models is given in [18].
Methods considering more general nonlinear dynamic models also
exist. For example, in [26] a particle �lter approach for the gen-
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1.3 Aspects of the OID

eral class of nonlinear model is presented, while [67] presents an
OID for a block structured nonlinear model, consisting of linear
dynamic and nonlinear static blocks. However, unlike the design
methods for nonlinear �nite memory models, these methods do
not result in a convex optimization problem, and can therefore
not guarantee convergence to a global optimum.

1.3.4 Input class

From a practical point of view, the input often needs to satisfy
certain constraints that are imposed by the physical limitations
of the measurement setup and the device under test. Common
restrictions on input signal are: limitations on input range, limit-
ation of the output range, �xed total power or restrictions of the
bandwidth.
Aside from respecting the physical constraints of the setup, the
input signal should also be su�ciently exciting for the system,
such that the full system behavior can be captured at the output.
Commonly used signals, in the �eld of system identi�cation, are
�ltered Gaussian noise [38], and random phase multisines [47].
From an OID point of view, the input class de�nes the search space
of the optimization problem, and therefore it has a strong in�uence
on the di�culty of the optimization. Especially, the parameteriz-
ation of the input class is important. The most straightforward
parametrization, based on the input samples, often leads to an in-
tractable optimization problem. Finding a parametrization of the
input class that leads to an easy to solve optimization problem, is
often one of the main challenges in solving the OID problem.

1.3.5 Measurement conditions

Measurement conditions comprise both the noise model and the
state in which the system operates during the experiment. The
noise model directly in�uences the computation of the Fisher in-
formation matrix and therefore the cost function of the OID prob-
lem. The impact of the state-of-operation is more subtle and
largely depends on how state-of-operation is accounted for during
the estimation. For example, measuring in the presence of tran-
sient e�ects is often resolved by estimating the transient terms
together with the model parameters. This corresponds to an ex-
tension of the model and should be taken into account by adding
columns to the Fisher information matrix [16, 25].
In this thesis the measurement conditions will be kept as simple as
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possible. Only independent and identically distributed (i.i.d) out-
put noise is considered. Additionally, the noise source is assumed
to be Gaussian distributed with known covariance, and also inde-
pendent from the input sequence. The system is assumed to be
in steady-state during the experiment, and the sampling of the
signals happened without introducing aliasing or leakage. Invest-
igating the e�ect of more general measurement conditions falls
outside the scope of this work.
One could argue that the assumed measurement conditions are
too academic and that they harm the applicability of the obtained
design. However, the main focus of this work lies on the implica-
tions of using nonlinear model structures. Since the �eld of OID
for nonlinear systems is still in its exploration phase, solving the
OID problem is already daunting under the most simplifying as-
sumptions. We �rst must learn to walk before we can run.

1.3.6 Dependence on the true parameters
It should be noted, that with the exception of models that are
linear in the parameters, the computation of the Fisher informa-
tion matrix and thus the information criterion requires the know-
ledge of the true system parameters. This implies that in order to
identify a system in the most optimal way, the system itself needs
to be known. This is a clear contradiction with the purpose for
which the optimal input design is computed, namely identifying
the system.
This dependency of the information criterion on the true unknown
model parameters is a well-known problem in the �eld of optimal
input design. Di�erent strategies have been followed to circum-
vent this problem in practice.

� Nominal input design: During nominal input design, good
initial estimates of the parameters are used instead of the
true parameters to evaluate the Fisher information matrix.
This approach only works well if the initial parameter values
are already close to the true values.

� Robust input design: Robust input design tries to circum-
vent the shortcomings of nominal design through the use of
a robust version of the information criterion, for example
the expected value of the information criterion over the dis-
tribution of possible parameter values is used [49, 43, 52].

� Iterative input design: An iterative or sequential input design
consists of an alternation between an estimation step and a
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1.4 Solution strategies for the OID

design step. In each design step the current best estimation
of the parameters is used [50, 16, 42].

It is important to note that both the robust input design and the
iterative design are based on nominal design. Therefore, nominal
design is always the �rst step when exploring new OID problems.

1.4 Solution strategies for the OID
In general, three common strategies are followed to solve the OID
problem for system identi�cation.

1.4.1 (Quasi)convex formulation
The �rst approach searches for speci�c model structures and in-
put parameterizations that lead to a (quasi)convex formulation of
the problem, such that a numerically stable computation of the
global optimal design is guaranteed.
This approach is very successful for linear dynamic systems, since
for these systems the Fisher information matrix can be paramet-
rized as an a�ne combination of the input power spectrum. Early
examples for open loop identi�cation of linear dynamic systems
can be found in [16, 25]. Later, extensions were made for closed
loop [22, 28] and control speci�c designs [29].
Finding a (quasi)convex parametrization for the whole class of
nonlinear models is more di�cult if not impossible. Recently
a convex formulation for the class of nonlinear fading memory
models was proposed and thoroughly explored in the literature
[36, 65, 18, 11]. However, the resulting convex optimization prob-
lem is only tractable for very short system memories, severely
limiting the practical application of these results.

1.4.2 Gaussian mixtures
The second approach to solve the OID problem is to restrict the
input sequence to a Gaussian mixture. This assumption greatly
reduces the number of parameters describing the input and sim-
pli�es the expression for the Fisher information matrix. While
the resulting optimization problem for nonlinear models is non-
convex, it can still be reliably solved for the global optimum due
to the small number of variables present in the optimization. This
strategy was successfully applied for nonlinear models in [23], [40]
and [63].
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Unfortunately, limiting the input to Gaussian mixtures has some
major drawbacks. First, there is the inability to handle range con-
straints on the input with hundred percent certainty (probability
one). Second, by strongly restricting the input class, more in-
formative signals are excluded. Third, Gaussian inputs are often
considered plant unfriendly by practitioners [46].

1.4.3 Brute force optimization
The third approach formulates the OID problem as a non-convex
and nonlinear optimization problem, in which the information is
directly optimized with respect to the time samples of the input.
The main advantage of this approach is that it can handle ar-
bitrary constraints and needs less stringent assumptions on the
model or input.
However, this �exibility comes at the cost of a large number of
variables in the optimization, which drastically increases the risk
of �nding a local optimum instead of the global optimum. There-
fore, the third approach is often used as a last resort, when the
other approaches are not applicable, or when �nding a good design
is more important than �nding the optimal design. Examples
of this approach can be found in [73, 12] for linear systems and
[67, 26] for the class of nonlinear systems.

1.5 Applications of OID
The goal of an OID is to use the experimental resources in the
most e�cient way, while respecting the physical limitation of the
setup. However, computing the OID has also a given cost. Using
an OID is therefore only interesting if the cost of computing the
OID is smaller than the cost of performing an additional experi-
ment. Therefore, computing OID is speci�cally interesting in the
following scenarios.

� The cost of computing the OID is extremely low:This scen-
ario is encountered for models that are parametrized as a lin-
ear combination of a prede�ned set of base functions. Since
these models are linear in the parameters the information
criterion is parameter independent. As a result, the OID
needs only to be computed once and can then be used for
all models in the model class.

� The same OID is used for multiple experiments: An ex-
ample of this scenario is product testing of large batch seizes.
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1.6 Independent experiment design

During such tests an experiment is performed to see if the
product complies with the imposed quality measures. Since
the products should ideally be identical the same OID can
be reused many times.

� A small gain in information leads to a large economical gain:
This occurs when the gain of the OID is ampli�ed by eco-
nomical lever. Examples of this scenario are mass produc-
tion lines and the petrochemical industry. In these industries
small gains in time or accuracy may yield huge economical
gains due to their scale of operation.

� The cost of a single experiment is very high:This scenario is
often encountered in the �elds of (bio)chemistry [61], cellular
biology [13], and medicine [21]. An extensive overview of the
current state-of-the-art in applied OID for nonlinear systems
in these �elds can be found in [19].

1.6 Independent experiment design
At the start of this introduction, experiment design was de�ned as
a problem in which any aspect of an experiment could be optim-
ized. Considering this de�nition of experiment it is clear that the
optimal input design is a sub�eld of experiment design that con-
siders only one aspect of the experiment for optimization, namely
the input signal.
However, some times the term ’experiment design’ is used in the
literature for a more speci�c type of design called independent ex-
periment design. This type of design assumes that there exists a
prede�ned set of of independent experiments. Each experiment in
the set can be performed under di�erent conditions, with di�erent
input signals and even di�erent equipment.
Assuming that the experiments are performed independently im-
plies that the information obtained during any of the experiments
can not be used during any other experiment, and that the changes
to the system induced during one experiment do not in�uence the
state of the system in any other experiment. This assumptions
makes it possible to to expresses the information of the combined
experiment as a weighed sum of the information of the separate
experiments, which facilitates the optimization. For more inform-
ation about the optimal independent experiment design of the
nonlinear models the reader is referred to [48].
In the case of optimal input design, the expression for the inform-
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ation is in general no longer a weighted sum, since the choice of
a sample at a given time instance in�uences the obtained inform-
ation of other samples due to the dynamics of the system. As a
result, the optimal input design is not a sub�eld of independent
experiment design and usually results in a more complicated op-
timization problem.
For static models and linear dynamic models, it is possible to se-
lect a speci�c parameterization of the input for which the model is
reduced to a static map. For such a parameterization the total in-
formation does become a weighted sum of information associated
which each input parameter. Due to the existence of this type of
parameterization the terms ’input design’ and ’experiment design’
are sometimes used interchangeably in the literature.

1.7 Central research question
In this thesis, the problem of optimal input design for the iden-
ti�cation of nonlinear block structured model was envisioned. It
was expected that the modular nature of the block structured
models would allow for a modular solution to the problem. The
idea was that the knowledge about the OID for the submodels
could be reused to construct designs for more complex structures
in the model class.
This lead to the proposal of a bottom up approach, in which
�rst the Wiener and Hammerstein structure would be considered.
Once the design for those models would be known, it was believed
that they would help to construct OID for more complex block
structure like the Wiener-Hammerstein and even parallel-wiener-
Hammerstein structures.
However, during the research of this work, it turned out that the
envisioned strategy did not work, since the modular nature of the
blocks structure does not lead to a decoupling of the Fisher in-
formation matrix. Therefore, the OID for the whole model cannot
be reduced to OID of the subsystems. This made it clear that the
scope of the research needed to be adjusted.
In the end, the study was narrowed down to Wiener models. These
are block structured models that consists of a linear dynamic block
followed by a static nonlinear block. More speci�cally the follow-
ing research question is considered:

�How to compute the nominal D-optimal input design for a block
structured model, consisting of a linear dynamic block followed by

a static nonlinear block for the input class of deterministic
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periodic signals, assuming only additive i.i.d. Gaussian output
noise and steady-state measurements?�

Depending on how the linear dynamic block is parametrized, two
variations of the question can be obtained. The �rst variation
assumes that the linear submodel of the Wiener model corres-
ponds to a discrete �nite-impulse-response �lter. Such model is
referred to as �nite memory Wiener model. The second variation,
assumes that the linear submodel corresponds to a continuous
in�nite-impulse response �lter. The resulting Wiener model is re-
ferred to as a in�nite memory Wiener model.
As an answer to the central research question two OID methods
were studied. The �rst method assumes that the system can be
described as a discrete nonlinear �nite memory model. Notice that
this model class contains the class of �nite memory Wiener mod-
els. By restricting the input class to digital signals, it is possible
to approximate the optimal input design problem by a convex op-
timization problem. Unfortunately the numerical optimization of
this method is only tractable for short memories.
The second method restricts the class of inputs to deterministic
band-limed signals and the model class to in�nite memory Wiener
models. Given these assumptions, the method performs a nonlin-
ear non-convex optimization with respect to the time samples of
the input sequence. Based on extensive simulation results, the re-
lation between the properties of the OID and the problem settings
was studied.
Aside from these two main methods, three suboptimal methods
were also investigated. The sequential design is a greedy optimiza-
tion routine which updates the input one sample at a time until no
further improvements can be made. The naive dictionary design
selects the most informative combination of input sequences from
a prede�ned set and afterwards tries to combine these signals into
a single excitation signal. The decoupled design tries to generate
an input signal that combines the optimal properties known for
the linear and nonlinear subsystems.

1.8 Outline of the thesis
The content of the thesis is organized as follows:

� In Chapter 2, a formal introduction is given of the mathem-
atical concepts needed to understand the technical aspects
of the following chapters.
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� In Section 2.1, the essential concepts from system iden-
ti�cation that are needed to understand the technical
aspects of the D-optimality are formally introduced.

� In Section 2.2, some basic de�nitions and theorems con-
cerning directed graphs are introduced, which are later
used in Chapter 3.

� In Chapter 3, a convex optimal design method for nonlinear
�nite memory models is presented.

� In Section 3.1, the OID problem is formally de�ned.

� In Section 3.2, the OID problem is approximately for-
mulated as a convex optimization problem.

� In Section 3.3, the numerical aspect of solving the con-
vex optimization problem and generating an optimal
input sequence are explained.

� In Section 3.4, the presented method is illustrated with
a simulation example.

� In Section 3.5, the scaling of the computational cost
with the model memory is discussed.

� In Section 3.6, the relation with similar methods de-
scribed in the literature is highlighted.

� In Section 3.7, a summary of the chapter is given and
future research goals are addressed.

� In Chapter 4, a brute force optimal design method for non-
linear in�nite memory Wiener models is presented.

� In Section 4.1, the OID problem is formally de�ned.

� In Section 4.2, the OID problem is formulated as a
nonlinear nonconvex optimization problem.

� In Section 4.3, a strategy is proposed to explore the
properties of the OID based on numerically solving a
limited set of optimization problems.

� In Section 4.4, thirteen equivalence relations are estab-
lished for OID problem.

� In Section 4.5, the proposed exploration strategy is ap-
plied for a linear �rst order model followed by power
nonlinearity and a linear second order model followed
by a power nonlinearity.
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� In Section 4.6, a summary of the chapter is given, and
future research goals are addressed.

� In Chapter 6, three suboptimal design methods are invest-
igated namely: the sequential design, the naive dictionary
design, and the decoupled design are brie�y discussed.

� In Chapter 5, a summary of the presented work is given, as
well as a list of the major contributions.
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Chapter 2

Preliminaries

This chapter introduces the concepts necessary to understand the
technical details of the following chapters. No new contributions
are presented in this chapter.

2.1 Formal introduction to D-optimality
In this section, the concepts of signals, systems, models, meas-
urement vector, estimators, and the Fisher information matrix
are de�ned in a more formal way. These concepts from system
identi�cation are essential to understand the technical aspects of
the D-optimal information measure. For a more in depth and
complete study of system identi�cation, the reader is referred to
[38, 47].

2.1.1 Signals
In system theory, the evolution of a real-life quantity with respect
to time, is referred to as a signal. Mathematically a signal corres-
ponds to scalar function which maps every time instance onto a
real number.

Classifying signals

Signals are classi�ed based on the domain and codomain of the
function that represents them. The following classi�cation are
commonly used in system identi�cation:

� Continuous vs discrete: Continuous signals assume continu-
ous evolution of time, this means that the domain of the
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function representing the signal corresponds to the whole
set of real numbers. Discrete signals assume a step-wise
evolution of time, this means that the domain of the func-
tion representing the signal corresponds to the whole set of
integer numbers.

� Stochastic vs deterministic: A signal is called stochastic if
its function values are generate by a stochastic process. If a
signal is not stochastic it is said to be deterministic, mean-
ing its function values are �xed values and not stochastic
variables.

� Analogue vs digital: If the codomain of the function rep-
resenting the signal has a uncountable in�nite number of
elements the signal is called analogue. If the codomain of
the the function representing the signal has an �nite or in-
�nite countable number of elements then the signal is called
digital.

Another way to classify signals is based on patterns that relate
function values of di�erent time instances.

� Periodic vs aperiodic: A deterministic signal is said to be
periodic with a constant period p if the following property
holds for every time instance

8t : u(t) = u(t + p); (2.1)

where u represent the signal, andt can represent either dis-
crete or continuous time. A signal which is not periodic for
any time interval p, it is called aperiodic.

Properties of signals

Since signals can have an in�nite domain, it can be interesting
to summarize the properties of signals in some way. In system
identi�cation the following signal properties are often important.

� Range of a signal: The range is de�ned as the smallest in-
terval that contains all the elements of the signal. If the
bounds of the range are �nite, the signal is called bounded.

� The energy of a signal:The energy of a signalu corresponds
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2.1 Formal introduction to D-optimality

to

eu =
Z + 1

�1
u(t)2dt (2.2)

eu =
+ 1X

t = �1

u(t)2; (2.3)

where the integral is used for continuous signals, and the
summation is used for discrete signals.

� The power of a signal: The power of a signalu corresponds
to

pu = lim
T !1

1
T

Z + T=2

� T=2
u(t)2dt (2.4)

pu = lim
T !1

1
T

T=2X

t = � T=2

u(t)2dt; (2.5)

where the integral is used for continuous signals, and the
summation is used for discrete signals.

Spectrum of a periodic signal

In the �elds of engineering, it is common to not only study signals
as function of time, but also as a function of frequency. When the
signal is viewed as a function of time, it is stated that the signal
is studied in the time domain. When the signal is viewed as a
function of frequency, it is stated that the signal is studied in the
frequency domain.
The frequency representation of the signal is called the spectrum
of the signal. Transforming the representation of the signal from
one domain to the other, requires the use of an integral transform.
Depending on the properties of the signal, di�erent de�nitions of
this transform are required.
In this thesis, only periodic sequences are considered. The spec-
trum of a periodic signal is de�ned in De�nition 2.1. Notice that
a periodic signal has a discrete spectrum, meaning the spectrum
contains only non-zero elements at a countable number of fre-
quency values. For more information about the spectral repres-
entation of a signal, the reader is referred to [38].
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De�nition 2.1. The complex spectrum of a continuous peri-
odic sequence,u, with a period p is de�ned as

U(f ) =
1X

k= �1

Uk � (2� (f � k=p)) (2.6)

Uk =
1
p

Z p=2

� p=2
u(t)e� jkt=p dt

where� represents a Dirac distribution, j stand for the square
root of -1, and Uk are the Fourier coe�cients of u.
The complex spectrum of a discrete periodic sequence with a
period P is de�ned as

U(k) =
p� 1X

t =0

u(t)e� j (2 �kt )=p; (2.7)

which is nothing more than the discrete Fourier transform of
the signal.

If the spectrum of a signal is zero above a certain frequency, then
the signal is said to be band limited. The highest non-zero fre-
quency is called the bandwidth of the signal. Periodic band lim-
ited signals have the advantage that every signal value can be per-
fectly reconstructed form a �nite set of samples, given the correct
sampling settings. More details about the sampling conditions
will be given in Section 2.1.4.

De�nition 2.2. A signal x is said to be band limited if the
following property holds for its spectrum

9f BL ; 8f > f BL : X (f ) = 0 (2.8)

where f BL is called the bandwidth of the signal. If the above
property is not valid the signal is said to have an in�nite
bandwidth.

Studied signals

In this work, two types of periodic signals will be extensively used.
The �rst type is the class of periodic digital signals, with known
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period and given amplitude set. A common example of such sig-
nals are binary signals used in digital circuits.

De�nition 2.3. A periodic digital signal u(t) with period
P, and prede�ned amplitude set A = f a1; a2; ::an g has the
following properties

8t 2 Z : u(t) 2 A (2.9)
8t 2 Z : u(t) = u(t + p) (2.10)

The second type is the class of multisine signals, which are peri-
odic, continuous, and band limited. These signals can be represen-
ted as a sum of sines that have frequencies which are multiples of
a prede�ned base frequency and have a prede�ned amplitude and
phase. Due to there interesting theoretical properties, multisine
signals are extensively used for linear, and nonlinear system iden-
ti�cation [47, 56].

De�nition 2.4. A multisine is a continuous periodic signal
de�ned as

8t 2 R : u(t) =
N f � 1X

l =0

A l � sin(2�f 0lt + � l ) (2.11)

where A l are called the amplitude of the signal,� l is called
the phase of the signal, andf 0 is called the base frequency of
the multisine. The period of the signal corresponds to1=f 0.

2.1.2 Systems

A system is an abstraction that represents a relationship between
two or more signals. The signals related by a system are often
grouped in a set of input signals and a set of output signals. Often,
it is assumed that the inputs are considered a cause, while the
outputs are considered a result. However, this is not always the
case. In this work, only systems with one input and one output
are considered.

De�nition 2.5. A single-input-single output system can be
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described by an operatorGf ug : Su ! Sy that maps every
input signal, u, on exactly one output signal,y.

8u 2 Su : 9!y 2 Su : y = Gf ug : Su ! Sy ;

whereSu corresponds to the set of possible input signals, and
Sy corresponds to the set of possible output signals.

Classifying systems

Just like signals, systems have been extensively classi�ed. Below,
the most common classi�cations are listed, based on the system
input-output behavior.

� Time-invariant vs time-varying: If the properties of the op-
erator of the system are independent in time the model is
said to be time-invariant. This implies the following prop-
erty:

8�; 8u1; u2 2 Su : u2(t) = u1(t + � ) ) y2(t) = y1(t + � )

If this property is violated, the system is considered time-
varying.

� Linear vs nonlinear: A system is considered linear if it sat-
is�es the following two properties:

8u 2 Su ; 8� 2 R : Gf �u g = �G f ug

8u1; u2 2 Su : Gf u1 + u2g = Gf u1g + Gf u2g:

If one of the properties is violated, the model is considered
nonlinear.

� Static vs dynamic: If the output value of a system at a
given time instance can be expressed as a function of only
the input value at the same time instance, then the system
is considered static, and the operatorG reduces to

8u 2 Su ; 8y 2 Sy ; 8t : y(t) = Gf u(t)g:

If the output at a given time instance, depends on multiple
instances of the input, the system is called dynamic.

� Continuous vs discrete: If the system considers only continu-
ous signals, the system is called continuous. If the system
considers only discrete signals, the system is called discrete.
If the system considers a mix of continuous and discrete sig-
nals the system is called a hybrid system.
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2.1 Formal introduction to D-optimality

2.1.3 Models

As stated in the introduction of this text, the goal of system iden-
ti�cation is to construct a mathematical description of a system
based on measurement data of the input and output of the sys-
tem. This mathematical description is referred to as a model of
the system. The equations in the expression are called the model
structure. The speci�c numerical values inside these equations
are called the parameters of the model. The vector containing all
model parameters is called� .

De�nition 2.6. A model, y(u; � ), is a mathematical expres-
sion that allows to compute the output of a system, corres-
ponding to the input u.

In practice, a model is often only a partial description of the sys-
tem behavior. For example, linear time invariant models are of-
ten used to represent systems which are slightly nonlinear and/or
time-varying. However, in this text it is assumed, that the con-
sidered model class can perfectly capture the system behavior.

Assumption 2.1. It is assumed that the estimated system
behavior is completely captured by the model class. This im-
plies that there exists a set of model parameters� 0, valid for
all inputs, which completely capture the input-output behavior
of the model.

8u 2 Su : 9� 0 : y(u; � 0) = Gf ug (2.12)

The parameters � 0 are referred to as true parameters of the
model.

Additionally, it is assumed that the model is uniquely identi�able.
This means that there exists exactly only one set of true model
parameters.

Assumption 2.2. The model is uniquely identi�able if there
exists only one set of parameters� 0 that perfectly describes
the input-output behavior of the system for all inputs.

8� 0; � 1 : 8u 2 Su : y(u; � 0) = y(u; � 1) ) � 0 = � 1 (2.13)
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An input, for which only the parameter vector � 0 results in
the corresponding output, is called informative or su�ciently
rich with respect to the uniquely identi�able model.

Nonlinear static models

For nonlinear static models, the relation between the input and
the output is a nonlinear function that maps every input sample
on its corresponding output sample, regardless of the order of the
samples. To make the mode as �exible as possible the nonlinear
function is described as a linear combination of a set of basis
functions. Common choices for the basis functions are polynomial
or sinusoidal functions. In practice the number of basis functions
used in the model is �nite. This number is called the order of the
model.

De�nition 2.7. A static nonlinear model has the following
input-output relation

y(t) =
n cX

k=1

ck gk (u(t)) ; (2.14)

where c is the parameter vector of the model, andgk are a
set of nonlinear functions of the input, andnc is the order of
the model.

It is also important to realize that while the nonlinear static model
is nonlinear with respect to the input signal, it is linear with re-
spect to the model parameters. This property greatly facilitates
the estimation of the model parameters and computation of the
OID.

Dynamic linear time invariant models

Many physical laws are formulated in the form of ordinary dif-
ferential/di�erence equations. Systems governed by this type of
laws cannot be captured with a static model structure. This in-
troduces the need for dynamic model structures. Two commonly
used models are the �nite impulse response (FIR) �lters and the
in�nite impulse response (IIR) �lter.
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2.1 Formal introduction to D-optimality

De�nition 2.8. A �nite impulse response �lter is a dis-
crete, linear time invariant, dynamic model with the following
input-output relation.

y(t) =
n b � 1X

k=0

bk u(t � k); (2.15)

whereb is the parameter vector of the model, andnb is called
the memory length of the �lter or the number of taps of the
�lter.

De�nition 2.9. For a continuous in�nite impulse response
�lter, the output value at given time t corresponds to a con-
volution integral

y(t) =
Z + 1

�1
g(�; � )u(t � � )d�; (2.16)

where g is a model speci�c function called the impulse re-
sponse of the model, and� is the parameter vector of the
model.

In the frequency domain, the input-output relation of a IIR model
can be reformulated as

Y(f ) = G(f; � )U(f ); (2.17)

where Y is the spectrum of the output, G is the spectrum of
the impulse response and,U is the spectrum of the input. The
spectrum of the impulse response is called the transfer function
of the model, and is usually represented by a complex rational
function.

G(f; � ) =
P n b

k=1 � (k + na)( j 2�f )(k � 1)
P n a

l =1 � (l )( j 2�f )( l � 1) ; (2.18)

where j stands for the root of � 1. The above parameterization is
popular since for such a transfer function, the output corresponds
to a solution for a ordinary di�erential equation which has the
model parameters as coe�cients [47, 38].

n aX

l =1

al
d( l ) y
dt l =

n bX

k=1

bk
d(k ) u
dtk : (2.19)
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From the natural sciences it is known that many physical phe-
nomena can be described by this type of equations.

Nonlinear block oriented models

Through the combination of linear dynamic and nonlinear static
models, nonlinear dynamic models can be created. Two common
operation to combine models are the series and parallel connec-
tion. Two models are said to be connected in series if the output
of the input of the second model is the output of the �rst. Two
models are said to be connected in parallel if they have a mutual
input and their outputs are added.

De�nition 2.10. A nonlinear block oriented model is a non-
linear dynamic model that consists of a network created by
connecting static nonlinear models and LTI dynamic models
through a succession of parallel and/or series connections.
The linear dynamic and nonlinear static models inside the
network are referred as blocks or submodels of the block ori-
ented model.

Some block oriented models have got a speci�c name in the liter-
ature, which is based on their structure. A Wiener model consists
of series connection between a LTI dynamic model and a nonlinear
static model [70, 2]. A Hammerstein model consists of a nonlin-
ear static model in series with a LTI dynamic model [27, 44]. A
Wiener-Hammerstein model consists of a LTI dynamic model in
series with a nonlinear static model in series with an other LTI
dynamic model [69]. A parallel Wiener-Hammerstein model con-
sists of a given number of Wiener-Hammerstein models connected
in parallel [57, 58]. A graphical representations of each of these
models is given in Figure 2.1.

2.1.4 Measurement conditions

The identi�cation of a system is based on a �nite set of meas-
urements. Hence, only a �nite and discrete set of samples are
available, instead of the whole input and output signal. The time
instances at which the samples are acquired is called the sampling
grid. Usually, the samples of the signal are acquired at uniformly
spaced time intervals. The time between two samples is referred
to as the sampling time.
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Figure 2.1: Graphical representation of commonly used block oriented
models. Block with LTI in them represent linear time invariant dynamic
models. Blocks with NL in them represent static nonlinear models.
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De�nition 2.11. The vector containing the time instances
at which the samples are acquired is called the sampling grid.
For a uniform sampling grid, these time instances are de�ned
as

8k 2 [0; P � 1] : tk = kts; (2.20)

where ts is the sampling time, and P is the number of
sampling points. The total duration of the experiment,T =
P ts, is called the measurement time.

A frequency domain representation of the measured time samples
can be obtained using the discrete Fourier transform (DFT). The
vector containing the frequencies at which DFT is evaluated is
called the frequency grid. De�ning a sampling grid automatic-
ally de�nes a corresponding frequency grid. Assuming a uniform
sampling grid, the sampling time determines the highest frequency
component in the frequency grid, while the total measurement
time determines the frequency resolution of the frequency grid.

De�nition 2.12. For a uniform sampling grid, the corres-
ponding frequency grid are de�ned as

for P odd f k = kf 0 8k 2 [� (P � 1)
2 ; :::; (P � 1)

2 ]
for P even f k = kf 0 8k 2 [� (P � 1)

2 ; :::; (P � 1)
2 � 1]

(2.21)

where f s = 1=ts stands for the sampling frequency, andf 0 =
1=T stands for the frequency resolution of the grid.

To make a clear distinction between the samples of a the continu-
ous signal and the continuous signal itself, a vector containing all
samples of a given quantity is represented with a upper bar.

8k 2 f 0; :::; Pg : �x(k) = x(kts) (2.22)

wherex represents a continuous signal and�x is the corresponding
�nite vector containing all samples. For discrete signals the only
di�erence betweenx and �x is that �x is only a �nite set of samples.
Therefore the bar will be omitted for discrete signals, since it is
usually clear from the context if an in�nite or �nite number of
samples is meant.
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2.1 Formal introduction to D-optimality

Aliasing and leakage

To ensure that the samples provide enough information to fully
represent the signals from which they were acquired, the proper-
ties of the sampling grid should be carefully chosen. When the
sampling is performed incorrectly, two decremental e�ects will cor-
rupt the data, namely aliasing and leakage. These e�ects are best
studied in the frequency domain [47].
Aliasing occurs when the bandwidth of the signal is higher than
half the sampling frequency. In this scenario, the part of the spec-
trum above half the sampling frequency is incorrectly mapped
on frequencies below half the sampling frequency. The Shan-
non sampling theorem states that to avoid aliasing e�ects, the
sampling frequency should be at least two times higher than the
highest frequency component in the signal.
The second e�ect is leakage and occurs because only a �nite part
of the signal is observed. As a result the spectrum of the signal
is distorted. For non-periodic signals leakage can be suppressed
through the use of a windowing operation in time. However for
periodic signals, leakage can be completely avoided by measuring
a natural number of periods of the signal [47], without the need
of an additional window.

Assumption 2.3. To avoid sampling errors, the input sig-
nals are assumed to be periodic and band limited, and the
sampling time and measurement time are chosen as described
below.

f s > 2f max Pts = kp; (2.23)

wheref max is the frequency of the highest spectral component
present in the measured signals,p is the period of the signal in
seconds, andk is a natural number. Given these assumptions
both aliasing and leakage e�ects are avoided

Measurement noise

Aside from the e�ects introduced by sampling, the measured samples
are also a�ected by noise. In system identi�cation it is common
to model noise contributions by adding a stochastic signal to the
original deterministic signals. Therefore the measurement vector,
which contains all the measured samples, is considered stochastic
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variable whose probability distribution depends on the system and
noise conditions.

De�nition 2.13. The measurement vector, �z, is de�ned
as the vector which contains all the measured samples of the
input and output signal.

8k 2 [0; P � 1] : �z(k) = u0(kts) + nu (kts) (2.24)
�z(P + k) = y0(kts) + ny (kts);

whereu0 is the true noiseless input,y0(kts) is the true noise-
less output,nu is the input noise, andny is the output noise.

As stated before, the noise conditions will be kept as simple as
possible. Only independently and identically Gaussian distributed
(i.i.d) output noise is considered.

Assumption 2.4. The following assumptions are made on
the noise which corrupts the input and output signals

8t : nu (t) = 0 (2.25)
ny s N (0; � 2);

where N (0; � 2) stands for a independently and identically
multi-variable Gaussian distribution, with zero expected value
and � 2 as variance.

State of the system

When the system is dynamic, the output of the system does not
only depend on the samples that were collected during the exper-
iment, but also on the input values prior to the experiment. In
order to resolve this issue, the information that the system retains
from past input values should be known. This information is re-
ferred to as the state of the system.
The easiest way to handle the unknown system state, is to guide
the system into a prede�ned state before starting the measure-
ment. The major downside of this approach is that valuable meas-
urement time is wasted to bring the model in the prede�ned state.
Alternatively, the system state can be estimated together with the
system parameters. However, this requires a more complex model
structure, since the unknown states need to be incorporated as
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2.1 Formal introduction to D-optimality

additional model parameters.
For periodic signals, the most straightforward state to assume, is
a steady-state. This means that the part of the signal outside
the measurement window is resolved by periodically extending
the signal in the measurement window. Practically the system is
brought into this state by applying multiple periods at the input
of the system, before starting the actual measurement.

Assumption 2.5. During the computation of the OID it
is assumed that the system operates in steady-state. This
means that the part of the signal outside the measurement
window is resolved by periodically extending the signal inside
the measurement window.

2.1.5 Estimators

During the identi�cation process, an estimator is used to derive
an estimate for the model parameters based on the measurement
vector. An estimator is an operator that maps the measurement
vector on the estimated parameters. Depending on the assump-
tions made about the nature of the measurement data, di�erent
estimators can be used. Commonly used estimators are the linear
least squares, the maximum likelihood, the errors-in-variables, and
the prediction-error-estimate. More details about these estimat-
ors in the context linear time-invariant system identi�cation can
be found in [38, 47].

De�nition 2.14. An estimator is a mathematical operator
that, given a model structure, maps the measurement vector
on an estimated parameter vector�̂ .

Like the measurement vector, the estimated parameters�̂ are
stochastic variables. The probability distribution of the estimates
depends both on the properties of the estimator and the distri-
bution of the measurement vector. The quality of an estimator is
evaluated based on the average behavior of the estimates it pro-
duces. Ideally, the di�erence between the estimated parameterŝ�
and the true model parameters� 0 should be as small as possible.
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Stochastic properties of an estimator

Two important stochastic properties of the estimates are the bias
and the covariance matrix. The bias is the di�erence between
the average estimated parameters and the true system paramet-
ers, while the covariance expresses the variability of the estimated
parameters around this average value. The mean-square-error
(MSE) between the estimated parameters and the true system
parameters is completely determined by these two quantities.

De�nition 2.15. The bias of an estimator, producing the
estimated parameters�̂ , is de�ned as

b�̂ = � 0 � Ef �̂ g; (2.26)

where the expected value is taken over the distribution of the
estimated parameters, which depends on the estimator and
the measurement vector.

De�nition 2.16. The covariance matrix of an estimator,
producing the estimated parameterŝ� , is de�ned as

C�̂ = E
h
(� 0 � �̂ )( � 0 � �̂ ) �

i
; (2.27)

where the expected value is taken over the distribution of the
estimated parameters. Notice that the covariance matrix is a
symmetric positive semi-de�nite matrix.

De�nition 2.17. The mean-square-error matrix X �̂ of an
estimator, producing the estimated parameters�̂ , is de�ned
as

X �̂ = C�̂ + b�̂ b�
�̂
: (2.28)

Notice that the covariance matrix is a symmetric, positive
semi-de�nite matrix.

An estimator is said to be unbiased if its bias is zero. This implies
that the expected value of the estimated parameters is equal to
the true system parameters. For an unbiased estimator the MSE
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2.1 Formal introduction to D-optimality

matrix is equal to the covariance matrix of the estimator. An
unbiased estimator an estimator is called minimum-variance if it
has the lowest covariance matrix amongst all unbiased estimators.

De�nition 2.18. An unbiased estimator is an estimator of
which the bias is zero for all parameter values.

b�̂ = 0 : (2.29)

If the above property only holds asymptotically for in�nite
samples, than the estimator is called asymptotically unbiased.

Fisher information matrix

The Fisher information matrix is a mathematical construct that
is used to relate the uncertainty of the measurement vector with
the uncertainty of the estimated parameters.

De�nition 2.19. The elements of the Fisher information
matrix are de�ned as

M i;j (� 0) = E
��

@ln( f z (�z; � 0))
@�(i )

� �
@ln( f z (�z; � 0))

@�(j )

��
; (2.30)

in which f z is the probability distribution of the measurement
vector �z, and where the expected value is taken with respect
to the measurement vector.

Notice that the Fisher information matrix independent of the
actual measured samples. Additionally, the Fisher information
matrix is also independent of the estimated parameter vector�̂ .
Hence, the details of how the estimator computes the estimated
parameters do not in�uence the evaluation of the Fisher matrix.
Given the probability distribution of �z, the expression of the
Fisher information matrix can be further developed. From As-
sumption 2.4 it follows that the probability distribution of �z can
be reduced to the probability distribution of samples of y, since
the samples ofu are noise free. This leads to the following expres-
sion for the probability distribution.

f z (�z; � 0) = f (�y; � 0) =
1

p
(2�� 2)P

exp(�
(�y � �y0) � (�y � �y0)

2� 2 );(2.31)
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where �y0 represent the noiseless output samples, and�y represents
the measured output samples.
The partial derivate of the logarithm of the probability function
with respect to the parameters then becomes

@ln( f z (�z; � 0))
@�(i )

= �
1
� 2

PX

k=1

ny (tk )
�y 0(tk )
�� (i )

: (2.32)

Substituting this equation in the expression for the Fisher inform-
ation matrix yields

M ij (� 0) =
1

� 4

PX

k =1

PX

l =1

E [ny (t l )ny (tk )]
�y 0(t l )
�� (i )

�y 0(tk )
�� (j )

(2.33)

=
1

� 2

PX

k =1

�y 0(tk )
�� (i )

�y 0(tk )
�� (j )

: (2.34)

From Assumption 2.4 it follows that y0 = y(u; � 0) this allows us
to rewrite the last equation as

M (� 0) =
1

� 2

�
�y (u; � 0)

��

� � �
�y (u; � 0)

@�

�
; (2.35)

where �� represents the transpose, and�y (u;� 0 )
�� represents the mat-

rix containing the partial derivatives of the model, evaluated for all
input samples. This expression for the Fisher information matrix
will be used through out this work.

Cramer-Rao lower bound

The Cramer-Rao lower bound states that for every unbiased estim-
ator, the covariance matrix is larger than, or equal to the inverse
of the Fisher information matrix for the number of samples going
to in�nity.

Theorem 2.1. Under general regularity conditions speci�ed
in [47], the Cramer-Rao lower bound states that, for an un-
biased estimator, the covariance matrix is greater than or
equal to the inverse of the Fisher information matrix.

C�̂ � (M (� 0)) � 1; (2.36)

where C�̂ is the covariance of the estimated parameters, and
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M (u; � 0) is the previously de�ned Fisher information matrix.
Proof: This is a speci�c case of the generalized Cramer-Rao
lower bound stated in Theorem 16.18, p589 of [47].

For asymptotically e�cient estimators, the distance between the
covariance matrix and the Cramer-Rao lower bound becomes ar-
bitrary small when the number of samples goes to in�nity. This
implies that the covariance matrix of the estimator can be asymp-
totically approximated by the inverse of the Fisher information
matrix.

De�nition 2.20. An unbiased estimator is called e�cient
if the covariance matrix of the estimator equals the lower
Cramer-Rao bound for all parameter values.

C�̂ = ( M (� 0)) � 1: (2.37)

If this property only holds asymptotically for in�nite samples,
the estimator is called asymptotically e�cient.

In the �eld of system identi�cation a commonly used, asymptotic-
ally unbiased, and asymptotically e�cient estimators is the max-
imum likelihood estimator [38, 47]. Therefore, Assumption 2.6
and Assumption 2.7 are common in the �eld of OID. In practice,
Assumption 2.7 is veri�ed after the OID is computed based on the
results of a Monte-Carlo simulation.

Assumption 2.6. The estimator is assumed to be asymp-
totically unbiased and asymptotically e�cient.

Assumption 2.7. The experiment duration is assumed to be
long enough such that the asymptotic properties of the estim-
ator provide a good approximation of �nite sample properties
of the estimator.

2.1.6 D-optimal Information measure
The goal of optimal input design is to �nd the input signal that
optimizes a given information criterion. This criterion has to ex-
press how good on average the estimated parameters describe the
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behavior of the system.
For an asymptotically unbiased and asymptotically e�cient estim-
ator, it was shown in the previous section that the MSE matrix
between the estimated parameters and the true parameters can be
asymptotically approximated by the inverse of the Fisher inform-
ation matrix. Since the computation of the Fisher information
matrix does not require any measurement data, it is the perfect
tool to evaluate the performance of the estimator prior to the ex-
periment.
As was already pointed out in the introduction, a large variety of
information measures can be derived from the Fisher information
matrix. In this thesis, the D-optimal criterion is used. This means
that the information of a signal is expressed by the determinant of
the Fisher information matrix. Geometrically, D-optimality cor-
responds to the design that minimizes the uncertainty volume of
the estimated parameters.

Assumption 2.8. To express the information content of an
input signal, the D-optimality criterion is used, which means
that the optimal input sequenceuopt corresponds to the se-
quence for which the determinant of the Fisher information
matrix is maximal in a given feasible input setSu .

uopt = arg u max
Su

det(M (u; � 0)) : (2.38)

Remember thatM depends onu through the probability func-
tion of the measurement vector.

As stated before, the value of the Fisher information matrix de-
pends on the true model parameters, which are in practice un-
known during the identi�cation of the model. In the introduction
three common strategies to resolve this dependency were covered.
In this thesis, it will be assumed that the true system parameters
are available during the computation of the OID. This leads to
the theoretically best nominal input design.

Assumption 2.9. During the evaluation of the information
criterion, it is assumed that the true model parameters� 0 are
known.
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2.2 Basic concepts of directed graphs
In this section some basic de�nitions and theorems concerning
directed graphs are introduced. These concepts will be used in
the context of the OID for �nite memory models. For a more
in-depth treatment of the topic of directed graphs, the reader is
referred to [1].

2.2.1 Directed graphs
In Figure 2.2 three di�erent directed graphs are depicted. The
numbered circles represent the nodes of the graphs, and the arrows
represent the edges. A directed graph is completely determined by
its set of nodes and its set of directed edges. An edge is determined
by a couple of nodes. The �rst node in the couple is referred to
as the start node of the edge, the second node in the couple is
called the end node of the edge. An edge is said to leave its start
node and to arrive in its end node. A node is said to be mutual
between two edges if one of the edges starts in the node and the
other edge ends in the node.

De�nition 2.21. A directed graph G(X ; V) consists of a set
X called the nodes and a second setV � X 2 of ordered pairs
of nodes called the directed edges.

Example 2.1. Consider the three directed graphs in Figure 2.2.
For the �rst graph the set of nodes and the set of edges is equal
to

X = f 1; 2; 3; 4; 5; 6g

V = f (1; 3)(3; 4)(4; 1)(1; 2)(2; 5)(5; 4)(2; 6)g:

For the second graph the set of nodes and the set of edges is equal
to

X = f 1; 2; 3; 4; 5; 6g

V = f (1; 3)(1; 4)(1; 2)(2; 5)(2; 6)g:

For the third graph the set of nodes and the set of edges is equal
to

X = f 1; 2; 3; 4; 5g

V = f (1; 3)(3; 4)(4; 1)(2; 5)(5; 6)(6; 2)g:
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Figure 2.2: Three directed graphs. The �rst graph contains two over-
lapping cycles. The second graph contains no cycles. The third graph
contains two non-overlapping cycles. Only the second graph is a tree.
Only the third graph is disconnected.

2.2.2 Paths in a graph

Given a graph, a path can be de�ned as a sequence of edges for
which each successive pair of edges in the sequence has a mutual
node. The start node of the �rst edge in the sequence is called
the start node of the path. The end node of the last edge in the
sequence is called the ending node of the path. The path is said
to connect the start and end node. Nodes that are either a start
or end node of an edge in the path are referred to as visited by
the path.

De�nition 2.22. A path in a graph is a �nite sequence
of edges, such that for each subsequent pair in the sequence,
the �rst edge arrives in the same node where the second edge
starts.

The number of times an edge is used in a path is called the mul-
tiplicity of that edge. To mark a path on a given graph, the
multiplicity is added to every edge in the graph. Sometimes edges
with a zero indication are omitted to make the depiction of the
path more clear. Given a graph and a path in this graph, the vec-
tor containing all multiplicities of a path is called the multiplicity
vector of that path in the given graph. The order in which the
multiplicities are listed can be arbitrarily chosen.

De�nition 2.23. The multiplicity vector of a path in a
graph contains an element for each edge in the graph, which
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indicates how many times this edge occurs in the path.

Example 2.2. Consider the three directed graphs in Figure 2.2.
In the �rst graph the following path can be de�ned

p = f (5; 4)(4; 1)(1; 3)(3; 4)(4; 1)(1; 2)(2; 6)g:

To construct the multiplicity vector, the order in which the multi-
plicities are listed needs to be decided. Assume that the edges are
listed �rst by the number of their starting node and second by the
number of their ending node. For this graph the order of the edges
becomes

(1; 2)(1; 3)(2; 5)(2; 6)(3; 4)(4; 1)(5; 4):

The corresponding multiplicity vector of the path then becomes

� p = (1 ; 1; 0; 1; 1; 2; 1):

2.2.3 Cycles in a graph
A path that starts and ends in the same node is called a cycle. All
cycles that can be mapped on each other through a cyclic shift of
their edges are considered equivalent. The smallest cycle consists
of a single edge starting and ending in the same node and is called
a loop. An interesting property of a cycle is that the number of
edges in the cycle that start in a node and the number of edges
in the cycle that end in same node need to be equal. This result
is also known as the Euler theorem.

De�nition 2.24. A cycle in a graph is a path which starts
and ends in the same node. Cycles that are related by cyclic
shift of their edges are considered equivalent.

Theorem 2.2. For every visited node in a cycle, the number
of edges in the cycle starting from the node and the number
of edges in the cycle arriving at the node are equal.
Proof: see [1] Chapter 1.
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Two cycles that visit the same node are called overlapping. A
cycle is called elementary if every node in the graph is visited at
most once in the cycle. A cycle is called an Euler cycle if every
edge in the graph is used exactly once.

De�nition 2.25. Two cycles in a graph are called overlap-
ping if they visit the same node.

De�nition 2.26. A cycle in a graph is called elementary if
every node in the cycle is visited once.

De�nition 2.27. A cycle in a graph is called an Euler cycle
if every edge in the graph is visited exactly once by that cycle.

Example 2.3. Consider the three directed graphs in Figure 2.2.
The �rst graph contains two overlapping elementary cycles.

c1 = f (1; 3)(3; 4)(4; 1)g

c2 = f (1; 2)(2; 5)(5; 4)(4; 1)g

However there exist no Euler cycle in the �rst graph since the edge
(2,6) cannot be part of a cycle since there are no nodes leaving
node 6. The second graph contains no cycles. In total it contains
5 paths one for each node higher than node 1.

p1 = f (1; 3)g

p2 = f (1; 4)g

p3 = f (1; 2)g

p4 = f (1; 2)(2; 5)g

p5 = f (1; 2)(2; 6)g

The third graph contains two non-overlapping elementary cycles.

c1 = f (1; 3)(3; 4)(4; 1)g

c2 = f (2; 5)(5; 6)(6; 2)g

Since the cycles are non-overlapping there exists no Euler cycle in
this graph.
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2.2 Basic concepts of directed graphs

2.2.4 Combining and splitting cycles
Two overlapping cycles can be combined into one single cycle that
uses all edges as often as the original two cycles. The sequence
of edges describing this combined cycle can be constructed as fol-
lows. Start in one of the nodes in which the two cycles overlap.
Next write down all edges of the �rst cycle assuming this node as
starting node. After arriving back in the start node, do the same
for the second graph. The resulting sequence of edges describes
the combined cycle. Based on this construction procedure, it is
easy to understand that the multiplicity vector of the combined
cycle is equal to the sum of the multiplicity vectors of the two
separate cycles.

Theorem 2.3. Two overlapping cycles can be combined into
one cycle containing all the edges of the two cycles.
Proof: See the construction procedure in the paragraph
above. For a more rigorous proof see [1] Chapter 1.

Example 2.4. Consider again the two overlapping cycles of the
�rst graph in Figure 2.2.

c1 = f (1; 3)(3; 4)(4; 1)g

c2 = f (1; 2)(2; 5)(5; 4)(4; 1)g

The mutual nodes between both cycles are node 1 and node 4.
Combining both cycles applying the procedure described before in
node 1 results in Figure 2.2.

c3 = f (1; 3)(3; 4)(4; 1)(1; 2)(2; 5)(5; 4)(4; 1)g

A cycle can also be split into smaller cycles. Theorem 2.4 states
that the basic building block to which all cycles in the graph can
be reduced are the elementary cycles of the graph. This can be
explained as follows. Either the cycle is an elementary cycle or not.
If the cycle is not an elementary cycle it means that at least one
node in the graph is visited multiple times by the cycle. In such a
node the cycle can be split in two separate cycles overlapping in
this node. For these cycles the procedure can be repeated since
they are either an elementary cycles or they can be split. In the
end the cycle is completely reduced to a combination of elementary
cycles.
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Theorem 2.4. Every cycle in a graph can be expressed as
a combination of the elementary cycles of the graph.
Proof: See the deconstruction procedure in the paragraph
above. For a more rigorous proof see see [1] Chapter 1.

2.2.5 Connected graphs and trees
If for every pair of distinct nodes in a directed graph, there exist
a path which connects the �rst node in the pair with the second
node in the pair, then the direct graph is called connected. In
other words, in a connected directed graph there exists a path
between every pair of nodes in both direction. This implies that
the each edge of the graph is part of a cycle in the graph. From
the three graphs presented in Figure 2.2 none is connected.

De�nition 2.28. A directed graph is called connected if for
every distinct pair of nodes in the graph there exists a cycle
that visits both nodes.

A directed graph that has exactly one node in which only edges
start and from which there starts exactly one path to every other
node is called a tree. The node from which only edges start is
called the root node of the tree. Every edge in a tree is set to
de�ne a parent-child relation between the two nodes it connects.
The node from which the edge starts is considered the parent.
The node where the edge arrives is the child. By de�nition a tree
cannot be connected and does not contain any cycles. From the
three graphs presented in Figure 2.2 only the second one is a tree.

De�nition 2.29. A graph that has exactly one node from
which there only start edges and from which there starts ex-
actly one path to every other node is called a tree.
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Chapter 3

D-Optimal Input Design
for Finite Memory
Models

In this chapter, a method to construct a D-optimal input sequence
for the class of �nite memory nonlinear models is presented. No-
tice that this class contains the �nite memory Wiener models. By
exploiting the �nite memory of the model, and limiting the input
amplitudes to a discrete set, the optimal input design problem can
be approximately formulated as a convex optimization problem.
This problem is solved numerically, using a dispersion-based op-
timization method. A graph-based method is used to generate a
time sequence that realizes this optimal design. To conclude the
method is illustrated on a numerical example.
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3.1 Problem statement
In this section, the OID problem for discrete �nite memory mod-
els is formally introduced. Assumptions on the model class, and
measurement conditions are made, to get a well de�ned analytical
formulation of the Fisher information matrix. Additionally, the
class of inputs is restricted to digital signals with a priori known
discrete levels. This limitation on the input is key in order to
obtain a tractable convex optimization problem.

3.1.1 Model class
The class of models is restricted to discrete nonlinear �nite memory
models. For these models, the output at a given time instance only
depends on the current, and a �nite number of past input samples.
The number of input samples on which the output of the model
depends is called the memory length of the model. The nonlinear
�nite memory model is nothing more than the nonlinear extension
of the �nite-impulse-response �lters.

De�nition 3.1. An input-output relation of a discrete �nite
memory model is given by

y0(t; � ) = GNL (u(t); u(t � 1); ::; u(t � n + 1) ; � ); (3.1)

whereu(t) is the input, y0(t; � ) is the noiseless output at time
t, and � 2 RN � are the parameters of the model. The function
GNL is nonlinear and is assumed to be di�erentiable with
respect to the parameters of the model.

3.1.2 Input class
The class of inputs is restricted to digital periodic sequences as
de�ned in De�nition 2.3. This implies that the input is a de-
terministic periodic sequences withP samples in a period, whose
amplitude can only take values from a �nite, prede�ned set.
By construction, this class of inputs has a limited range determ-
ined by the minimal and maximal value inside the set of possible
amplitude values. Due to the periodicity, any input sequence from
this class is uniquely determined by a sequence ofP samples. No-
tice that two sequences ofP samples that can be mapped on each
other through a cyclic shift of their samples represent the same
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3.1 Problem statement

periodic sequence.
In order to avoid identi�ability issues, it is assumed that the period
length is equal to or larger than the memory length of the model.
Moreover, it is assumed that the number of di�erent amplitude
values is su�ciently high to persistently excite the model.

3.1.3 Measurement conditions
In total, P input and output samples are measured under steady-
state conditions (see Assumption 2.5). Furthermore, it is assumed
that there is only measurement noise on the output, which is con-
sidered to be additive, zero mean, independent identically distrib-
uted (i.i.d), Gaussian, and independent of the input signal (see
Assumption 2.4). The measurement conditions can be summar-
ized as:

t 2 [1; :::; P ] (3.2)
u(t) = u0(t) (3.3)
y(t) = y0(t; � 0) + ny (t) (3.4)

ny (t) � N(0; � 2); (3.5)

where u0 is the applied input sequence,u is the measured input
sequence,y0 is model output as de�ned in (3.1), y the measured
output sequence, andny is the zero mean Gaussian noise sequence
with variance � 2.

3.1.4 Information criterion
To express the information content of an input sequence, the D-
optimality criterion is used, which means that the optimal input
sequenceuopt corresponds to the sequence for which the determ-
inant of the information matrix is maximal.

uopt = arg u max(det(M )) (3.6)

with uopt a signal out of the class of deterministic periodic se-
quences wit amplitude values drawn from the prede�ned amp-
litude set SA .
Given the assumptions, the Fisher information matrix can be com-
puted based on (2.35). For convenience this equation is repeated
below.

M =
1

� 2

�
@y0
@�

� � �
@y0
@�

�
; (3.7)
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where @y0
@� is anN � N � matrix containing the partial derivatives of

y0, and �� represents the transpose. Notice that the noise variance
� 2 only scales the Fisher matrix and therefore does not have any
in�uence on the optimal input.

3.1.5 List of assumptions

The considered problem can be summarized by the following list
of assumptions.

Assumption 3.1. Assumptions on the model class:

� The model class is restricted to nonlinear �nite memory
systems with known memory lengthn.

� The output of the model is assumed di�erentiable with
respect to the parameters of the model.

� The model is parametrized such that the parameters are
uniquely identi�able

� There exist a set of true parameters� 0. for which the
model describes the output of the system perfectly.

� The true model parameters � 0 are known during the
computation of the OID.

Assumption 3.2. Assumptions on the input class:

� The class of inputs will be restricted to discrete determ-
inistic periodic time sequences, with a period length of
P samples.

� The input can only take values from a �nite discrete
prede�ned set of A distinct amplitude values.

� It is assumed that the period lengthP is su�ciently
large in order to uniquely identify the model parameters.

Assumption 3.3. Assumptions of the measurement condi-
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3.1 Problem statement

tions:

� The system operates in steady-state during the experi-
ment.

� An integer multiple of P samples is measured.

� There is only additive output noise. Moreover the noise
is Gaussian, i.i.d, and independent from the input.

Assumption 3.4. Assumptions of the optimality measure:

� The estimator is assumed to be unbiased and asymptot-
ically e�cient.

� The optimality of the input is evaluated based on the
D-optimal information criterion.

� The experiment duration is long enough for the Fisher
information matrix to provide a good approximation of
�nite sample behavior of the estimator.

53



3.2 Convex problem formulation
The di�culty with which the presented OID problem is solved de-
pends strongly on the parametrization of the input sequence. The
most straightforward parametrization considers the time samples
of the input as parameters. Solving the problem with respect
to the time samples of the input leads to a nonconvex, nonlin-
ear optimization problem. The performance of such optimization
strongly depends on the initial value for the solution. Moreover
it is hard to judge if the found solution is a global or a local op-
timum.
Therefore, an alternative parametrization is proposed that ex-
ploits the structural properties of the model and input class, in
order to obtain a convex optimization problem. Such a problem
can be reliably solved numerically for the global optimum.
In this section, four important steps are made to formulate the
problem as a convex optimization. First, the concepts n-tuple
and frequency vector are introduced. Second, it is shown that the
Fisher information matrix can be parametrized as a convex com-
bination in which the convex coe�cients correspond to the entries
of the frequency vector. Third, the space of frequency vectors
is parameterized through the use of the signal generation graph.
Fourth, it is shown how the set of frequency vectors can be ap-
proximated by a convex space.
Based on the results presented in this section, the considered OID
problem can be solved with a two-step-procedure of which the
�rst step consists of �nding the most informative frequency vec-
tor, and the second step consists of generating a sequence that
realizes this optimal frequency vector. The numerical aspects of
this procedure are postponed to the next section.

3.2.1 Tuples and frequency vectors
Considering the model’s input-output-relation as given in (3.1), it
is clear that each output sampley(t) only depends onn successive
values (u(t � n + 1) ; :::; u(t � 1); u(t)) of the input sequence. An
ordered set ofn values each of which is drawn out of the prede�ned
amplitude set f u1; u2; :::uA g is called an n-tuple.

De�nition 3.2. An element c 2 f u1; u2; :::uA gn is called an
n-tuple. In total An di�erent n-tuples can be de�ned. Each
n-tuple can be uniquely labeled by a multidimensional index
(i 1; :::; i n ) with i 1; i 2; :::i n 2 f 1; 2; ::; Ag or a unique integer
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3.2 Convex problem formulation

index k 2 f 1; 2; ::; An g.

8i 1; i 2; :::i n 2 f 1; 2; ::; Ag; 9k 2 f 1; :::; An g :
(ui 1 ; ui 2 ; :::; ui n ) � c( i 1 ;i 2 ;:::;i n ) � ck

(3.8)

The relationship between both labels is described by

k �= i n +
n � 1X

k=1

(i k � 1) � A (n � k ) : (3.9)

Notice that (i n ; i n � 1; :::; i 1) is the representation ofk in base
A.

Example 3.1. In order to illustrate De�nition 3.2 consider the
binary amplitude set f 0; 1g. The set of all possible 3-tuples is:

f (0; 0; 0); (0; 0; 1); (0; 1; 0); (0; 1; 1); (1; 0; 0); (1; 0; 1); (1; 1; 0); (1; 1; 1)g:

Using the linear index introduced in (3.8) these n-tuples get the
following labels: f c1; c2; c3; c4; c5; c6; c7; c8g

Tuple sequence

Based on De�nition 3.2, it can be stated that for a �nite memory
model, an input signal is nothing more than a sequence of n-
tuples of which the tuple length is determined by the memory of
the model. An illustration of how a sequence is mapped onto its
associated sequence of tuples is depicted in Figure 3.1. Notice that
the �rst n � 1 tuples depend on the initial values of the model.
These values are resolved based on the periodicity of the input
signal.

De�nition 3.3. Given a periodic input sequence

u 2 f u1; :::; uA gP

the associated sequence of n-tuplessu is de�ned as

su = ( ck1 ; :::; ckP ) 2 (f u1; :::; uA gn )P

ck i (j ) = u(modP (i + ( j � n) � 1) + 1) ; (3.10)
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Figure 3.1: Example of how the n-tuples are constructed in the case of
a �nite memory model with n = 3 . Because the signal is periodic, it is
known that u(0) = u(P) and u(� 1) = u(P � 1).

where ci (j ) represents thej th entry in the ith n-tuple of the
associated sequence of n-tuples, andmodP (�) stands for the
modulo-P operation. The subtraction and addition of 1 in
the right hand side compensates for the fact that the indexing
starts at 1 and not at 0.

A sequence of n-tuples is called overlapping when for every pair
of successive n-tuples in the sequence, as well as for the pair con-
sisting of the last and �rst tuple, the last n � 1 values of the �rst
n-tuple in the pair and the �rst n � 1 values of the second n-tuple
in the pair are equal.

De�nition 3.4. A sequence of n-tuples is called overlapping
when

8i 2 f 1; :::; P � 1g; j 2 f 2; :::; ng :
ck i (j ) = ck i +1 (j � 1) and ckP (j ) = ck1 (j � 1):

(3.11)

Proving that any associated sequence is overlapping, can be done
by using (3.10) to expresses the tuples in (3.11) as an element of
u.

ck i (j ) = u(mod(i + j � n � 1) + 1) (3.12)
ck i +1 (j � 1) = u(mod(i + j � n � 1) + 1) (3.13)

ckP (j ) = u(mod(P + j � n � 1) + 1) (3.14)
ck1 (j � 1) = u(mod(j � n � 1) + 1) ; (3.15)

which shows that the equalities in (3.11) are satis�ed.
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3.2 Convex problem formulation

Corollary 3.4.1. Every associated sequence of n-tuplessu

is an overlapping sequence of tuples.
Proof: From (3.10) it follows that equations (3.12) till (3.15)
hold for every associated sequence, which immediately implies
(3.11).

Example 3.2. In order to illustrate De�nition 3.3 and Corol-
lary 3.4.1 consider the periodic input sequenceu = (1 ; 2; 3; 4; 5).
The associated sequence of 3-tuples is:

su = ((4 ; 5; 1); (5; 1; 2); (1; 2; 3); (2; 3; 4); (3; 4; 5)):

For every successive pair of 3-tuples, the last two values of the
�rst tuple in the pair and the �rst two values in the second tuple
are equal. The same property holds for the pair consisting of the
last and the �rst 3-tuple.

Through De�nition 3.3 every periodic sequence can be mapped
on an overlapping sequence of n-tuples. However, the de�nition
also implies the inverse mapping. By choosingj = n in (3.10) the
following equation is obtained:

8i 2 f 1; :::; Pg : u(i ) = ck i (n): (3.16)

In other words, it is su�cient to collect the last sample of every n-
tuple in the overlapping sequence of tuples to obtain its associated
periodic sequence.

Corollary 3.4.2. Given an overlapping sequence of n-tuples
su the associated periodic sequence can be found by applying
(3.16).
Proof: This is a direct result of De�nition 3.3.

Notice that De�nition 3.3 and Corollary 3.4.2 establish a one-
to-one relationship between the periodic input sequence and its
overlapping sequences of tuples.

Frequency vector

Since the output value for a given n-tuple is independent from the
other n-tuples in the signal, a �nite memory model can be seen as

57



a nonlinear static map that maps every n-tuple on a corresponding
output value. For a static nonlinearity that can only be excited
on a discretized input grid, it is known that the information of
an experiment only depends on the frequencies with which each
input value occurs.
Inspired by this insight, the frequency vector of the sequence of n-
tuples is introduced as the vector whose entries indicate how often
a given n-tuple occurs in this sequence. In Subsection 3.2.2 it is
shown that the Fisher information matrix of an input sequence is
completely determined by its frequency vector.

De�nition 3.5. The number of times an n-tuple occurs in
the period of u is called the frequency of that n-tuple. The
frequency vector� u 2 NA n

contains the frequency for each n-
tuple for a given signalu in the order described by the linear
index of De�nition 3.2.

Example 3.3. In order to clarify De�nition 3.5 consider that the
set of input values is restricted tof 0; 1g, that the model memory
length is n = 3 , and the following input sequence is given.

u = (0 ; 1; 0; 1; 0):

The associated sequence of 3-tuples can be represented as (based
on the notation in De�nition 3.2):

f c5; c2; c3; c6; c3g:

As a result the frequency vector of the input sequence is:

� u = (0 ; 1; 2; 0; 1; 1; 0; 0):

It is important to note that not every vector in NA n
for which the

sum of the elements is equal toP is automatically a frequency
vector, since there may not exists no associated sequence for this
vector. This can easily be illustrated by a counter example as
given in Example 3.4. A more in-depth analysis of the properties
of the frequency vector is postponed till Subsection 3.2.3.

Example 3.4. Consider a binary amplitude setf 0; 1g, a memory
length of3, and the vectorx = (1 ; 0; 0; 0; 0; 0; 0; 1). There exists no
sequence for which this vector is its frequency vector since the 3-
tuples (0; 0; 0) and (1; 1; 1) do not overlap. As a result, the vector
x is not a frequency vector.
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3.2 Convex problem formulation

3.2.2 Parameterizing the Fisher information mat-
rix

In this subsection it is shown that the Fisher information matrix
can be written as a convex combination of positive-semide�nite
matrices, where the convex coe�cients correspond to the scaled
entries of the frequency vector. Once established, this result auto-
matically implies that the cost function of the OID is a convex
function with respect to the frequency vector, since the determ-
inant of a convex combination of positive de�nite matrices is a
convex function with respect to the coe�cients of that combina-
tion [7].
Starting from (3.7) it is clear that the ij th element of the Fisher in-
formation matrix can be written as a sum over the time samples:

M (i; j ) =
1
� 2

PX

t =1

f i;j (t; u; � ) (3.17)

, where the function f i;j (t; u; � ) corresponds to the product of the
partial derivatives of y0 with respect to the i th and j th parameter,
evaluated at time instant t for a given input sequenceu(t). Due to
�nite memory of the model, f i;j depends at most onn successive
input values.

f i;j (t; u; � ) = f i;j (u(t � n + 1) ; :::; u(t � 1); u(t)) ; � ) (3.18)

. In other words, the function f i;j (t; u; � ) depends on the n-tuple
that ended at time t. Notice that the �rst n � 1 terms depend
upon samples with negative time index. Their values are determ-
ined through the periodicity of the input signal.
Since the number of possible n-tuples is �xed, the number of dif-
ferent terms in (3.17) is also �xed. If we compute the values of
f i;j for each possible n-tuple we can reorder the sum over time
such that we obtain a weighted sum over all possible n-tuples :

M (i; j ) =
1

� 2

A n
X

k=1

� u (k) � f i;j (ck ; � )

=
A n
X

k=1

� u (k)M ck (i; j ); (3.19)

where � u (k) are the entries of the tuple frequency vector, and the
matrix M ck corresponds to the Fisher information matrix com-
puted for the kth n-tuple and is independent from the input signal
u(t) for which M is computed.
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De�nition 3.6. The Fisher information matrix M ck cor-
responding to thekth n-tuple, is called the kth tuple Fisher
matrix:

M ck (i; j ) =
1
� 2

�
@y0
@�i

� T �
@y0
@�j

�
jck ; (3.20)

where @y0
@�i

stands for the partial derivative of the output with
respect to thei th parameters, evaluated for the tupleck .

In order to facilitate the optimization, equation (3.19) is divided
by the total number of samples in the signal. This leads to a
convex expression for the normalized Fisher information matrix.

M
P

=
A n
X

k=1

� u (k)
P

:M ck

=
A n
X

k=1

� �
u (k):M ck (3.21)

, where � �
u (k) are called the normalized frequencies. Notice that

by construction, the normalized frequencies have the properties of
convex coe�cients:

8k : � �
u (k) 2 f 0;

1
P

;
2
P

; :::; 1g and
A n
X

k=1

� �
u (k) = 1 (3.22)

, meaning that their values lie between 0 and 1, and that their
sum is exactly one.

De�nition 3.7. The frequency vector� u divided by the total
number of n-tuples is called the normalized frequency vector
� �

u 2 RA n

+ .

Theorem 3.1. For a �nite memory model excited by a peri-
odic digital input sequence, the normalized Fisher inform-
ation matrix can be expressed as a convex combination of
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3.2 Convex problem formulation

the tuple Fisher matrices in which the normalized frequencies
play the role of convex coe�cients.
Proof: See equations(3.17) till (3.22).

3.2.3 Parameterizing the search space
To optimize the determinant of the Fisher information matrix with
respect to the tuple frequency vector, a parametrization of the set
of frequency vectors is needed. Finding such a parametrization
is not straightforward since De�nition 3.5 de�nes a relationship
between the frequency vector and a periodic sequence that is very
’directional’. Mapping a periodic sequence onto its frequency vec-
tor is a simple task, as was illustrated in Example 3.3. However,
the opposite mapping is not explicitly de�ned. This makes it also
hard to evaluate if a given vector is a frequency vector or not.
To alleviate these shortcomings, the set of frequency vectors is re-
interpreted from a graph theoretical point of view. To make this
new interpretation possible, the signal generation graph is intro-
duced. Based on this graph, the set of frequency vectors can be
parametrized as a positive, overlapping, linear combination of ele-
mentary frequency vectors. The vector containing the coe�cients
of this combination is called the elementary design vector.
The elementary design vector has two major advantages over the
frequency vector. First, it is possible to evaluate with a simple
iterative scheme, if a given vector is an elementary design vec-
tor. Second, given the elementary design vector it is also straight-
forward to construct a periodic input sequence that realizes the
frequency vector described by the elementary design vector. Ad-
ditionally, it is proven that the Fisher information matrix can be
expressed as a convex combination of elementary Fisher matrices
in which the entries of the normalized entries of the design vector
play the role of convex coe�cients.

Signal generation graph

To explore the properties of the set of tuple frequency vectors,
an auxiliary construct called the signal generation graph is intro-
duced. For an overview of the graph theoretical concepts used in
this subsection see Section 2.2 in Chapter 2.

De�nition 3.8. Given the amplitude setf u1; u2; :::; uA g and
a memory length equal ton, the signal generation graph is
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de�ned as follows:

� The graph contains An � 1 nodes, one for every (n-1)-
tuple that can be made with the amplitude set.

� The graph contains An directed edges, one for every
n-tuple that can be made with the amplitude set.

� Every directed edge starts from the node with the (n-1)-
tuple that is obtained by removing the last sample from
the n-tuple of the edge and ends in the node with the
(n-1)-tuple obtained by removing the �rst sample of the
n-tuple of the edge.

Example 3.5. Consider a �nite memory model with n = 3 and
the binary amplitude set f 0; 1g. In total 2(3 � 1) di�erent 2-tuples
can be de�ned. So the associated graph contains four nodes. Ad-
ditionally 23 di�erent 3-tuples can be de�ned. This means that the
graph contains eight edges. The edge corresponding to the 3-tuple
(0; 0; 1) starts from the node with 2-tuple(0; 0) and arrives in the
node with 2-tuple (0; 1). If this reasoning is repeated for every
3-tuple, the graph in Figure 3.2 is obtained.
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Figure 3.2: The signal generation graph in the case of a memory length
of three and two binary amplitude values (circles represent nodes, and
arrows represent the directed edges).

A cyclic path in the signal generation graph can be described as
an overlapping sequence of n-tuples de�ned by the tuples that are
associated to the edges of this cyclic path. Through the mappings
de�ned in (3.10) and (3.16) a one-to-one relation between an over-
lapping sequence of n-tuples and a periodic input is established.
As a result there is also a one-to-one relationship between the cyc-
lic paths in the signal generation graph and periodic signals.
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3.2 Convex problem formulation

Knowing that a periodic sequence corresponds to a cyclic path in
the graph, and that the multiplicity vector indicates how often an
edge occurs in the path, it is clear that the frequency vector of
a periodic sequence coincides with the multiplicity vector of the
path related to this sequence (see De�nition 2.23). This implies
that the Fisher information matrix of a sequence only depends on
the edges in the path and not on the order in which they occur.

Corollary 3.8.1. The following statements about the signal
generation graph are true:

� There exists a one-to-one correspondence between the
periodic input sequences of period lengthP and the cyc-
lic paths that contains P edges in the signal generation
graph.

� The frequency vector of a periodic sequence is the mul-
tiplicity vector of its corresponding cyclic path.

Proof: Equation (3.10) and (3.16) establish a bijection
between the space of periodic sequences of lengthP and the
space of overlapping tuple sequences of lengthP. Addition-
ally, every cycle containingP edges in the signal generation
graph de�nes an overlapping sequence of tuples by construc-
tion. Therefore, there exists a one-to-one correspondence
between the periodic input sequences and the cyclic paths. The
second statement follows from De�nition 3.5, De�nition 2.23,
and the fact that every edge in the cycle corresponds to a tuple
in the sequence.

From Corollary 3.8.1 it follows that a vector can only be a fre-
quency vector if there exists at least one cycle in the signal gen-
eration graph that has this vector as multiplicity vector. This
implies that properties of the multiplicity vector can be automat-
ically attributed to the frequency vector. Theorem 2.2 states that
the sum of the multiplicities of the outgoing and incoming edges
needs to be equal in every node of a cycle. Therefore the same
property must hold for the frequency vector.

Corollary 3.8.2. For every frequency vector� u the follow-
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ing equality must hold

8i 1; i 2; :::; i n � 1 2 f 1; :::; Ag
AX

j =1

� u (j; i 1; :::; i n � 1) =
AX

j =1

� u (i 1; :::; i n � 1; j ); (3.23)

where the left hand side expresses the sum of multiplicities of
the incoming edges, and the right hand side corresponds to
the sum of multiplicities of the outgoing edges.
Equivalently, (3.23) can be expressed using the scalar indexk
as de�ned in (3.8).

8m 2 [1; : : : ; An � 1] :
AX

j =1

� u (j + ( m � 1)A) =
AX

j =1

� u (m + ( j � 1)An � 1):

Proof: Given that the frequency vector and the multipli-
city vector coincide due to the one-to-one correspondence
between periodic sequences and cycles in the signal genera-
tion graph, the property of the multiplicity vector described
in Theorem 2.2 immediately translates to the frequency vec-
tor.

The equalities in Corollary 3.8.2 are necessary but not su�cient
for a vector to be a frequency vector, since it is still possible that
the vector satisfying (3.23) describes a set of edges that form non-
overlapping cycles instead of one single cycle. For an illustration
of this problem see vectory in Example 3.6.

Example 3.6. Consider the same conditions as in Example 3.5
and the three vectors

x = (1 ; 1; 2; 0; 1; 1; 0; 0)

y = (1 ; 0; 1; 0; 0; 1; 0; 1)

z = (1 ; 1; 1; 0; 0; 1; 0; 0):

Each of these vectors can be interpreted as a collection of edges in
the signal generation graph. By looking at the graphical represent-
ations of these vectors in Figure 3.3, it becomes clear that bothx
and y satisfy (3.23), while z does not. Moreover, it is clear that
there exists a cycle that hasx as multiplicity vector, which is not
the case fory. As a result only x is a frequency vector.
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3.2 Convex problem formulation
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Figure 3.3: Graphical representation of the three vectors from Example
3.6. Numbers indicate the multiplicity of each edge. Only x is a fre-
quency vector.

Elementary design vector

Corollary 3.8.1 allows us to derive properties about the frequency
vectors, based on the properties of the cyclic paths in the sig-
nal generation graph. From graph theory (see Theorem 2.4) it
is known that every cycle can be expressed as a combination of
elementary cycles. Additionally, the multiplicity vector of a com-
bined cycle is equal to the sum of the multiplicity vectors of the
two separate cycles (see Theorem 2.3). As a result, any frequency
vector can be expressed as a positive linear combination of the fre-
quency vectors of the elementary cycles in the signal generation
graph (see Figure 3.4).

De�nition 3.9. A frequency vector that represent the multi-
plicities of an elementary cycle in the signal generation graph
is called elementary frequency vector.

Example 3.7. Consider again the signal generation graph from
Figure 3.2. As can be seen in Figure 3.4, six di�erent element-
ary cycles exist inside this graph. The corresponding elementary
frequency vectors are:

� e1 = (1 ; 0; 0; 0; 0; 0; 0; 0) � e4 = (0 ; 1; 1; 0; 1; 0; 0; 0)
� e2 = (0 ; 0; 0; 0; 0; 0; 0; 1) � e5 = (0 ; 0; 0; 1; 0; 1; 1; 0)
� e3 = (0 ; 0; 1; 0; 0; 1; 0; 0) � e6 = (0 ; 1; 0; 1; 1; 0; 1; 0)

:
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Figure 3.4: The elementary cycles of the signal generation graph in the
case of a memory length of three and two binary amplitude values
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3.2 Convex problem formulation

Theorem 3.2. Any frequency vector can be written as a
positive linear combination of the elementary frequency vec-
tors.

8� u ; 9 e : � u =
N eX

i =1

 e(i )� ei ; (3.24)

whereNe is the number of elementary cycles in the graph,� ei

is the frequency vector of thei th elementary cycle, and e is
a vector of Ne positive coe�cients.
Proof: Based on Theorem 2.4 and Theorem 2.3 it follows
that the multiplicity vector of any periodic cycle can be ex-
pressed as a linear combination of the multiplicity vectors of
the elementary cycles. Given that the frequency vector and
the multiplicity vector coincide and De�nition 3.9, this result
for the multiplicity vector translates to (3.24).

Example 3.8. To illustrate Theorem 3.2 consider the same con-
ditions as in Example 3.5 and the following frequency vector� =
(0; 1; 1; 1; 1; 1; 1; 0). This vector can be expressed as

� = � e4 + � e5 = � e3 + � e6 :

This example illustrates that there can exist di�erent combina-
tions of elementary frequency vectors that correspond to the same
frequency vector.

It is important to note that not every positive linear combination
of the elementary cycles is automatically a frequency vector. Only
when the elementary cycles in the combination are overlapping,
is the positive linear combination a frequency vector. If the ele-
mentary cycles are not overlapping, they can not be combined in a
single path, as a result there exists no periodic sequence of which
the positive linear combination is the frequency vector.

Theorem 3.3. A positive linear combination of elementary
frequency vectors is a frequency vector only if the elementary
cycles, associated with the elementary frequency vectors with
non-zero coe�cients in the combination, are overlapping.
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Proof: If the elementary cycles are not overlapping, their
combination is a disjoint path and therefore not a cycle. For
that reason the multiplicity vector of a disjoint path can not
be a frequency vector.

Theorem 3.2 makes it possible to parametrize the search space of
the OID problem based on an overlapping linear combination of
the elementary frequency vectors.

� u =
N eX

i =1

 e(i )� ei ; (3.25)

where Ne is the number of elementary cycles in the graph,� ei is
the frequency vector of the i th elementary cycle, and e is a pos-
itive natural vector expressing how often each elementary cycle
is present in u. It is assumed that the values of  e are chosen
such that the elementary cycles corresponding with nonzero coef-
�cient are overlapping. When this condition is met,  e is called
an elementary design vector.

De�nition 3.10. A vector  e 2 NN e is called an element-
ary design vector if the elementary cycles corresponding with
nonzero coe�cients in this vector are overlapping.

Evaluating if  e corresponds to an overlapping set can be done
with a simple iterative algorithm of which the pseudo-code is given
in Algorithm 1.
The algorithm accepts one inputset1, which is the set of element-
ary cycles corresponding to the nonzero entries in e. It then
moves one of these cycles to an initially empty auxiliary setset2.
For every cycle in set1 the algorithm checks if the cycle overlaps
with a cycle in set2. If this is the case, the cycle is moved from
set1 to set2. This process is repeated until no more cycles can be
moved from set1 to set2. At this point there are two possibilities:
either set1 is empty in which case e is overlapping, or set1 still
contains cycles that do not overlap with any cycle in set2 which
indicates that  e is not overlapping and therefore not an element-
ary design vector.
The elementary design vector also enables the generation of a peri-
odic sequence that realizes the frequency vector described by the
elementary design vector. It is su�cient to combine the overlap-
ping set of elementary cycles into one single cycle. This task can
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3.2 Convex problem formulation

Algorithm 1 Check if set1 is a set of overlapping cycles

Input: set1 : a set of elementary cycles
Output: bool : true if set1 is as set of overlapping vectors

set2  makeEmptySet()
set2  addCycle(set1{1}, set2)
set1  removeCycle(set1{1}, set1)
boolChangedSet2 true

while boolChangedSet2do
for cycle1 in set1 do

for cycle2 in set2 do
if overlaps(cycle1,cycle2) then

set2  addCycle(cycle1,set2)
set1  removeCycle(cycle1,set2)
boolChangedSet2 true

end if

end for
end for

end while

return bool  isEmpty(set1)
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be performed by slightly changing the algorithm described before.
Instead of adding cycles toS2, the cycles are combined into one
single cycle, and it is checked if any of the cycles inS1 overlap
with this cycle. If this is the case, they are removed fromS1 and
added to the cycle.

Example 3.9. Consider the settings described in Example 3.5
and the elementary design vector e = (2 ; 1; 1; 1; 1; 0), where the
numbering of the elementary cycles is the same as depicted in
Figure 3.2. To obtain the sequence realizing this elementary design
vector, an arbitrary elementary cycle is selected. Assume that the
generation starts from the �rst elementary cycle. Since this cycle's
coe�cient is two, it has to be added twice. The combination of
the cycle with itself can be described by the following sequence of
tuples.

(000
1

; 000
1

)

Looking at the remaining cycles, it can be observed that only the
fourth overlaps with the �rst. Adding the fourth elementary cycle
to the sequence of tuples gives

(000; 001; 010; 100
4

; 000)

Now the third and �fth cycle are also overlapping with the cycle.
Adding these two cycles gives

(000; 001; 010; 101
3

; 010; 101; 011; 110
5

; 100; 000)

Finally the second elementary cycle can be added

(000; 001; 010; 101; 010; 101; 011; 111
2

; 110; 100; 000)

By collecting the �nal sample of every tuple in the sequence, the
following input sequence is obtained

u = (01010111000)

Notice that this is not the only sequence that realizes the element-
ary design vector. Other sequences are obtained, if the cycles are
added in a di�erent order or at a di�erent location.
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3.2 Convex problem formulation

Reparametrizing the Fisher information matrix

To conclude this subsection, the Fisher information matrix is re-
parametrized based on the elementary design vector e. To obtain
again a convex combination, some extra scaling is performed

� u =
N eX

i =1

( e(i )Nei )
� ei

Nei

� u

P
=

N eX

i =1

( e(i )Nei )
P

� ei

Nei

� �
u =

N eX

i =1

 �
e (i )� �

ei
; (3.26)

where Nei is the number of n-tuples in the ith elementary path,
 �

e (i ) are convex coe�cients, and � �
ei

is the normalized frequency
vector of the ith elementary cycle. Equation (3.26) states that any
normalized frequency vector can be expressed as a convex com-
bination of the relative elementary frequency vectors.
If (3.26) is substituted in (3.21) the following expressions are ob-
tained for the Fisher information matrix

M
P

=
A n
X

k=1

N eX

i =1

 �
e (i )� �

ei
(k)M ck

=
N eX

i =1

 �
e (i )

A n
X

k=1

� �
ei

(k)M ck

=
N eX

i =1

 �
e (i )M ei ; (3.27)

where M ei is the Fisher information matrix of the ith elementary
frequency vector. From (3.27) it follows that the Fisher inform-
ation matrix can be expressed as a convex combination of the
elementary Fisher information matrix.

De�nition 3.11. The Fisher information matrix M ei cor-
responding to the i th elementary frequency vector, is called
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the i th elementary Fisher matrix:

M ei =
A n
X

k=1

� ei (k)M ck : (3.28)

De�nition 3.12. An elementary design vector where theith

element is scaled with the factorN e i
P is called the normalized

elementary design vector.

Theorem 3.4. The normalized Fisher information matrix
can be expressed as a convex combination of the elementary
Fisher matrices, where the convex coe�cients correspond to
the normalized elementary design vector.
Proof : See equations(3.26) till (3.27).

3.2.4 Approximating the search space

An optimization problem is convex only if both the cost function
and the search space are convex. Theorem 3.1 shows that the
cost function is a convex function with respect to the normalized
frequency vector. Unfortunately, the set of normalized frequency
vectors X 0 is a discrete set. A search over such a set leads to an
optimization which has combinatorial complexity and is therefore
very time consuming. To avoid this combinatorial complexity, the
set of frequency vectors is approximated with a continuous convex
space. This allows for a convex optimization over the approximate
space.
After performing this convex optimization, the obtained solution
needs to be projected back into the set of frequency vectors. In
the ideal case, one would like to project the optimized solution
onto the frequency vector for which the information is closest to
the information of the optimized solution. However, performing
this projection is in itself an optimization problem of combinat-
orial complexity. Therefore, some alternative ad-hoc projections
are presented that can be implemented without the need of an op-
timization step. Unfortunately, performing these projections may
yield a suboptimal �nal solution.
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3.2 Convex problem formulation

In total, three di�erent approximations of the frequency vector set
are considered. For each approximation a set of vectors spanning
the space and an ad-hoc projection are given. Since every approx-
imations has its own bene�ts and shortcomings, choosing which
approximation to use is very problem dependent. For more de-
tails on the generation of the vectors spanning the approximative
search space, refer to Subsection 3.3.1.

Space of convex coe�cients

The �rst approximation extends the set of normalized frequency
vectors to the space of vectors whose entries are all positive and
sum to one. This space will be referred to as the space of con-
vex coe�cients. Computing a set of vectors spanning this convex
space is computationally inexpensive. However, projecting the
optimal design back onto the set of frequency vectors is more in-
volved, since the vectors from this space do not necessarily satisfy
(3.23).

De�nition 3.13. The space of convex coe�cients X 1 is
de�ned as

X 1 = f � � 2 RA n

+ j
A n
X

i =1

� � (i ) = 1 g: (3.29)

Notice that in (3.23) the subscript u is omitted since it can not
be guaranteed that a periodic sequenceu exists that has � as as-
sociated frequency vector.
The convex spaceX 1 can be spanned by the set of orthonormal
basis vectors� �

bi
of RA n

+ of which the computation is trivial. Ex-
pressingX 1 based on the set of vectors� bi gives

X 1 = f � � 2 RA n

+ j9 b 2 RN b
+ :

N bX

i =1

 �
b (i ) = 1 ; � � =

N bX

i =1

 �
b (i ) � � �

bi g; (3.30)

where  �
b is called the convex design vector,Nb indicates the num-

ber of orthonormal basis vectors, and� �
bi

is de�ned as

� �
bi

(j ) = 1 ( 8j = i )
� �

bi
(j ) = 0 ( 8j 6= i )

(3.31)

After denormalization, a vector � � 2 X 1 can be interpreted as
an experiment ofN measurements, where each measurement con-
sists of applying a single n-tuple to the model and measuring the
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corresponding output sample. Therefore, the Fisher information
matrix for an element in X 1 can still be computed based on The-
orem 3.1.
A naive way to project an element ofX 1 onto the set of frequency
vectors is to concatenate all the n-tuples into one long sequence.
However, this leads to a sequence for which onlyP out of the n �P
samples are optimized. As a result it can be expected that a lot
of performance is lost compared to the original design.
An alternative way to project an element of X 1 is to �rst make
sure that (3.23) is satis�ed and afterwards add additional trans-
ition tuples to connect possible non-overlapping cycles. To impose
(3.23) onto a vector of X 1, the signal generation graph is decom-
posed into a set of elementary cycles such that each edge is only
part of one cycle. Based on this decomposition, the multiplicity
of each edge is replaced by the average multiplicity computed for
the elementary cycle containing this edge.

Example 3.10. Consider a �nite memory model with a memory
length of three (n = 3) and the binary amplitude setf 0; 1g. The
vectors spanning the space of convex coe�cients are:

� �
b1

= (1 ; 0; 0; 0; 0; 0; 0; 0) � �
b5

= (0 ; 0; 0; 0; 1; 0; 0; 0)
� �

b2
= (0 ; 1; 0; 0; 0; 0; 0; 0) � �

b6
= (0 ; 0; 0; 0; 0; 1; 0; 0)

� �
b3

= (0 ; 0; 1; 0; 0; 0; 0; 0) � �
b7

= (0 ; 0; 0; 0; 0; 0; 1; 0)
� �

b4
= (0 ; 0; 0; 1; 0; 0; 0; 0) � �

b8
= (0 ; 0; 0; 0; 0; 0; 0; 1)

:

Elementary convex space

An alternative approximation extends the set of normalized fre-
quency vectors to the space of convex combinations of the nor-
malized elementary frequency vectors. In this space all vectors
automatically satisfy (3.23) which facilitates the projection onto
the set of frequency vectors. However, computing the set of ele-
mentary vectors spanning this space can be very time consuming
if not intractable for medium and large sized problems.

De�nition 3.14. The space of convex combinations of the
normalized elementary frequency vectors can be de�ned as

X 2 = f � � 2 RA n

+ j9  �
e 2 RN e

+ :
N eX

i =1

 �
e (i ) = 1 ; � � =

N eX

i =1

 �
e (i ) � � �

ei
g;(3.32)
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3.2 Convex problem formulation

where �
e corresponds to the previously introduced normalized

elementary design vector, and� �
ei

are the normalized element-
ary frequency vectors.

Notice that every � 2 X 2 automatically satis�es the equality of
Corollary 3.8.2 since any convex combination of vectors that sat-
isfy (3.32), also satis�es (3.23).
After denormalization, a vector � 2 X 2 can be interpreted as an
experiment during which di�erent input sequences, related to the
elementary cycles, are applied in succession without taking the
transition from one sequence to the other into account. The relat-
ive duration of each of these sequences is expressed by the entries
of the elementary design vector. As a result the Fisher information
matrix of a vector in X 2 can be computed based on Theorem 3.4.
When projecting elements fromX 2 onto the set of frequency vec-
tors, non-overlapping cycles need to be connected into one single
cycle. Therefore, some additional transition tuples need to be ad-
ded. In the best case, only2 � (M � 1) tuples need to be added
with M the number of non-overlapping cycles. In the worst case,
not more than A (n � 1) transition tuples are needed to connect all
cycles, since there exists always an elementary cycle in the signal
generation graph that visits all nodes. Adding this cycle automat-
ically connects all disjoint cycles.

Example 3.11. Consider a �nite memory model with a memory
length of three (n = 3) and the binary amplitude setf 0; 1g. For
this problem six di�erent elementary cycles are present in the sig-
nal generation graph (see Example 3.7). The corresponding nor-
malized elementary frequency vectors, which span the elementary
convex space, are:

� �
e1

= (1 ; 0; 0; 0; 0; 0; 0; 0) � �
e4

= (0 ; 1
3 ; 1

3 ; 0; 1
3 ; 0; 0; 0)

� �
e2

= (0 ; 0; 0; 0; 0; 0; 0; 1) � �
e5

= (0 ; 0; 0; 1
3 ; 0; 1

3 ; 1
3 ; 0)

� �
e3

= (0 ; 0; 1
2 ; 0; 0; 1

2 ; 0; 0) � �
e6

= (0 ; 1
4 ; 0; 1

4 ; 1
4 ; 0; 1

4 ; 0)
:

Uniquely non-zero symmetric convex space

The disadvantage of the previous approximation is that all ele-
mentary cycles of the signal generation graph need to be known
before the elementary frequency vectors can be computed. For
medium and large sized graphs this becomes a very time consum-
ing task. To reduce the computational cost, one could use a subset
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of the elementary cycles to describe the search space. However,
using an arbitrary subset may lead to the exclusion of certain
amplitude values or transition in the input signal.
The uniquely non-zero symmetric set, as de�ned in De�nition 3.15,
is a subset of the elementary frequency vectors which still contains
all nodes and all edges in the signal generation graph. The set con-
tains exactly one vector for every multiset of cardinality n that
can be generated fromf 1; :::; Ag. The multidimensional indexes of
the non-zero entries of the vector are given by the permutations of
the multiset. The value of these entries corresponds to the inverse
of the number of permutations of this multiset.

De�nition 3.15. The vectors of the uniquely non-zero sym-
metric set f � �

s1
; � �

s2
; :::; � �

sN s
g, which are elements ofRA n

+ , are
de�ned by the following property

8m 2 M n
f 1;:::;A g; 9!j 2 f 1; :::; Nsg :

8p 2 Pm : � �
sj

(p(1); :::; p(n)) = 1
N P m

8p =2 Pm : � �
sj

(p(1); :::; p(n)) = 0 ;

where M n
f 1;:::;A g stands for the set containing all multisets of

cardinality n that can be made with the valuesf 1; :::; Ag, Ns

stands for the number of elements inM n
f 1;:::;A g, Pm stands

for the set of permutations that can be generated with the
multiset m, and NPm is the number of elements inPm .

From combinatorics it follows that the number of vectors in the
uniquely non-zero symmetric set is equal to

Ns =
(n + A � 1)!
n!(A � 1)!

: (3.33)

Each of these vectors will haveNPm non-zero elements.

NPm =
n!

n1!n2!; :::; nA !
; (3.34)

wherenk stands for the number of times the valuek occurs in the
multiset m.
The uniquely non-zero symmetric set has some interesting prop-
erties from which the set derives its name. These properties are
listed in Corollary 3.15.1. Addtioanlly the vectors of the set can
be generated in a e�cient and systematic. For more details about
the computation of the uniquely non-zero symmetric set see Sub-
section 3.3.1.
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3.2 Convex problem formulation

Corollary 3.15.1. The following four properties hold for
the vectors of the non-overlapping set:

1. positivity property: 8k; 8j : � �
sj

(k) � 0

2. unity sum property: 8j :
P A n

k=1 � �
sj

(k) = 1

3. uniquely non-zero property: 8k; 9!j : � �
sj

(k) > 0

4. symmetry property:
8j; 8m 2 M n

f 1;:::;A g; 8p; q 2 Pm :
� �

sj
(q1; q2; :::; qn ) = � sj (p1; p2; :::; pn )

Proof: All properties are direct implications from De�ni-
tion 3.15

The �rst three properties of Corollary 3.15.1 imply that a convex
combination of the uniquely non-zero symmetric set is a vector
of convex coe�cients. The fourth property states that vector ele-
ments that can be mapped on each other through a permutation
of their multidimensional indexes are equal. As a result all vectors
in the uniquely non-zero symmetric set, as well as every convex
combination of this set satisfy (3.23).

Example 3.12. Consider again a �nite memory model with a
memory length of three(n = 3) and the binary amplitude setf 0; 1g
(this is the same setting as in Example 3.5). For this problem four
di�erent multisets can be de�ned:

M 3
f 0;1g = ff 1; 1; 1gf 1; 1; 2gf 1; 2; 2gf 2; 2; 2gg:

The corresponding uniquely non-zero symmetric set is

� �
s1

= (1 ; 0; 0; 0; 0; 0; 0; 0) � �
s2

= (0 ; 1
3 ; 1

3 ; 0; 1
3 ; 0; 0; 0)

� �
s3

= (0 ; 0; 0; 1
3 ; 0; 1

3 ; 1
3 ; 0) � �

s4
= (0 ; 0; 0; 0; 0; 0; 0; 1)

In this example, the uniquely non-zero symmetric set is a subset
of the elementary set. However, this observation cannot be gener-
alized to arbitrary values ofn and A.

The third approximation replaces the set of normalized frequency
vectors with the space of convex combinations of the uniquely
non-zero symmetric vectors. This set of vectors needs less time to
be computed than the elementary frequency vectors but excludes
certain frequency vectors from the search space.
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De�nition 3.16. The space of convex combinations of
uniquely non-zero symmetric frequency vectorsX 3 is de�ned
as

X 3 = f � � 2 RA n

+ j9 �
s 2 RN s :

N sX

i =1

 �
s (i ) = 1 ; � =

N sX

i =1

 �
s (i )� �

s i g;(3.35)

where  �
s is called the uniquely non-zero symmetric design

vector, and Ns indicates the number of uniquely non-zero
symmetric design vectors.

Notice that X 3 is always a subset ofX 2, but that X 0 is not ne-
cessarily a subset ofX 3. In summary, the following relations exist
between the di�erent convex sets.

8A; n : X 0 � X 2 � X 1 and X 3 � X 2 but X 0 6� X 3 : (3.36)

The Fisher information matrix for an element from X 3 can be com-
puted as a convex combination of the Fisher information matrix
associated to the vectors from the uniquely non-zero symmetric
set.

M � � 2 X 3 =
N sX

k=1

 �
s (k)M sk ; (3.37)

whereM si is the ith the uniquely non-zero symmetric Fisher mat-
rix as de�ned in De�nition 3.17.

De�nition 3.17. The Fisher information matrix M si cor-
responding to thei th vector from the uniquely non-zero sym-
metric set is called the i th uniquely non-zero symmetric
Fisher matrix:

M si =
A n
X

k=1

� �
si

(k)M ck : (3.38)

3.2.5 Decoupling memory lengths
Till now it was explicitly assumed that the memory length of the
model and the memory length of the signal generation graph are
equal. Under this assumption, the mapping between the cycles in
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3.2 Convex problem formulation

the signal generation graph and the space of frequency vectors is
a bijection. However, one could wonder what would happen if the
memory lengths are decoupled, meaning that the memory length,
which is mentioned in De�nition 3.8, is no longer chosen equal to
n. In this section, it is explained and illustrated why choosing
the length of the subsequences equal to the model, is the most
optimal choice, both theoretically and computationally.
If the memory length of the model is longer than the memory
length of the signal generation graph, the mapping between the
cycles and frequency vectors becomes an injection, because certain
frequency vectors do not have a corresponding cycle in the signal
generation graph. Moreover, the frequency vectors associated to
the elementary cycles are not su�cient to describe the whole set
of frequency vectors. Since the signal generation graph is used to
de�ne the search space, some inputs, with distinct information,
are omitted during the optimization. As a result, the OID may
become suboptimal.

Example 3.13. Assume that the memory length of the model is
three (n = 3 ), and that the memory of the signal generation graph
is chosen equal to two. To keep the analysis as simple as possible,
assume also that the amplitudes are restricted tof 0; 1g. Under
these assumptions the signal generation graph is equal to Fig-
ure 3.5. In this graph three elementary cycles are present. Map-
ping these sequences to their corresponding normalized elementary
frequency vectors gives the �rst three vectors in Table 3.1. How-
ever, from Example 3.11 it is known that three additional vectors
are needed to describe the set of frequency vectors. Considering
only the �rst three vectors would clearly be a limitation on the
search space.

If the memory length of the model is shorter than the memory
length of the signal generation graph, the mapping between the
cycles and frequency vectors becomes a surjection. This implies
that di�erent cycles are mapped on the same frequency vector,
and that not all frequency vectors associated to the elementary
cycles are needed to describe the whole set of frequency vectors.
Therefore, considering a longer memory for the signal generation
graph does not expand the search space, but does increase the
computational cost associated to the computation of the element-
ary cycles.

Example 3.14. Assume that the memory length of the model is
two (n = 2 ) and that the memory of the signal generation graph is
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tuples � e1 � e2 � e3 � e4 � e5 � e6

000 1 0 0 0 0 0
001 0 0 0 1/3 0 1/4
010 0 0 1/2 1/3 0 0
011 0 0 0 0 1/3 1/4
100 0 0 0 1/3 0 1/4
101 0 0 1/2 0 1/3 0
110 0 0 0 0 1/3 1/4
111 0 1 0 0 0 0

Table 3.1: Elementary frequency vectors for model memory length 3
and amplitude set f 0; 1g. If the memory length of the signal generation
graph is 2, only the �rst three parameters are found.
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Figure 3.5: The signal generation graph in the case of a memory length
of two, and a binary amplitude set, and its three elementary cycles
(circles represent nodes and arrows represent the directed edges).
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3.2 Convex problem formulation

tuples � e1 � e2 � e3 � e4 � e5 � e6

00 1 0 0 1/3 0 1/4
01 0 0 1/2 1/3 1/3 1/4
10 0 0 1/2 1/3 1/3 1/4
11 0 1 0 0 1/3 1/4

Table 3.2: Elementary frequency vectors for model memory length 2
and amplitude set f 0; 1g. The last three vectors can be expressed as a
convex combination of the �rst three and are therefore redundant.

chosen equal to three. Moreover, assume that the amplitudes are
restricted to f 0; 1g. Under these assumptions, the signal genera-
tion graph and its elementary cycles are depicted in Figure 3.6.
Mapping the six elementary cycles to their corresponding normal-
ized elementary frequency vectors yields the values in Table 3.2.
Notice that the last three frequency vectors are convex combina-
tions of the �rst three. Therefore they do not contribute to the
description of the search space. The �rst three vectors would also
be found for a signal generation graph with a memory length of
two.

The reasoning based on the above examples can be generalized for
problems with an arbitrary number of amplitudes and arbitrary
memory length. Therefore it can be concluded that the OID is
only optimal if the memory of the model and the memory of the
signal generation graph are chosen equal. If the memory of the
signal generation graph is chosen shorter than the memory of the
model, the search space becomes too restrictive. If the memory of
the signal generation graph is chosen longer than the memory of
the model, the same design found is found as when the memories
are equal, but at a higher computational cost.
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Figure 3.6: Left: The signal generation graph in the case of a memory
length of three and two binary amplitude values (circles represent nodes
and arrows represent the directed edges). Right: The elementary cycles
of the signal generation graph.
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3.3 Numerical aspects of the OID problem

3.3 Numerical aspects of the OID prob-
lem

In the previous section, it is shown that the OID problem for �nite
memory models, excited by a digital periodic input sequence, can
be approximately represented with a convex optimization problem
of the following form:

 �
x;Dopt � arg �

x
max log

 

det(
N xX

k=1

 �
x (k) � M x k )

!

s:t: 8k : 0 �  �
x (k) � 1 (3.39)

s:t:
N xX

k=1

 �
x (k) = 1 ;

where the normalized design vector �
x contains convex coe�-

cients, and the interpretation of M x k and Nx depends on the
chosen approximation of the search space.
Notice that the cost function of the optimization was slightly
changed by taking the logarithm of the D-optimality criterion.
This does not alter the argument of maximum since the logar-
ithm is a monotonic increasing function. Adding the logarithm to
the cost facilitates the discussion in Subsection 3.3.3.
Solving this problem consists of four di�erent steps. First, all
vectors spanning the search space are generated. Second, their
corresponding Fisher information matrices are computed. Third,
a convex optimization is solved in order to �nd the optimal design
vector. Fourth, an optimal input sequence is generated that real-
izes the optimal design vector. In this section, the computational
aspects of every step are explained in detail.

3.3.1 Generating the set spanning the search
space

Before the matricesM x k can be computed, the set of vectors span-
ning the search space need to be known. The computational
complexity of this task strongly varies between approximations.
Computing the set of design vectors spanning the space of convex
coe�cients X 1 is trivial using (3.31). In contrast, computing the
set of vectors spanning the elementary convex spaceX 2 or the
uniquely non-zero symmetric convex spaceX 3 is far less straight-
forward.
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Generating the elementary convex space

The set of vectors spanningX 2 corresponds to the normalized
elementary frequency vectors. Each of these vectors is associated
with an elementary cycle in the signal generation graph. Finding
these elementary cycles can be done by applying a depth-�rst ex-
haustive search in every node of the graph. In Algorithm 2, the
pseudo-code of the search algorithm is given. When performing
the depth �rst search, it is assumed that the nodes in the signal
generation graph are numbered based on the linear index of their
tuples.
The depth-�rst exhaustive search algorithm starts at an arbitrary
node calledstartNode. Initially, the algorithm puts currentNode
equal to startNode and addscurrentNode to a list of nodes called
path. This list is used to keep track of the path that it followed
from the start node to the current node.
Next, the algorithm creates a list of nodes, calledaccNodes, con-
taining all nodes that are accessible fromcurrentNode by following
an outgoing edge in the signal generation graph. Nodes that are
present in the path between the current node and start node are
omitted from accNodes. If the list accNodes is not empty, the
node with the lowest index from accNodesbecomes the new cur-
rent node and is also added to the path. This step is repeated
until a node is found that has no valid accessible nodes.
When accNodesis empty, the algorithm checks whether thestart-
Node is accessible fromcurrentNode. If this is the case, the path
between startNode and currentNode is an elementary cycle and
therefore stored.
Regardless of whether an elementary cycle was found, the al-
gorithm performs a backtracking step. The second to last node in
path becomes the new current node, and all nodes accessible from
the new current node are listed inaccNodes. However, to avoid
exploring the same part of the graph, all nodes with an index lower
then last node of path are removed. When no longer needed, the
last node from path is also removed. From the remaining nodes
in accNodes the one with the lowest index is selected, and the
algorithm continuous the exploration of the graph.
Eventually path will become empty due to the backtracking steps.
When this happens, the search is terminated, and all elementary
cycles containing startNode are found. By repeating this search
algorithm for every node in the signal graph, all elementary cycles
in the graph are obtained.

Example 3.15. Consider the setting of a binary amplitude set
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3.3 Numerical aspects of the OID problem

Algorithm 2 Depth-�rst search

Input: startNode: a node in the signal generation graph
Output: stores all elementary cycles containing the startNode

path  makeEmptyPath()
path  addNode(startNode,path)
currentNode  startNode
accNodes getAccessibleNodes(currentNode)

while isNotEmpty(path) do

for node in accNodesdo
if isElementOf (node,path) then

accNodes removeNode(node,accNodes)
end if

end for

if IsNotEmpty(accNodes) then
currentNode  getLowestNode(accNodes)
path  addToPath(currentNode,path)
accNodes getAccessibleNodes(currentNode)

else
if isElementOf(startNode,accNodes) then

store path
end if
currentNode  getSecondLastNode(path)
accNodes getAccessibleNodes(currentNode)
accNodes removeLowerNodes(getLastNode(path),accNodes)
path  removeLastNode(path)

end if

end while
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Figure 3.7: On the left: Signal generation graph for a binary amplitude
set and memory length of three. In the middle: The search tree starting
from node one. On the right: search tree starting form node two.

f 0; 1g and a �nite memory model with a memory length of three
(n = 3) , similar to Example 3.5. If the nodes are numbered by
the linear index of their tuples (see De�nition 3.2) then the signal
generation graph on the left in Figure 3.7 is obtained.
Note, that the order in which the algorithm explores the graph,
can be represented by a tree (see De�nition 2.29) of which each
node contains a reference to a node in the signal generation graph.
The root node of this tree refers to the start node of the algorithm.
Additionally, each tree nodetk has a child node for every node in
the graph that is accessible from the graph node to whichtk refers
and that is not referred to by a tree node in the path connecting
tk and the root node.
A depth-�rst exhaustive search starting from node 1 in the graph
yields the search tree in the middle of Figure 3.7. Every path
connecting the root node with a black node correspond to an ele-
mentary cycle. The numbers on the top right of the black nodes
indicates in what order the elementary cycles were found. In total
three di�erent elementary cycles are found starting from node 1.
Repeating the algorithm for the second node results in the search
tree on the right in Figure 3.7. This time four elementary cycles
are found. However, the �rst and third cycle were already dis-
covered during the search that started from node 1. This kind
of redundant exploration can be avoided using a more advanced
search algorithm.

From Example 3.15 it is clear that the simple depth-�rst algorithm
can be further optimized by restricting the scope of the search
based on previous search results. The most e�cient general pur-
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3.3 Numerical aspects of the OID problem

pose algorithm to �nd all the elementary cycles in a directed graph
is Johnson’s algorithm [14]. This algorithm improves the depth-
�rst search by removing nodes from the graph after they have
served as root node. This way duplicate cycles are avoided. Addi-
tionally, the algorithm marks branches in the search tree that do
not lead to an elementary cycle, such that they can be avoided in
future search paths.
The time complexity of Johnson’s algorithm for the signal gener-
ation graph is

T(n; A) 2 O
�

(1 + A) � A (n � 1) � Ne

�
(3.40)

with O(�) the order operator, A the number of amplitude levels,
n the memory length, and Ne the number of elementary cycles.
Based on the worst case scenario, which is a fully connected graph,
the number of elementary cycles can be bounded on the right as

Ne �
A ( n � 1)
X

i =1

(A (n � 1) )!
(A (n � 1) � i + 1)

(3.41)

Keep in mind that this upper bound is a serious overestimation of
the actual number of elementary cycles since the signal generation
graph has only A edges leaving every node instead ofA (n � 1) as
would be the case for a fully connected graph.

Generating the uniquely non-zero symmetric convex space

De�nition 3.15 states that every vector in the uniquely non-zero
symmetric set corresponds to a multiset of cardinalityn that can
be made with the values f 1; 2; :::; Ag. The permutations of this
multiset determine the position of the non-zero elements in the
vector. The value of the nonzero elements is equal to the inverse
of the number of permutations that can be made with the multiset.
Pseudo-code that generates the vectors spanning the uniquely
non-zero symmetric convex space is given in Algorithm 3. The
work�ow of this algorithm is pretty straightforward since it is in
one-to-one correspondence with De�nition 3.15. The main compu-
tational di�culty lies in an e�cient computation of the multisets
and their permutations.
A naive way to generate the multisets, is to �rst list all combina-
tions of length n generated from the setf 1; 2; :::; Ag and afterwards
eliminate combinations that correspond to the same multisets. Of
course this is not very e�cient since the time complexity of this
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Algorithm 3 Generating the uniquely non-zero symmetric set

Input: A : number of amplitude levels, m = memory length
Output: stores all uniquely non-zero symmetric vectors

setOfMutliSets  GenerateMultiSets(A,n)

for multiset in setOfMutliSets do

vector  createVectorOfZeros(A,n)
Np  getNumberOfPermutations(multiset)
uniquePermuations  generatePermutations(multiset)

for permutation in uniquePermuations do
index  getLinearIndex(permutation)
vector(index)  1/ Np

end for

store vector

end for
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3.3 Numerical aspects of the OID problem

algorithm scales with the number of permutations of lengthn that
can be made with the setf 1; 2; :::; Ag.
A better method to enlist the multisets is based on a special kind
of counting. The method starts with the multiset that contains
n times the value 1. It then increases the rightmost value that is
not equal to A with one and puts all values to the right of this
value equal to the increased value. This process of ’counting’ is
repeated till the multiset containing n times A is reached. Every
increment corresponds to a di�erent multiset. It is important to
note that �nding the index of the rightmost value that is not equal
to A, can be found without the use of a search operation. As a
result, the time complexity of this algorithm is

T(A; n ) 2 O
�

(n + A � 1)!
n!(A � 1)!

�
(3.42)

This means that the complexity scales linearly with the number
of multisets instead of the number of permutations.

Example 3.16. Assume all multisets of cardinality 3 need to be
generated from the setf 1; 2; 3g. Applying the counting algorithm
described above yields all of these multisets in the following order

f 1; 1; 1g; f 1; 1; 2g; f 1; 1; 3g; f 1; 2; 2g; f 1; 2; 3g;
f 1; 3; 3g; f 2; 2; 2g; f 2; 2; 3g; f 2; 3; 3g; f 3; 3; 3g:

(3.43)

Once the multisets are generated, all permutations of each multiset
need to be computed. A very e�cient way to �nd all these per-
mutations is the pre�x shift algorithm described in [71]. A pre�x
shift is an operation de�ned on a sequence that moves an element
at a speci�ed index to the left most position of the sequence. The
pre�x shift algorithm from [71] generates the permutations in a
speci�c order such that each successive permutation is obtained
from the previous permutation by applying a pre�x shift. The
index of the shift can be computed by a small set of operations.
The time complexity of the algorithm corresponds to

T(m) 2 O
�

n!
n1!n2!:::nA !

�
; (3.44)

where nk stands for the number of times the valuek occurs in
the multiset. In other words, the complexity scales linearly with
the number of di�erent permutations that are possible with the
multiset. Additional interesting properties are that the algorithm
is loopless and only requires a constant number of auxiliary vari-
ables.
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3.3.2 Computing the Fisher matrices
Given the vectors spanning the search space, the Fisher matrices
M x k can be computed based on one of the following three de�n-
itions: De�nition 3.6, De�nition 3.11 or De�nition 3.17. Regard-
less of the de�nition used, the computation of the Fisher matrices
depends on partial derivatives of the output with respect to the
input and parameters. These derivatives can be computed either
through numerical di�erentiation or evaluation of the analytical
expressions. A main advantage of the block structured models is
that their derivatives have a closed analytical expression that can
be implemented in a modular way.

3.3.3 Finding the optimal design
Recall the optimization problem (3.39) that represented the D-
optimal input design problem for a �nite memory model.

 x;Dopt = arg  �
x

max log

 

det(
N xX

k=1

 �
x (k) � M x k )

!

(3.45)

s:t: 8k : 0 �  �
x (k) � 1

s:t:
N xX

k=1

 �
x (k) = 1 :

This optimization problem is part of a subclass of convex op-
timization problems, called the (generalized) analytical centering
problems [6]. To solve such a problem, di�erent optimization
routines are available. In the context of optimal input design,
the most commonly used optimization algorithms are the interior-
point methods [8] and the multiplicative methods [59].
For a state-of-the-art, interior-point method, the reader is referred
to [39], in which a modi�ed interior-point method is presented
that is speci�cally tailored for OID problems. Based on extens-
ive simulation results, it is shown that this modi�ed interior-point
method outperforms both the multiplicative algorithm and a gen-
eral purpose interior-point method for randomly generated large
scale problems.
In this thesis, the problem is solved with the min-max-dispersion
method, which is a speci�c version of the multiplicative method.
The min-max-dispersion method solves the original optimization
problem (3.39) by �rst transforming it into an equivalent prob-
lem and then solving the equivalent problem with a multiplicative
optimization scheme. The main advantage of this method is that
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3.3 Numerical aspects of the OID problem

it has a straightforward implementation, which gives intuitive in-
sight in how the optimization of the design is performed.

Dispersion Function

To de�ne the equivalent optimization problem, an auxiliary func-
tion called the dispersion function is introduced.

De�nition 3.18. The dispersion function is de�ned as:

v( �
x ; k) = trace( M ( �

x ) � 1 � M x k ); (3.46)

where M ( x ) is the information matrix computed for the
given design x , and M x k is the information matrix corres-
ponding to the kth vector spanning the search space.

In essence, the dispersion function is nothing more than the deriv-
ative of the logarithm of the D-optimality criterion with respect
to the normalized design vector evaluated in �

x [7].

v( �
x ; k) =

dlog(det(M ( �
x )))

d �
x (k)

: (3.47)

Therefore, the dispersion function indicates how the cost function
changes for a small change in the design vector. Notice that the
dispersion function is a positive function, therefore an increase
of the entries of the design vector always leads to an increase in
the cost function. This is in accordance with the intuition that
adding more measurement points to the design can only reduce or
maintain the uncertainty of the estimated model.
From a model identi�cation point of view, the dispersion function
expresses the total output uncertainty of the model, computed for
each vector that spans the search space [55]. This can be expressed
more rigorously as

v( �
x ; k) = � 2

 �
x ;k = E  �

x
f � y�

k � yk g; (3.48)

with E �
x

the expected value computed over the probability dis-
tribution of the estimated model parameters, assuming the estim-
ation is performed with an input realizing the design vector  �

x ,
and � yk the output error corresponding to an input that realizes
the kth vector spanning the search space.
To conclude the discussion of the dispersion function, two interest-
ing properties of the function are mentioned. First, the maximum
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value of dispersion function can never be lower than the number
of free parameters in the model [16].

max
k

v( �
x ; k) � N � : (3.49)

In other words, the highest output uncertainty of a model has a
lower bound that is independent from the properties of the input.
Moreover the equality in (3.49) only holds for  x;Dopt [16]. Second,
the inner product between the dispersion function and the design
vector is a �xed quantity which is again equal to the number of
free parameters [16].

N xX

k=1

v( �
x ; k) �  x (k) = N � : (3.50)

This second property will play an important role in the multiplic-
ative optimization algorithm explained later on in this subsection.

Corollary 3.18.1. The dispersion function has the follow-
ing interesting properties that hold for all k 2 f 1; :::; Nx g and
all  x that satisfy the constraints in (3.39)

1. v( �
x ; k) = dlog (det (M (  �

x )))
d �

x (k )

2. v( �
x ; k) = � 2

 �
x ;k

3. max
k

v( �
x ; k) � N �

4.
P N x

k=1 v( �
x ; k) �  �

x (k) = N �

Proof: The �rst result is proven in Appendix A Mathem-
atical background page 643 of [7] . For a proof of the other
results see [25] or [16].

G-optimality vs D-optimality

D-optimality leads to designs that limit the uncertainty on the
model parameters. This makes it a very interesting criterion in
the context of parameter estimation, especially when the paramet-
ers have a speci�c physical meaning. However, it does not give
any guarantees about the output uncertainty, which can be prob-
lematic in the context of prediction and control. Therefore, an
alternative optimality criterion is introduced, called G-optimality.
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3.3 Numerical aspects of the OID problem

The design vector that minimizes the maximal output uncertainty
of the model is called G-optimal. Based on (3.48), �nding the G-
optimal design can be formulated as an optimization problem of
the following form.

 �
x;Gopt = arg �

 min  �
x

maxk v( � ; k) (3.51)
s:t: 8k : 0 �  �

x (k) � 1

s:t:
N xX

k=1

 �
x (k) = 1 :

In other words, the G-optimal design vector minimizes the max-
imum value of the dispersion function. Notice that the di�erence
with (3.45) is only in the cost function. The min-max-dispersion
method is based on the fact that solving the D-optimal problem
(3.45) is equivalent to solving the G-optimal problem (3.51).

Theorem 3.5. For a �nite memory model, excited by a
periodic digital input sequence, the D-optimal input problem
in (3.45) and the G-optimal input problem in (3.51) are equi-
valent in the sense that they de�ne the same set of optimal
signals.
Proof : The equivalence between the two problems is a res-
ult from the general equivalence theorem of Kiefer-Wolfowitz
[34]. A proof of this equivalence in the context of optimal
input design for linear time invariant models can be found
in [25] Chapter 6, page 147. The same reasoning can be re-
peated for the class of nonlinear �nite memory models, since
the validity of the proof only depends on the fact that theM x k

are positive-semide�nite.

The multiplicative algorithm

The G-optimal design problem can be solved using a simple mul-
tiplicative optimization algorithm that iteratively improves the
design vector by scaling its elements in proportion with the dis-
persion function. Because of Theorem 3.5, this algorithm also
solves the D-optimal problem (3.45). The algorithm was previ-
ously applied in the context of D-optimal input design for linear
dynamic models [55]. The monotonic convergence of this type of
algorithm is proven in [74]. The pseudo-code for the most simple
version of the algorithm can be found in Algorithm 4.
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Algorithm 4 Multiplicative optimization

Output: computes the optimal design vector

for all k do
 �

x (k)  1=Nx

v(k)  Trace(M ( x ); M x k )
end for

while (max(v)- N � ) � threshold do

for all k do
 �

x (k)  (v(k)=N� ) �  �
x (k)

v(k)  Trace(M ( �
x ); M x k )

end for

end while

The algorithm starts from a uniform design vector. In each it-
eration, the coe�cients of the design vector are rescaled propor-
tional with the dispersion function. This rescaling is repeated
until the maximum value of the dispersion function has reached
its theoretical minimum. Notice how the two previously intro-
duced properties of the dispersion function play a crucial role in
the algorithm. The property described in (3.50) guarantees that
the value of  x;new always satis�es the constraints, while the prop-
erty described in (3.49) is used as a stopping criterion.
Because the algorithm has a multiplicative updating rule, a par-
ticular coe�cient in  �

x (k) that becomes zero at a certain iteration,
remains zero for all subsequent iterations. As a result, the compu-
tational speed of the algorithm can be improved by only updating
the non-zero frequencies, thus avoiding unnecessary evaluations of
the dispersion function.
To get an intuitive understanding of the algorithm, consider that
the search space is approximated by the space of convex coef-
�cients X 1. In this case, the design vector coincides with the
frequency vector of the input signal. In other words, each element
in the design vector indicates how often, relative to the total sig-
nal length, each tuple occurs in the input sequence. As a result,
a uniform design vector corresponds to an input that contains all
tuples in an equal amount. The dispersion function for this uni-
form design indicates the uncertainty on the output for each tuple
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assuming the model is estimated using the current input design.
Some tuples will have an output uncertainty above the theoretical,
minimal maximum uncertainty. In order to reduce the output un-
certainty of these tuples, the frequency of these tuples needs to be
increased, such that the corresponding output is observed more
often. However, the sum of the frequencies needs to remain con-
stant. Therefore, frequencies of tuples which have an uncertainty
below the theoretical, minimal maximum uncertainty are reduced.
The use of the multiplicative updating rule makes the size of
the frequency change of each tuple proportional to the di�erence
between the output uncertainty of the tuple and the theoretical,
minimal maximum. As a result, the frequencies of tuples that
have reached the theoretical minimal maximum uncertainty are
no longer changed in subsequent iteration.
For the other approximate spaces, a similar interpretation can be
made. The only di�erence is that elements of the design vector
indicate how often a speci�c tuple occurs, instead of a single tuple.
In every iteration the amount of tuples with an output uncertainty
above the minimal maximum uncertainty gets increased, while the
amount of tuples below the minimal maximum uncertainty is de-
creased.

3.3.4 Generating the optimal input

After the optimal design vector is found, a time sequence needs to
be generated that realizes this design. To this end, three import-
ant steps are made. First, the design vector is projected into the
space of normalized frequency vectors. Second, the correspond-
ing normalized frequency vector is denormalized, by multiplying
each entry of the vector with the number of samples and rounding
the result. Third, the cycle that corresponds to the denormalized
frequency vector (see Corollary 2.7.1), needs to be found in the
signal generation graph. Once found, this cycle is transformed
into a time sequence by collecting the last sample of each tuple
associated to the nodes, which the cycle visits.
In this subsection, it is explained how the last step of the genera-
tion process can be performed in practice. Three di�erent meth-
ods are considered. For the computational most e�cient method,
a detailed overview of the algorithm is given. During the explan-
ation of the methods, the cycle which corresponds to the optimal
frequency vector, will be referred to as the ’optimal input cycle’.
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Method combining elementary cycles

From Theorem 3.2 is follows that every cycle in the signal gener-
ation graph can be expressed as a combination elementary cycles.
Therefore, the optimal input cycle can be constructed by combin-
ing overlapping elementary cycles. The technical details of this
approach were already explained in Subsection 3.2.3. Unfortu-
nately, the complexity of this approach scales linearly with the
number of di�erent elementary cycles, which grows very fast with
the model memory and amplitude levels. Moreover, computing
all the elementary cycles only for the signal generation step is
ine�cient, since it is more than likely that but a fraction of the
elementary cycles is present in the optimal input cycle.

Method performing a succession of arbitrary walks

An alternative way to generate the optimal input cycle is based
on a succession of arbitrary walks in the signal generation graph.
The �rst walk starts in an arbitrary node, which has at least one
outgoing edge that has a non-zero multiplicity. In every step of
the walk, a randomly selected, outgoing edge with nonzero mul-
tiplicity is followed to arrive in the next node. Afterwards the
multiplicity of the edge is lowered by one. This process is re-
peated until no further edges are available. Due to the properties
of the frequency vector, the walk can only end in the same node
from which the walk started. This implies that the walk describes
a cycle.
Once the walk is terminated, it is checked if any of the nodes in the
resulting cycle still has outgoing edges with non-zero multiplicity.
If this is the case, a new walk is started in one of these nodes, and
the resulting cycle is added to the previously found cycle (which
is always possible since the cycles overlap by construction). This
process is repeated until no more nodes with outgoing edges with
non-zero multiplicity are available. The resulting cycle, which cor-
responds to the combined cycle that contains the cycle of every
walk, describes an input sequence that realizes the frequency vec-
tor from which the algorithm started.
In graph theory the algorithm described above is known as the
Hierholzer’s algorithm [17], which is used to �nd an Euler cycle in
a given graph. An Euler cycle of a graph is a cycle that uses each
edge in the graph exactly once. As a result, �nding the cycle that
corresponds to the denormalized frequency vector corresponds to
�nding the Euler cycle in a modi�ed version of the signal gen-
eration graph, in which each edge is duplicated as often as its
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3.3 Numerical aspects of the OID problem

multiplicity indicates.

Method combining arbitrary cycles

The optimal input cycle is likely to contain repetitions of the same
subcycle. However, these repetitions are not exploited during the
arbitrary walk. By taking the repetition into account, it is possible
to create a more e�cient algorithm. This algorithm constructs the
optimal input cycle from a set of overlapping subcycles. The sub-
cycles in the set are derived from the normalized frequency vector
through a succession of arbitrary walks. Algorithm 5 contains the
pseudo-code for this algorithm. In the following paragraphs the
inner workings of the algorithm are further explained.
In the initialization step, the algorithm derives an auxiliary graph,
called graph, from the optimal frequency vector. This auxiliary
graph is equal to the signal generation graph of which the edges
with zero multiplicity are removed. From graph a non-isolated
node, which is a node that has at least one outgoing edge, is se-
lect as currentNode and added to mainCycle.
After the initialization, Algorithm 5 contains two nested while
loops. The inner loop constructs a cycle starting from the current
node by following arbitrary outgoing edges. Every time an edge
is followed, it is removed from graph. The loop keeps extending
the path until the currentNode is reached again. This will un-
avoidably happen due to Corollary 3.8.2. When the inner loop
terminates, the found cycle is stored insubCycle.
After termination of the inner while loop, the algorithm determ-
ines the frequency vector and the multiplicity of the new found
cycle. The multiplicity of a cycle corresponds to the lowest mul-
tiplicity of its edges. The algorithm then proceeds by updating
the optimal frequency vector and recomputinggraph. After that,
the algorithm inserts subCycle in the main cycle as often as its
multiplicity indicates.
As long as there is a non-isolated node inmainCycle, the outer
loop initializes a new search for a cycle, starting from a non-
isolated cycle present inmainCycle. Starting from a node that
is already present in themainCycle guarantees that the subCycle
can be inserted (see Theorem 2.3). When all the nodes in graph
are isolated, the outer loop terminates, andmainCycle contains
the desired cycle. In the �nal lines of the algorithm this cycle is
transformed into a time sequence based on Corollary 3.4.2.
Notice that while the presented algorithm is intended to receive
a frequency vector as an input, it will always terminate as long
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as the input vector satis�es (3.23). If the input vector describes a
non-overlapping set of cycles, one of these cycles is returned. By
applying the algorithm in succession, all cycles can be found. As
a result, the algorithm can be used to test if a vector satisfying
(3.23) is a frequency vector or not. If the algorithm terminates
and the sum of the updated � u;opt is not zero, the vector is not a
frequency vector.

Algorithm 5 Input generation

Input: � u;opt : optimal denormalized frequency vector
Output: input : input sequence realizing� u;opt

graph  generateGraph(� u;opt )
mainCycle  generateEmptyPath()
mainCycle  addToPath(currentNode,mainCycle)
currentNode  getNonIsolatedNode(graph)

while hasNonIsolatedNodes(mainCycle,graph) do

currentNode  getNonIsolatedNode(mainCycle,graph)
subCycle generateEmptyPath()
subCycle addToPath(currentNode)

while isNotCycle(subCycle) do
accNodes getAccessibleNodes(currentNode,graph)
graph  removeEdge(currentNode,accNodes,graph{1})
currentNode  accNodes{1}
subCycle addToPath(currentNode,subCycle)

end while

multi  getMultiplicity(subCycle,graph)
�  getFrequencyVector(subCycle)
� u;opt  (� u;opt � multi � � )
graph  generateGraph(� u;opt )
mainCycle  insertCycle(subCycle,multi ,mainCycle)

end while

input  convertCycle2Sequence(mainCycle)
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3.3 Numerical aspects of the OID problem

3.3.5 Computational cost for longer memories
An increase of the memory length of the model leads to a com-
binatorial increase of the computational cost and memory usage
of the presented method, due to the following e�ects:

� There is a combinatorial increase in the number of vectors
that represent the search space. Moreover the vectors are
longer and thus require more memory to be stored.

� More Fisher information matrices need to be computed and
stored to evaluate the dispersion function.

� A model with a longer memory has likely more parameters,
thus the dimension of the Fisher information matrices will
increase.

� The number of points in which the dispersion function needs
to be evaluated increases, slowing down the iteration speed
of the optimization.

� The signal generation method becomes also more involved
due to an increase in complexity of the signal generation
graph

As a result, it should be concluded that for practical memory
lengths (e.gn > 10) the method cannot be used in its current form.
To resolve these issues in future implementations of the method,
the following improvements of the algorithm are suggested.

� It is possible to construct a library of search spaces that
can be reused for di�erent models, since the search space is
independent of the model.

� The graph based method used to generate the search space,
and the optimal input design could easily be parallelized.

� The dispersion function could be approximated by the nu-
merical derivative to avoid a matrix inversion in every iter-
ation.

� In many examples, only a small subset of the vectors span-
ning the search space are required to represent the optimal
design. If this sparsity could be detected before the start
of the method, the computational cost could be strongly
reduced (see the paragraph ’Sparsity of the OID’ in ).
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3.4 Simulation example
Now that both the theoretical and numerical aspects of the OID
method for �nite memory models have been discussed, it is time
to illustrate the method on a simulation example. In this example,
the OID of a Wiener model is computed for two amplitude sets.
The optimization is performed for every approximating search
space, for which the size of the optimization problem remains
feasible. When possible, the resulting optimal design vector is
realized as a periodic time sequence. For each of these sequences,
a Monte-Carlo simulation is performed, during which the para-
meters of the model are estimated for di�erent noise realizations.
Based on the obtained estimates, the sample Fisher information
matrix is computed and compared with the theoretical values of
the Fisher information matrix.

3.4.1 Model description
The considered Wiener model consists of a 2-tap �nite impulse
response �lter, followed by a third order polynomial nonlinearity.
The input-output relation of such a model can be described by
the following equations:

y(t) = c0(1)w(t)3 + c0(2)w(t) + ny (t) (3.52)
w(t) = b0(1)u(t) + b0(2)u(t � 1)

u(t) 2 [� 1; 1] and e(t) � N (0; 1);

with b0 = (3; 1) and c0 = (1; � 0:25). The transfer function of the
FIR �lter and the input-output relation of the static nonlinearity
are depicted in Figure 3.8. The magnitude of the transfer func-
tion is bounded between 2 and 4, and performs a low-pass �ltering.
The input-output curve of the nonlinearity is anti-symmetric be-
cause the polynomial has only odd terms.
To make the model identi�able, the value of c0(1) is assumed
to be known, so in total three parameters need to be estimated
� = [ b0(1); b0(2); c0( 2)]� . Additionally, it is assumed that the out-
put samples are only corrupted by zero mean Gaussian distributed
noise, with unit variance. Remember that the value of the vari-
ance does not alter the OID.

3.4.2 Impact of the amplitude sets
The amplitude set for which the OID is computed strongly in�u-
ences the complexity of the search and the information content of

100



3.4 Simulation example

�� �������� ������

��

��

�������	���
��������

�	�
��

���
���

���
���

����������
�������
��������������

���� �� ��

������

��

����

�����������������������

����������

���
���

���
���

Figure 3.8: Curves describing the submodels of the Wiener model de-
scribed in (3.52). On the left, the transfer function of the FIR in the
z-domain. On the right, the input-output relation of the polynomial
nonlinearity.

the optimal design. The range of the amplitude set is often restric-
ted by physical constraints, while the number of amplitude levels
is considered a free design choice. Input designs computed for
a higher number of amplitude levels are often more informative,
but also need more computational time. Therefore, choosing the
number of amplitude levels results in a trade-o� between the com-
plexity of the optimization and the attainable information level of
the design.

Complexity

To illustrate how the complexity of the optimization scales with
the number of amplitude levels, the top plot in Figure 3.9 shows
the dimensionality of the di�erent approximative search spaces as
a function of the number of amplitude levels. Based on the plots
in this �gure, it is clear that the number of vectors describing
the convex elementary setX 2 increases the fastest. For 5 levels,
almost 100 vectors are needed to describeX 2, while for 10 levels
more than a million vectors are needed. As a result, searching
the OID over X 2 is only feasible for a small number of amplitude
values. In contrast, the number of vectors describing the uniquely
non-zero symmetric search spaceX 3 is lower than the total num-
ber of tuples. However, this low complexity comes at the cost of
lower attainable information, as explained in the next paragraph.
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Attainable information

Aside from the dimensionality of the search space, the number
of amplitude levels also in�uences the maximum attainable in-
formation of the design. In the bottom plot of Figure 3.9 the
evolution of the information of the optimal design is given with
respect to the number of amplitude levels. Based on the plot,
three important observations can be made. First, note that the
curve for X 2 and X 1 coincide, indicating that the OID of X 1 falls
inside X 2. Second, the OID found in X 3 is less informative than
the one found in X 1 and X 2. This clearly illustrates that limiting
the search to X 3 is often too restrictive when searching for the
optimal realizable design. Third, the information of the optimal
design �uctuates with the number of levels in the amplitude set
instead of monotonically increasing. This follows from the fact
that the sets are not nested (e.g. values of a smaller set are not
necessarily included in every larger set).

Two amplitude sets

The OID will be computed for two uniform amplitude sets. The
�rst set contains 5 uniformly distributed values inside the input
range of [� 1; 1].

SA 1 = f� 1; � 0:5; 0; 0:5; 1g:

Since the memory of the model is 2, in total 25 tuples can be
de�ned for this grid. Moreover, the signal generation graph con-
sists of 5 nodes, 25 edges, and contains 90 di�erent elementary
cycles. The uniquely non-zero symmetric set contains only 15
vectors. For A1, �nding the OID is feasible for all three search
spaces. A graphical representation of vectors spanning the di�er-
ent search spaces is given in Figure 3.10.
The second set contains 10 uniformly distributed values inside the
input range of [� 1; 1]. Notice that the sets are not nested.

SA 2 = f� 9=9; � 7=9; � 5=9; :::; 5=9; 7=9; 9=9g

This leads to a total of 100 tuples. The signal generation graph
consists of 10 nodes and 100 edges, and contains 1112083 di�er-
ent elementary cycles, while the uniquely non-zero symmetric set
contains only 55 vectors. Given the large number of elementary
cycles, �nding the OID for the second amplitude set is only feas-
ible for X 1 and X 3.
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Figure 3.9: Top: Evolution of the number of vectors spanning the search
space with respect to the number of samples in amplitude set, assuming a
model memory of two. Bottom: Evolution of the information of the OID
with respect to the number of uniformly spaced samples in the interval
[� 1; 1], plotted for the three di�erent search spaces. As a reference, the
most informative random design generated out of 1000 realization is
also plotted (see label rnd in the legend). The designs inX 2 are only
computed up to 5 amplitude levels since for higher number of levels, the
computational cost is considered too high.
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ferent search di�erent search spaces for amplitude set SA 1 .

nr space det(M) max(v) #tuples realizable
� �

1 X 1(SA 1 ) 2.711e+05 3.000e+00 6 yes
� �

2 X 2(SA 1 ) 2.711e+05 3.000e+00 6 yes
� �

3 X 3(SA 1 ) 1.710e+05 3.000e+00 8 yes
� �

4 X 1(SA 2 ) 2.631e+05 3.000e+00 8 no
� �

5 X 3(SA 2 ) 1.681e+05 3.000e+00 8 yes

Table 3.3: Overview of the �ve designs performed for the Wiener model.
From left to right: the design number, the search space, the amplitude
set, the determinant of the normalized Fisher information matrix, the
maximal dispersion value, the number of tuples with non-zero weight,
and the realizability of the designs as a time sequence.

3.4.3 Optimal designs

In total �ve OID problems are considered for the given Wiener
model, each of them corresponding to a di�erent combination
of amplitude set and search space. The resulting optimization
problems are solved through the use of the min-max-dispersion
algorithm. For each problem 1000 iterations were performed.
In Table 3.3 the most important properties are summarized for
each of the designs. A graphical representation of the designs is
given Figure 3.12. In this �gure, each design is represented as a
bar plot, which indicates the normalized weight for each tuple.
Notice that the �rst and second design are identical, which is in
accordance with the result in Figure 3.9. Keep in mind that this
observation is a model speci�c result that cannot be generalized
for other models.
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3.4 Simulation example

Comparing information

Comparing the values of the determinant of the normalized Fisher
information matrix, it can be concluded that the �rst and second
design are the most informative for the model, while the �fth
design is the least informative. This observation is in accordance
with Figure 3.9, which already indicated that the designs for A1
had a slightly better performance than the designs computed for
A2, and that the attainable information in X 3 is signi�cantly lower
than the information in X 1.
To rule out the possibility that all designs are equally bad, the ob-
tained information is compared with the information of the best
randomly generated periodic signal obtained out of 1000 realiza-
tions. This design had a determinant value of8:8034e+04. There-
fore, the best design contains three times more information than
the best random design, and the worst design is still two times
more informative than the best random design.
To evaluate the signi�cance of this di�erence in information, it
should be taken into consideration that the determinant is a meas-
ure for the hyper-volume of the uncertainty ellipse in the para-
meter space. Assuming that the uncertainty is equally spread
amongst the parameters, and the uncertainty ellipse is aligned
with the parameter axes (which is not the case in practice), a
three orders of magnitude di�erence between the determinants is
needed to obtain one order of di�erence in the variance of the
parameters.

Re-evaluating the dispersion function

When looking at the maximal value of the dispersion function, all
designs reach the theoretical minimum of 3, with an error that is
smaller than 10� 4. At �rst glance this may seem in contradiction
with the di�erence in determinant value. However, one should
keep in mind that the evaluation of the dispersion function is
search space dependent. In other words, the maximal dispersion
indicates how good the design is relative to its own search space,
while the determinant value indicates how good the design is in
general, regardless of the considered search space.
To better illustrate the dependence of the dispersion function,
reconsider the equation given in De�nition 3.18.

v( �
x ; k) = trace( M ( �

x ) � 1 � M x k ):

Till now it was assumed that the M x k corresponds to the Fisher
information matrix of the kth vector spanning the search space in
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which  x resides. By generalizing the de�nition of the dispersion
such that the space of the dispersion is decoupled from the space
of the design the following equation is obtained

vz ( �
x ; k) = trace( M ( �

x ) � 1 � M zk );

where vz ( x ; k) is the dispersion over spacez, computed for a
design residing from spacex.
Based on this more general de�nition, the dispersion function for
both the most and the least informative design is recomputed for
the search spacesX 1 and X 3, which are constructed from A2.
This results in the plots of Figure 3.11. The top plot shows the
dispersion overX 1 and the bottom plot shows the dispersion over
X 3. As could be expected, the maximal dispersion value of the
least informative design is higher than 3 inX 1. This is in accord-
ance with the lower determinant value. Conversely, the optimal
design has a maximal dispersion value of 3 inX 3; moreover its
dispersion function is on average lower than the average disper-
sion of the least informative design.
The attentive reader will have noticed that for X 1 the dispersion is
symmetric. This is due to the fact that for the considered example
model the following property holds

@y(� u)
@�(k)

= �
@y(u)
@�(k)

which implies that the Fisher information matrix and the disper-
sion function are invariant for a sign change in the input signal.
As a result tuples which are each others inverse have the same
dispersion, which leads to a symmetric dispersion curve. For this
particular OID problem the search could be restricted to the pos-
itive values in the amplitude set which would reduce the dimen-
sionality of the design vector.

Sparsity of the OID

From the bar plots in Figure 3.12, it can be seen that the designs
computed for the amplitude set SA 1 use only 6 out of the 25
available tuples, and that the designs inA2 use only 8 out of the
100 available tuples. In other words, the �ve designs are sparse
in the sense that a large fraction of tuples have zero weight. An
advantage of this sparsity is that the designs are easier to realize
as a time sequence, since the corresponding auxiliary graph, used
in Algorithm 5, has only few edges and nodes. A disadvantage of
this sparsity is that the designs are not robust for changes in the
model parameters.
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Figure 3.11: Top: The dispersion function for the most and least in-
formative designs evaluated over the search spaceX 1(A2). Bottom: The
dispersion function for the most and least informative designs evaluated
over the search spaceX 3(A2)
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Figure 3.12: Top: The OID found in X 1 , X 2 and X 3 for the amplitude
set SA 1 . Bottom: The OID found in X 1 and X 3 for the amplitude set
SA 2 . To obtain a compact plot, tuples with zero weight are omitted.
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3.4.4 Convergence of the algorithm
Figure 3.13 shows the evolution of the determinant value, the
maximal dispersion value, and the number of tuples with non-
zero frequencies, during the �rst 40 iterations of the min-max
dispersion function. From these plots it can be observed that the
algorithm successfully lowers the maximal value of the dispersion
function and increases the determinant of the information matrix
in a monotonic fashion. At the same time the number of tuples
with non-zero frequencies is also drastically reduced.
The rate of convergence is very high for the �rst 20 iterations
as shown by the rapid change in the determinant value and the
maximal dispersion value. During this period of fast convergence,
the number of di�erent tuples in the designs is also drastically
reduced.
After 20 iterations, the convergence rate becomes much slower,
and the determinant and maximal dispersion values become al-
most �at. During this slow convergence the frequencies of the
selected tuples are �ne-tuned, while the selection of tuples stays
almost the same. From this observation it can be concluded that
selecting the optimal subset of tuples is more important for the
quality of the design than �nding the optimal frequencies of the
selected tuples.
When comparing the convergence rate based on the maximum
dispersion value of the di�erent designs, the following order is
obtained

 �
1 <  �

3 <  �
4 <  �

5 <  �
2 ;

where < indicates "converges faster than". The fact that  �
2 con-

verges slower than the other designs can be explained by the larger
dimensionality of its search space. In contrast, the fact that the
designs in X 1 converge faster than their counterparts in X 3 is
somewhat surprising, sinceX 3 has a lower dimensionality than
X 1. This faster convergence could be attributed to the fact that
the optimal designs in X 1 are less complex, since they have a
uniform frequency distribution.

3.4.5 Generating the optimal time sequences
In this subsection, each of the �ve designs will be approximatively
realized as a periodic time signal containing hundred samples in
one period. In theory, this process requires three distinct steps:

1. The design is projected in the normalized frequency space.
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Figure 3.13: The evolution of the information, the maximum dispersion,
and the number of active tuples during the �rst 40 iterations of the min-
max dispersion algorithm, plotted for every design.
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2. The resulting frequency vector is denormalized.

3. The denormalized frequency vector is realized as a time se-
quence by applying Algorithm 5

The most critical step of the three, is to project the designs into
the space of frequency vectors. In Subsection 3.2.4 it is explained
that performing the projection step rigorously leads to an optim-
ization problem of combinatorial complexity.

A pragmatic approach

To avoid an optimization of combinatorial complexity, a more
pragmatic approach is followed to realize the designs. First, the
design vectors are rounded to two decimal places. Next, it is made
sure that Corollary 3.8.2 is satis�ed and the total sum of the roun-
ded design vector remains is one. This may require adding new
tuples to the design. Finally, Algorithm 5 is applied on the design
vector. If the algorithm terminates while the updated design vec-
tor does not sum to zero, the design vector corresponds to a set
of non-overlapping cycles, instead of one single cycle. In this
case, the algorithm is applied repeatedly until all sequences that
correspond to the non-overlapping cycles are found. The found
cycles are than concatenated into one cycle. If needed the cycle
is shortened to respect the total number of samples.
Applying the outlined approach on the actual designs leads to
the following changes. For� 3 and � 5 it is su�cient to round the
design vector to two decimal places and apply Algorithm 5 once.
For � 1 and � 2 rounding the design alters the value of the total sum.
To compensate, the rounded weights of the tuples(� 1; � 1) and
(+1 ; +1) are lowered. While other alterations are possible, the
proposed change ensures that Corollary 3.8.2 remains satis�ed.
Moreover no new tuples need to be introduced into the designs.
For � 4, the rounded design does not satisfy Corollary 3.8.2. There-
fore two new tuples are added(1=3; 5=9) and (� 1=3; � 5=9). To
make room for these new tuples the weights of the other tuples
are lowered accordingly. For all updated designs, the cycle in the
signal generation graph and an optimal input sequence are presen-
ted in Figure 3.14. The colors indicate the arbitrary partitioning
made by Algorithm 5.

Degradation of the design

In Table 3.4 the information of the original designs and the cor-
responding sequences are given, as well as the relative di�erence
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design sequence rel.di�
� �

1 and � �
2 2.711e+05 2.711e+05 0.00%

� �
3 1.710e+05 1.710e+05 0.03%

� �
4 2.631e+05 1.753e+05 33.3%

� �
5 1.681e+05 1.681e+05 0.02%

Table 3.4: Determinant of the normalized Fisher information matrix
for the original OID, the derived input sequence, as well as the relative
di�erence between the two.

between the two. From this table it can be concluded that for
the designs� 1, � 2 � 3, and � 5 little to no information is lost in the
transition from design to input sequence. Only for� 4 a signi�cant
loss of information can be observed. Since� 4 is the only design
that required additional tuples to be realized, this loss in informa-
tion seems to con�rm that selecting the optimal subset of tuples is
more important than �nding the optimal frequencies of the tuples.

Other optimal sequences

It should be pointed out that the optimal sequences plotted in
Figure 3.14 are only one of many possible sequences that real-
ize the optimal design vector, since the order in which optimal
cycle is traversed does not alter the information content of the
sequence. This implies that there exist sequences with di�erent
power spectra that still have the same information content. This
result stands in strong contrast with the properties of the OID for
LTI models subject to power constraints, which are completely
determined by there power spectrum [16, 25].

3.4.6 Monte-Carlo simulation
Till now the information content of the designs is always evaluated
based on the Fisher information matrix. However, the inverse re-
lationship between the Fisher information matrix and the covari-
ance matrix is only valid asymptotically if the number of samples
tends to in�nity. Therefore, it should be evaluated if there is a
di�erence between the predicted information of the designs and
the information observed during a �nite experiment.
To see how good the Fisher information matrix describes the �nite
sample behavior of the design, a Monte-Carlo simulation is per-
formed. During each run of the Monte-Carlo simulation, the para-
meters of the model are estimated using the optimal sequences,
which are computed in the previous section. In total 1000 di�erent
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Figure 3.14: Left: The corresponding cycle in the signal generation
graph for each design. Right: The corresponding input signals. The
color codes indicate the arbitrary partition in subcycles made by the
algorithm, as well as the part of the input sequence corresponding to
each of the subcycles.
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det(M) det(C� 1) rel.di�.
� �

1 2.711e+05 2.786e+05 2.77%
� �

2 2.711e+05 2.646e+05 2.40%
� �

3 1.710e+05 1.655e+05 3.19%
� �

4 1.753e+05 1.831e+05 4.49%
� �

5 1.680e+05 1.560e+05 7.16%

Table 3.5: From left to right: Determinant of the normalized Fisher
information matrix, the determinant of the inverted covariance matrix
(also normalized by the number of samples), and the relative di�erence
between the two.

runs are performed for each input signal. Each run corresponds
to a di�erent noise realization and will therefore yield slightly dif-
ferent parameter estimates.
Based on the estimated values for the parameters, the sample
covariance of the parameters is computed for each of the �ve
designs. By taking the determinant of the inverted sample co-
variance matrix, the �nite sample information of each design can
be computed. Comparing the sample information with the in-
formation computed from the Fisher information matrix yields
the values in Table 3.5. For all designs the relative error between
these two values lies between 2% and 8%.
Since it is hard to judge if the observed di�erence in information
is relevant, the 99% uncertainty region in the parameter space is
computed based on the sample covariance and the Fisher matrix.
In Figure 3.16 both regions are plotted for the most (green) and
least (red) informative design. As a refernce alose the uncertainty
region for the most informative random input generated out of
1000 inputs is plotted.
From this plotted uncertainty region it can be observed that the
theoretical uncertainty region coincides well with the uncertainty
region based on the sample covariance for both designs. Addition-
ally it can be seen that for both the least and most informative
designs, their uncertainty region is completely inside the uncer-
tainty region of the best random design. When comparing the
most and least informative design it can be observed that both
designs have similarly sized uncertainty regions.
Aside from the uncertainty regions, also the dispersion function
computed from the Fisher information matrix and the dispersion
function computed from the sample covariance are compared. The
relative di�erence between the two is plotted in Figure 3.15 for
the least and most informative design. The relative di�erence lies
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Figure 3.15: Relative di�erence between the dispersion function based
on the sample covariance and the dispersion function based on the
Fisher matrix. Red: di�erence for the least informative design. Green:
di�erence for the most informative design. The values for the tuples
with index 7, 36, 65, and 94 are omitted because the dispersion tends
to zero.

between0:5% and 6%. Notice that the values for the tuples with
index 7, 36, 65, and 94 are omitted because the dispersion tends
to zero, which arti�cially in�ates the relative error.
From the above results obtained through a Monte-Carlo simula-
tion, it can be concluded that for the considered example, the
Fisher information matrix is a good measure for the �nite sample
behavior of the estimator.
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Figure 3.16: Projections of the 99% uncertainty region in the parameter
space (b1 ; b2 ; c) for the least and the most informative design. In red:
the uncertainty region based on the sample covariance computed for the
most informative design � �

1 . In green: the uncertainty region based on
the sample covariance computed for the least informative design� �

5 . In
blue: the corresponding uncertainty region based on the Fisher informa-
tion matrix. In black: the di�erent estimated values for the parameters.
In gray: the uncertainty region of the best random design out of 1000
realizations.
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3.5 Connection with similar methods in
the literature

In the last decade, the OID problem for nonlinear �nite memory
models has seen a lot of interest in the model identi�cation com-
munity. Di�erent research results about this problem have been
published in close succession. In this section it is clari�ed how the
approach presented in this chapter relates to other approaches in
the literature.
The renewed interest for the OID problem for nonlinear models
started with [30]. In this paper, a two-step method is presented
to solve the OID problem for nonlinear models, given the assump-
tion that the input sequence is realized by a stationary stochastic
process. In the �rst step, the optimal probability density of the
input is computed. In the second step, a signal is generated based
on this probability density function. While the paper is mostly
conceptual; it provides a new and promising way to tackle the
OID for nonlinear models, and inspired many publications in the
coming years.
In [36], the ideas introduced by [30] are further explored. It applies
the two-step method in the context of static nonlinear models and
nonlinear �nite memory models. It provides an a�ne parametriz-
ation of the joint density function of the current and past input
samples. Such parametrization was already hinted in [30], but
not thoroughly explored. To make the problem numerically tract-
able, the input amplitudes are limited to a discrete set, reducing
the continuous probability distribution to a discrete probability,
which facilitates the expression of the Fisher information matrix.
While [36] strongly expands the �rst step of the two-step proced-
ure, it still remains vague about the details of the signal generation
step. This shortcoming was addressed in [64, 65], which links the
parametrization of the joint density function to the Markov chain
which represents the input process. Additionally, [64, 65] also ex-
changes the memory restriction on the model for a the memory
restriction on the stationary process that generates the input.
The approach presented in [36, 64, 65] can be seen as the stochastic
counterpart of the method described in this chapter. Instead of
tuple frequencies, tuple probabilities are optimized. And instead
of a signal generation graph, a Monte-Carlo chain is used to gen-
erate an input sequence realizing the optimal design. The ne-
cessary conditions for a vector to be a frequency vector (see Co-
rollary 3.8.2) corresponds to the stationarity conditions imposed
during the optimization in [36, 64, 65].
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Another paper that is worth mentioning is [18], which extends
the approach described in this chapter, to the class of nonlinear
fading memory models. For these models the dependence of the
output on the input fades over time, implying that the output is
mostly determined by the recent past of the input. By restrict-
ing the input sequence to piecewise constant signals and correctly
selecting the duration for which the signal remains constant, the
parametrization of the OID problem becomes identical to the one
presented here. It should be noted that [18] does not provide a
systematic way to generate the optimal design.
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3.6 Summary and future work

In this chapter a method for computing a D-optimal input se-
quence for a �nite memory model has been presented. The input
class was limited to discrete periodic digital sequences, and it was
assumed that there was only i.i.d noise on the output with a known
covariance matrix.

Parameterizing the problem

The key idea of the method is that, for a �nite memory model,
an input sequence is nothing more than a sequence of overlap-
ping tuples. Therefore the class of inputs can be parameterized
through the use of frequency vectors. These vectors indicate how
often each tuple occurs in the sequence.
Based on this parametrization, it was shown that the Fisher in-
formation matrix of a given input sequence can be written as a
convex combination of Fisher matrices related to the tuples. The
coe�cients of this combination are nothing more than the nor-
malized tuple frequencies. As a result, the D-optimal input design
problem can be reformulated as an optimization with respect to
the normalized tuple frequency vector.

Signal generation graph

To obtain a better understanding of how the space of normal-
ized frequency vectors is organized, the signal generation graph
was introduced. It was shown that a frequency vector is nothing
more than the multiplicity vector of a cycle in the signal gener-
ation graph. Since every cycle in the graph can be expressed as
a combination of the elementary cycles of the graph, it is pos-
sible to represent the set of frequency vectors as a positive linear
combination of a limited subset, called the elementary frequency
vectors. However, the opposite is not true: not every combination
of elementary frequency vectors is necessarily a frequency vector.

Approximating the search space

Since the set of normalized frequency vectors is a discrete set,
searching over this set leads to optimizations of combinatorial
complexity. To avoid this problem, a continuous relaxation of
the normalized frequency vector set was introduced called the ele-
mentary convex space. The corner points spanning this set are
related to the elementary cycle of the signal generation graph.
Unfortunately the number of elementary cycles rapidly increases
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with the number of amplitude levels and the memory length of
the model. Therefore, two alternative search spaces were intro-
duced, namely the space of convex coe�cients (which is a super-
space of the elementary convex space) and the uniquely non-zero
symmetric space (which is a subset of elementary convex space).
Both spaces have the advantage that they have less corner points
than the elementary convex space. However, the space of convex
coe�cients is too general, which can lead to a design that is not
realizable as a time sequence and the uniquely non-zero symmet-
ric space is too restrictive which can lead to the exclusion of the
true optimal design.

Computational aspects

Aside from the theoretical foundations, also the computational as-
pects of the method were discussed. First, it was explained which
algorithms to use, to list the vectors that span the di�erent search
spaces. Next, is was pointed out which formulas are best suited
to compute the Fisher information related to each of these vec-
tors. After the search space is constructed, a convex optimization
problem needs to be solved. To this end, a multiplicative optimiz-
ation algorithm was presented, which was based on the dispersion
function. This function turns out to have many interesting in-
terpretations. Finally it was explained how a time sequence that
realizes the optimal design vector can be generated, through the
use of path search algorithms in the signal generation graph.

Simulation example

To conclude, the method was illustrated for a simulation example
in which the D-OID is solved for a Wiener model that consists
of a linear FIR �lter followed by a static polynomial nonlinear-
ity. For this model, the D-optimal input design was computed
for two symmetric uniformly spaced amplitude sets. For each
set, the three approximation search spaces were constructed when
feasible. The OID was computed with the previously introduced
min-max-dispersion algorithm. The performance of the designs
was evaluated based on a Monte-Carlo simulation. From the res-
ults of this simulation, it was shown that the theoretical Fisher
matrix is a good approximation of the �nite sample behavior of
the estimator.
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Future work
The �rst important extension of the presented method would be
to optimize the computation such that its memory usage and
computation time scale better with the memory length of the
model. Suggestions, on how to reduce the computational cost,
were already discussed in Section 3.3.5.
Once these computational issues are resolved, other aspect of the
design method could be explored. Below a list of possible future
extensions to the method, in order of expected di�culty, starting
with the easiest.

� Di�erent information measures: In this work only the D-
optimal information criterion is considered. However the
method can easily be extended for other scalar measures of
the Fisher information matrix such as A and E-optimality,
since for these measures the parametrization based on the
frequency vector can be reused.

� Di�erent noise conditions: Till now only additive i.i.d Gaus-
sian output noise with known covariance was considered.
However, the method can easily be extended to more gen-
eral output noise conditions, since the nonlinearity of the
model does not a�ect the treatment of the output noise in
the computation of the Fisher. Therefore, the techniques to
handle correlated output noise in the case of linear systems
as described in [25] can be directly reused. Extending the
method for input noise will be more involved, since the input
noise is also shaped by the nonlinearity.

� Di�erent measurement conditions: The assumptios that the
input is periodic and the system is steady-state facilitate
the computation of the Fisher information but is not al-
ways realistic in practice. Extending the method to known
non-periodic initial conditions (for example zero initial con-
ditions) can easily be incorporated in the computation of the
Fisher information matrix. However, handling initial condi-
tions which are estimated together with the parameters, will
be more challenging.

� Di�erent constraints: Range constraints on the input are
naturally incorporated in the presented method. However,
adding other constraints such as range constraints on the
output or power constraints is less straightforward. Power
constraints can still be expressed solely based on the tuple
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frequency vector, since the order of the tuples does not alter
the total power of the signal. In contrast, range constraints
on the output are dependent on the order of the tuples. As a
result, the frequency vector is no longer su�cient to express
range constraints on the output.

� Optimizing the amplitude grid: It was assumed that the
amplitude set is symmetric around zero and evenly spaced.
However, it could be interesting to investigate the e�ect of
di�erent input grids on the maximum attainable informa-
tion. A next step would be to optimize the choice of the
amplitudes, through an additional optimization step.
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Chapter 4

D-Optimal Input Design
for In�nite Memory
Wiener Models

This chapter focuses on the D-optimal input design for a continu-
ous in�nite memory Wiener models. Since there is no e�cient
parametrization of the problem known, the OID is formulated
as a non-convex and nonlinear optimization problem of the input
samples. To explore the properties of the OID, a research strategy
is proposed which is based on limited set of case studies that are
solved numerically. To correctly select the case studies for this
exploration, it is important to identify for which of the problem
settings the optimization problem remains equivalent. Based on a
theoretical analysis of the optimization problem, thirteen equival-
ence relations are identi�ed. To conclude, the proposed explora-
tion strategy is applied for two Wiener models with a single power
nonlinearity.
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4.1 Problem statement
In this section, the OID problem for continuous Wiener model is
formally stated. In order to get a well-de�ned analytical formu-
lation of the Fisher information matrix, the class of inputs is re-
stricted to deterministic, periodic, band limited signals. Addition-
ally, special attention goes to the correct sampling of the signals
since this will in�uence the computation of the Fisher information
matrix, as well as the number of optimization parameters in the
problem. Numerical considerations, concerning the computation
of the Fisher and evaluating the constraints are postponed to the
next section.

4.1.1 Model class
It is assumed that the model belongs to the class of Wiener models
that can be modeled by a continuous rational transfer function,
followed by a static polynomial nonlinearity (see De�nition 2.9
and De�nition 2.7). This class of models has an in�nite memory
by construction and therefore falls outside the scope of Chapter 3.

De�nition 4.1. A continuous Wiener model is a nonlinear
model which consists of a combination of a continuous linear
dynamic submodelglin (u; � lin ), followed by a static nonlinear
submodelhnl (v; � nl ).

y(u; � 0) = hnl (glin (u; � lin ); � nl ); (4.1)

where � 0 = ( � lin ; � nl ). The output of the linear model v is
referred to as the intermediate signal of the model.

Mathematically the steady-state output of this kind of Wiener
model can be described as

y(t) = hnl (v(t)) =
n cX

k=1

c0(k) � v(t)n c � k (4.2)

v = glin f ug = T � 1f G(!; a 0; b0) � Tf u(t)gg

G(! ) =
P n b

k=1 b0(k)( !j )k � 1
P n a

k=1 a0(k)( !j )k � 1 ;

wherey(t) is the output of the Wiener model, v(t) is the output of
the linear submodel,T and T � 1 represent respectively the Fourier
transform and the inverse Fourier transform, G(! ) is the transfer
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4.1 Problem statement

function of the linear model [47], ! is the pulsation de�ned as ! =
2�f , c0 are the true coe�cients of the polynomial nonlinearity, b0
and a0 are the true parameters of the linear submodel,(nc � 1)
is the order of the polynomial, and (nb � 1) and (na � 1) are the
degrees of the numerator and denominator of the transfer function.

Unique identi�ability

The model described in (4.2) is not uniquely identi�able since
di�erent parameter values may yield the same input-output rela-
tionship. To obtain a model structure that is uniquely identi�able,
at least two non-zero parameters need to be �xed. One of the
�xed parameters must be chosen amongst the linear parameters,
to eliminate the scaling invariance of the linear parameters. The
other �xed parameter can either be a linear or nonlinear para-
meter, with the exception of the constant term in the polynomial.
So, in total there are at most na + nb + nc � 2 estimated paramet-
ers. Each choice of the �xed parameters will in�uence the OID.
More details about the choice of the estimated parameters is given
in Section 4.4.

4.1.2 Input class
The class of input signals is restricted to multisine signals (see
De�nition 2.4), which are de�ned as a sum of sines with prede�ned
amplitude and phase. The frequencies of the sines are chosen equal
to multiples of a prede�ned base frequency. Multisine signals are
continuous, deterministic, periodic, bandlimited, and can exactly
realize a discrete power spectrum. Due to their many interesting
properties, multisine signals are extensively used for linear [47]
and nonlinear system identi�cation [56].

Constraints

In practice the class of inputs is often restricted due to physical
limitations of the setup. In this chapter, three di�erent constraints
are considered. At least one of these constraints is needed to get
a well posed optimization problem, since without constraints any
in�nite power sequence corresponds to the optimal input sequence.

� Range constraints on the inputu(t) can be added for di�er-
ent reasons. One reason is to avoid damage to the system or
the measurement setup. Another reason is thatu can have
a limited range by design.
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� Range constraints on the intermediate signalv(t) are less
straight forward. One reason to impose such constraints, is
to avoid damage to the nonlinear block, for example in the
case of a nonlinear sensor.

� Total power constraint on the input u(t) have a similar mo-
tivation as the range constraints. Either high power levels
would damage the setup, or the signal generator can only
provide a limited amount of power.

4.1.3 Measurement conditions
During the experiment P samples are measured at the input and
output over a duration of one period of the input. The samples
are acquired in steady-state, meaning there are no transient ef-
fects present at the output of the model (see Assumption 2.5).
Moreover, it is assumed that there is only noise on the output
which is zero mean, independently, identically, Gaussian distrib-
uted, and independent from the input signal (see Assumption 2.4).
The measurement conditions can be summarized as:

k 2 [0; :::; P � 1] (4.3)
�u(k) = u0(kts) (4.4)
�y(k) = y0(kts; � 0) + ny (kts) (4.5)

�ny (kts) � N(0; � 2); (4.6)

where u0 is the applied input sequence,u is the measured input
sequence,y0 is model output as de�ned in (4.2), y the measured
output sequence and�ny is the noise sequence.
It is assume that the samples of �ny are zero-mean, independ-
ently identically Gaussian distributed. Since continuous time is
assumed, this noise conditions requires that the spectrum of the
noise signalny is �at in a frequency band which is large com-
pared to the sampling frequency. When this is not the case, the
noise samples will be correlated and the covariance matrix will
become non-diagonal. However, the presented method can easily
be extended to handle non-diagonal covariance matrices.

Sampling grid

To correctly represent the input and output signals with a �nite
number of samples some additional assumptions have to be made
with respect to the sampling grid (see Assumption 2.3).
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4.1 Problem statement

The sampling frequencyf s is chosen such that all nonlinear con-
tributions of the output signal can be captured without aliasing.
Since the input is band limited and the nonlinearity in the model
is of �nite degree, the maximum frequency of the output can be
expressed as

f max;y = ( nc � 1) � f max u = ( nc � 1) � (N f � 1) � f 0: (4.7)

where f max;u is the highest frequency component of the input and
f 0 is the resolution of the frequency grid . So to correctly capture
all higher order harmonics of the output the following condition
is imposed on the sampling frequency

(nc � 1) � (N f � 1) � f 0 �
f s

2
: (4.8)

The total acquisition time T is chosen equal to one period of the
input sequence. This ensures that the frequencies of the input
signal fall inside the sampling frequency grid

f 0 = f res �
f s

P
: (4.9)

with f res the resolution of the sampling frequency grid (see De�n-
ition 2.12), and P the total number of samples in one period of
the input.
Notice that because the sample frequency is chosen such that all
higher order harmonics at the output can be captured, the input
sequence is oversampled. The oversampling factor of the input
corresponds to

mu =
f s=2

f max;u
=

f s=2
(N f � 1) � f 0

=
P

2(N f � 1)
; (4.10)

with mu the oversampling factor of the signalu(t), f s the sample
frequency, f 0 the base frequency of the input signal, andf max;u

the maximum frequency component of the signalu(t). In order to
simplify the parameterization in Section 4.2.2 it is assumed that
the oversampling factor is a natural number.

4.1.4 Information measure
To express the information content of an input sequence, the D-
optimality criterion is used, which means that the information
is measured based on the determinant of the Fisher information
matrix.

uopt = arg u max(det(M (u; � 0))) ; (4.11)
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with u a multisine which is subject to one of the constraints men-
tioned before. When convenient, the following shortened notation
for the D-optimality information criterion will be used.

VD (u) = det( M (u; � 0)) : (4.12)

It is important to realize that, unlike for the OID for linear dy-
namic models and the OID for �nite memory models, the D-
optimal information criterion no longer corresponds to a G-optimal
information measure. In other words, for nonlinear Wiener models
(and in general nonlinear in�nite memory models) minimizing the
uncertainty volume in the parameter space no longer guarantees
a minimization of the total maximum uncertainty of the outputs.

4.1.5 List of assumptions

The considered problem can be summarized by the following list
of assumptions.

Assumption 4.1. Assumptions on the model class:

� The model class is restricted to Wiener models consist-
ing of a linear model, which is described by rational
transfer function, followed by a static polynomial non-
linearity.

� The output of the model is assumed di�erentiable with
respect to the parameters of the model.

� The model is parametrized such that the parameters are
uniquely identi�able.

� There exists a set of true parameters� 0 for which the
model describes the output of the model perfectly.

� The true model parameters � 0 are known during the
computation of the OID.

Assumption 4.2. Assumptions on the input class:

� The class of inputs will be restricted to continuous band
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4.1 Problem statement

limited periodic time sequences withS uniformly spaced
frequency components and base frequencyf 0.

� The input is subject to one of the three constraints
presented in Subsection 4.2.3.

Assumption 4.3. Assumptions on the measurement con-
ditions:

� The model operates in steady-state during the experi-
ment.

� An integer multiple of the input period is measured in
order to avoid leakage e�ects.

� It is assumed that the number of measured samplesP is
su�ciently large in order to uniquely identify the model
parameters.

� The sampling frequencyf s is chosen high enough to
avoid aliasing (f s > 2((nc � 1) � (S � 1) � f 0)).

� The ratio between the sampling frequencyf s and the
highest excited input frequency(S � 1) � f 0 is an integer
number.

� There is only additive output noise. Moreover the noise
samples are i.i.d Gaussian and independent from the
input.

Assumption 4.4. Assumptions on the optimality measure:

� The estimator is assumed to be unbiased and asymptot-
ically e�cient.

� The optimality of the input is evaluated based on the
D-optimal input measure.

� The experiment duration is long enough for the Fisher
information matrix to provide a good approximation of
�nite sample behavior of the estimator.
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4.2 Formulating the optimization prob-
lem

To solve the D-optimal input design problem described in (4.11),
the input signal needs to be parametrized in a certain way. To
the best of the authors knowledge, no parameterization of the
input exist for which the OID problem becomes convex. Therefore
a brute force optimization is considered in which the D-optimal
information criterion is directly optimized with respect to the time
samples of the input.

4.2.1 Computing the Fisher matrix
Based on the assumptions in Subsection 4.1.5, theij th element
of the Fisher information matrix M , computed for a periodic, de-
terministic input sequence containingP samples, can be expressed
as [55]:

M ij (�u; � 0) =
1

� 2
n � P

PX

k=1

� �y(k)
�� 0(i )

�
� �y(k)
�� 0(j )

(4.13)

Notice that the Fisher matrix depends by de�nition on the true
parameters and the input samples, but is independent from the
measured output samples, and the estimated values of the para-
meters.
The output of the Wiener model can be numerically computed
without error, given P samples of the input sequence.

�y(k) =
n cX

k=1

c0(k) � �v(k)n c � k (4.14)

�v(k) = i�t f �G � �t f �ugg (4.15)

�G(k) =
P n b

l =1 b0(l ) � (2�f k ) l � 1
P n a

m =1 a0(m) � (2�f k )m � 1 ; (4.16)

where � stands for the element-wise product,f k are de�ned as in
De�nition 2.12, i�t( �) stands for the inverse fast Fourier transform,
�t( �) stands for the fast Fourier transform. Keep in mind that the
fast Fourier transform is a linear transformation which means the
output of the linear model can be expressed as a simple vector
matrix product.

i�t f �G � �t f �ugg = F � 1 � D �G � F � �u = G � �u (4.17)
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4.2 Formulating the optimization problem

where D �G is a diagonal matrix containing �G on its diagonal and
F and F� 1 are the matrices representing respectively the Fourier
and inverse Fourier transform.

4.2.2 Input parametrization
Because the sample frequency is chosen such that all higher order
harmonics at the output are captured, the input sequence is over-
sampled which implies that not all input samples are independent.
Therefore considering all input samples as optimization paramet-
ers would add unwanted freedom to the optimization problem.
To avoid these additional degrees of freedom, only a subset of the
input samples, called is optimized, while the other samples are
interpolated.

�um = [ u(0); u(m); u(2m):::]� (4.18)
�u = T � �um ; (4.19)

where �um contains the samples of the input signal that are optim-
ized and T is a P � (P=m) band limited interpolation matrix.
To understand how the interpolation matrix is constructed, con-
sider the following linear parametrization of the multisine signal.

u(t) = � 0 +
N f � 1X

l =1

� l sin(2�f 0lt ) + � l cos(2�f 0lt ); (4.20)

where � l and � l are called the linear parameters of the multisine,
which are de�ned as

� l = A l cos(� l )

� l = A l sin(� l ):

In matrix notation, equation (4.20) can used to express the input
sample vectors as

�u = K [�; � ]� (4.21)
�um = K m [�; � ]� (4.22)

where K is a P � (2N f � 1) matrix which contains the samples
of the sines and cosines that are present in the sum of (4.20), and
the matrix K m is just subsampled versions of theK .
Formally the matrices K and K m can be expressed as

Km = [ �1m ; �cm (1); �sm (1); : �cm (N f � 1); �sm (N f � 1) ]
K = [ 1 ; �c(1); �s(1); ::: �c(N f � 1); �s(N f � 1) ]
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in which cm and sm are de�ned as

�cm (l ) = cos(2�f l � �tm ) ; �c(l ) = cos(2�f l � �t)
�sm (l ) = sin(2 �f l � �tm ) ; �s(l ) = sin(2 �f l � �t)

;

with �1 a P � 1 unit vector, �1m a (P=m) � 1 unit vector, Km a
(P=m) � (2N f � 1) matrix, and K a N � (2N f � 1) matrix.
Notice that due to Assumption 4.3, the matrix K m is invertible.
Therefore the interpolation matrix T can be expressed as

T = K � K � 1
m ; (4.23)

where the matrix K m transforms the subsampled input samples
into the linear parameters of the multisine as de�ned in (4.21),
and the matrix K is used to compute all the input samples based
on these linear parameters.

4.2.3 Imposing constraints
As previously stated, the input class of multisine signals is further
restricted by one of the three constraint types mentioned in Sub-
section 4.1.2. To impose these constraints during the optimization
each constraint should be expressed as a function of�um .

� Range constraints on the input u: The amplitude of the
input signal u is restricted betweenumin and umax . Such a
constraint can be added to the optimization problem in the
form of linear constraints.

K u �um � �qu ,
�

T
� T

�
�um �

�
�u max

� �u min

�
; (4.24)

where T is the interpolation matrix de�ned in (4.23), �umin

and �umax are constant P � 1 vectors. Notice that the range
constraint on u is only imposed on a �nite number of samples,
therefore the constraints may be violated in between samples.
The higher P the smaller the constraint violation will be-
come.

� Range constraints on the intermediate signalv: The amp-
litude of the output of the linear block is restricted between
vmin and vmax . This constraint can also be added in the
form of a linear constrain, since the �rst block is a linear
model.

K v �um � �qv ,
�

G � T
� G � T

�
�um �

�
�v max

� �v min

�
; (4.25)
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where �vmax and �vmax are constant P � 1 vectors. Similarly
to the range constraint on u, the range constraint on v is
only imposed on a �nite number of samples. Additionally,
range constraints onv can only be added if the mapping of
the linear block is known.

� Power constraints on the input signal u: The total power
of the input signal is �xed to pmax . This constraint is ad-
ded to the optimization problem in the form of nonlinear
constraints.

f NL (um ) � �qp , �u�
m � �um � �pmax ; (4.26)

where �pmax is a constant P � 1 vector. Given the previous
assumptions on the sample grid, the total power of a band
limited signal can be completely captured by a �nite sample
set. The precision of the constraints is therefore independent
of the number of samples.

4.2.4 Optimization problem
Any OID problem, that is in accordance with the previous assump-
tions, can be formulated as an optimization problem as given in
(4.27),

�um;opt = arg �u m
minf� log(det(M (T � �um ; � 0))) g (4.27)

s:t: Ku � �um 6 �qu

or K v � �um 6 �qv

or f NL (�um ) 6 �qp;

where one of the linear inequality constraints are used to impose
restrictions on the range ofu and v, and where the nonlinear con-
straint is used to impose a restriction on the total power of u.
Notice that the negative logarithm of det(M ) is minimized, since
this leads to a numerically more stable problem while not chan-
ging the point at which the optimum is reached.
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4.3 Exploring the behavior of the OID

In this chapter, the research object of interest is the class of optim-
ization problems described in (4.27). Each member of the problem
class corresponds to a speci�c choice of the problem settings. The
problem settings can be grouped depending on whether they are
related to the input class or the model class. Changing any of
the problem settings will most likely in�uence the corresponding
optimal input design.

Research Strategy

To the best of the author’s knowledge, there exists no theoret-
ical framework that relates the properties of the optimal input
signal with the settings of the OID problem. Therefore, an ’ex-
perimental’ 1 approach is followed where di�erent variations of
the optimization problem are solved through the use of a nonlin-
ear non-convex solver. Based on the resulting designs, relations
between the properties of the design and problem settings is in-
vestigated.

Importance of equivalences

To ensure that the observations based on a limited set of case
studies have any descriptive value for the whole problem set, the
selection of the di�erent case studies has to be made in such a way
that the problem space is su�ciently covered. In order to assist
this choice, it is important to verify for which changes of settings,
the problem remains equivalent. By exploiting these equivalences,
the number of case studies needed to describe the behavior of the
optimization problem can be reduced.

Numerical optimization

The numerical optimization of the case studies is performed loc-
ally. Therefore, there exists the risk that certain patterns observed
in the numerical solutions of the case studies are actually artifacts
from a incomplete optimization. To avoid such artifacts, it is im-
portant to ensure that the settings of the numerical optimizer are
well tuned before the problem space is scanned. Nonetheless, the
main focus of this study lies on the properties of the OID, and
the optimizer is only used as a means to this end. Hence, an

1 'Experimental' in the sense that the observations are based on results
from a limited set of case studies solved in Matlab. No actual measurements
or real life experiments where performed.
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4.3 Exploring the behavior of the OID

in-depth study about the aspects of the nonlinear optimizations
falls outside the scope of this thesis. Instead, the general purpose
solver fmincon of Matlab is used with the recommended/default
solver settings. The only aspects of the solver that will be ex-
plored are the choice of the internal optimization algorithm and
the generation of the initial values.

Overview of the remaining sections

The remainder of this chapter is organized as follows. First the
equivalence relation between di�erent instances of the optimiza-
tion problem are studied in the context of the OID. Next, some
details are given about the numerical optimization of the problem.
Afterwards, the solutions for di�erent case studies are presented
and thoroughly discussed. The chapter is concluded with a sum-
mary of the di�erent contributions presented in this chapter and
an overview of future research strategies.

Closing remarks

The author likes to point out that the presented work in this
chapter is only an initial step in exploring the problem space
de�ned by the OID for Wiener models and in general in�nite
memory models. By no means does the author claim that the
presented results are �nal in any sense. However, the author be-
lieves that the presented results can be used as a stepping stone
for further research related to the same problem space and illus-
trate some unexpected dependencies of the OID on the problem
settings. It is the author’s belief that these insights can lead to
user friendly intuition and, eventually, a descriptive theoretical
framework.
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4.4 Equivalent optimization problems

The class of optimization problems described by (4.27) is very
high dimensional, since every change in the problem settings cor-
responds to a di�erent member in the class. To derive general-
izable results from a �nite set of case studies, it is important to
investigate which optimization problems are equivalent.
Before the di�erent equivalence relations are studied, some useful
notations are introduced. An optimization problem which max-
imizes the cost functionV(�u) : S 7! R+ over a given search space
S will be denoted as (V (�u); S). The subset of S containing the
optimizers of (V (�u); S) will be denoted S(V (�u ) ;S )

4.4.1 Equivalence relations

Di�erent de�nitions of equivalence for optimization problems can
be considered. Since this thesis studies the optimization problems
in the context of the OID, De�nition 4.2 is used. This de�nition
states that two optimization problems are called equivalent if their
optimal solutions are related by a bijection. This bijection is said
to establish an equivalence relation between the two problems.

De�nition 4.2. Two optimization problems(V1(�u); S1) and
(V1(�u); S2) are called equivalent if there exists a bijection that
relates S(V2 (�u ) ;S1 ) and S(V2 (�u ) ;S2 ) .

The equivalence as described in De�nition 4.2, implies that if the
optimal solution of a problem is known, then the solution of all
equivalent problems can be obtained by applying the bijection
instead of a numerical optimization. This means that solving one
speci�c instance of the optimization problem (4.27) can provide
insight about the whole class of equivalent problems.

4.4.2 Scaling the frequency axis

Consider two OID problems that are related by a scaling of the
frequency axis. These problems are identical except for the fol-
lowing scaling relations

~f s = �f s ~a0(k) = a0(k)=� n a � k

~f 0 = �f 0 ~b0(k) = b0(k)=� n b � k ;
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4.4 Equivalent optimization problems

where a0 and b0 are the previously introduced parameters of the
transfer function, � is a non-zero scaling factor, and the quantit-
ies with a tilde correspond to the scaled problem. Based on these
relations it is easy to prove that the numerical values of the input
and output samples are identical for both problems. As a res-
ult, both OID problems result in identical optimization problems,
making their equivalence trivial.

Equivalence 1. Two OID problems that are related by a scaling
of the frequency axis result in the same numerical problem and are
therefore equivalent.

4.4.3 General equivalence theorem

All equivalence relations that will be encountered in this section
can be considered as special cases of Theorem 4.1. This theorem
states that if there exists a bijection relating the search spaces of
two optimization problems, and this bijection maintains the par-
tial order relation introduced by the cost functions of the prob-
lems, then this bijection de�nes an equivalence relation between
the two optimization problems.

Theorem 4.1. Given two optimization problems(V1(�u); S1)
and (V2(�u); S2) and a bijection f (�u) : S1 7! S2 such that

8�u1 ; �u2 2 S1 : V1(�u1) � V1(�u2) ) V2(f (�u1)) � V2(f (�u2)) ; (4.28)

then the same bijection establishes an equivalence relation
between the two optimization problems.
Proof: Based on the property in (4.28), the function f (�u)
is also a bijection betweenS(V1 (�u ) ;S1 ) and S(V2 (�u ) ;S2 ) . From
De�nition 4.2 it follows that f establishes an equivalence re-
lation between the two optimization problems.

4.4.4 Equivalent search spaces

When both optimization problems consider the same cost func-
tion, Theorem 4.1 states that these optimization problems are
equivalent if there exists a bijection that relates both search spaces,
while maintaining the order relation. Therefore, the search for
equivalence relations follows a two-step procedure. First, the
bijections between the di�erent search spaces are identi�ed. Second,
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it is veri�ed for which cost functions these bijections maintain the
order relation.

Bijections between search spaces

For the OID problem, di�erent search spaces correspond to di�er-
ent input settings. When assuming �xed sampling settings, each
constraint type that was introduced in Subsection 4.2.3 corres-
ponds to a di�erent type of search space. Every instance of this
type corresponds to a speci�c choice of the numerical values de-
scribing the constraints.
For two search spaces of the same type, there exists a linear bijec-
tion that relates both spaces. Below these bijections are listed.

� Power constraints on the input u(t): Consider two search
spacesS1 and S2 de�ned for two di�erent power constraints
on the input.

S1 = f �uj �u� �u = p1g S2 = f �uj �u� �u = p2g;

wherep1 and p2 are the total power levels of the constraint.
These two search spaces can be mapped on each other by
the bijection f (�u) : S1 ! S2, de�ned as

f (�u) =
r

p2

p1
�u = � �u

� Range constraints on the input: Consider two search spaces
S1 and S2 that are de�ned by two di�erent range constraints
on the input.

S1 = f �uj �u0;1 � �� u1 � �u � �u0;1 + �� u1g
S2 = f �uj �u0;1 � �� u2 � �u � �u0;2 + �� u2g;

where �u0;1 and �u0;2 are constant column vectors which con-
tain the center of the range, and�� u1 and �� u2 are constant
column vectors which contain the span of the range con-
straints.
These two search spaces can be mapped on each other by
the bijection f (�u) : S1 ! S2 which is de�ned as

f (�u) =
�� u2

�� u1
�u + (�u0;2 �

�� u2

�� u1
�u0;1) = � �u + �:

Notice that if both ranges have the same center than� = 0 .
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4.4 Equivalent optimization problems

� Range constraints on the intermediate signal: Consider two
search spacesS1 and S2 that are de�ned for two di�erent
range constraints on the intermediate signal.

S1 = f �uj �v0;1 � �� v1 � Gf �v1g � �v0;1 + �� v1g
S2 = f �uj �v0;2 � �� v2 � Gf �v2g � �v0;2 + �� v2g:

These two search spaces can be mapped on each other by
the bijection f : S1 ! S2, de�ned as

f (�u) =
�� v2

�� v1
�u +

b0(nb)
a0(na)

�
�v0;2 �

�� v2

� � v1
�v0;1

�
= � �u + �;

where b0(nb)=a0(na) corresponds to the static gain of the
linear subblock.

In contrast to search spaces of the same type, relating search
spaces of di�erent types requires more complex bijections. Due
to this complexity, it is unlikely that these bijections maintain the
partial ordering of the cost function. A similar reasoning can be
made for the bijections relating di�erent search spaces obtained
from changing the sample settings. Therefore, only equivalence re-
lations between OID problems with constraints of the same type
are further investigated.

Restricting the model class

Applying Theorem 4.1 to prove the equivalence between OID
problems with constraints of the same type, requires that the
partial order relation de�ned through the cost function VD is pre-
served for the linear mapping � �u + � . Whether this is the case,
depends on the model structure and the choice of estimated para-
meters in the model. For the general class of Wiener models,
the partial order relation of the cost function is not maintained
for a linear mapping. Thus additional assumptions about the
model need to be made, in order to obtain an equivalence relation
between OID problems with the same type of constraints.

Estimating only parameters of the nonlinear submodel

For Wiener models of which only the parameters of the nonlinear
submodel are estimated, the partial ordering of the cost function
is preserved for scaling of the input.
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Theorem 4.2. For a Wiener model of which only the para-
meters of the nonlinear submodel are estimated, the partial
order relation de�ned by the corresponding D-optimal cost
function is preserved for a scaling of the input.
Proof: Given a scaled input, the output of the model corres-
ponds to

�y(� �u; � ) =
n �X

k=1

� (k)� (n � � k ) (Gf �ug)(n � � k ) :

Computing the partial derivative of �y with respect to � (k)
gives

@�y
@�(k)

= � (n � � k ) (Gf �ug)(n � � k ) :

In matrix notation this equation becomes

J � = D � J;

whereJ contains the partial derivatives for the original input,
J � corresponds to the partial derivatives for the scaled input
and D � is a N � � N � diagonal matrix which contains the
powers of� that correspond to the estimated parameters.
Inserting this equation in the Fisher information matrices
yields

M (� �u) = D �
� M (�u)D � :

As a result, the following property holds for the D-optimal
cost function

VD (� �u) = det(D � )2V(�u);

which implies that the order relation is maintained

VD (�u1) � VD (�u2)

det(D � )2VD ( �u1) � det(D � )2VD ( �u1)

VD (� �u1) � VD (� �u2)

.
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Combining the result of Theorem 4.1 and Theorem 4.2 leads to
the following three equivalence relations.

Equivalence 2. Two D-OID problems that are de�ned for the
same Wiener model, of which only the parameters of the nonlinear
submodel are estimated, and that consider di�erent co-centered
range constraints on the input are equivalent.

Equivalence 3. Two D-OID problems that are de�ned for the
same Wiener model, of which only the parameters of the nonlinear
submodel are estimated, and that consider di�erent co-centered
range constraints on the intermediate signal are equivalent.

Equivalence 4. Two D-OID problems that are de�ned for the
same Wiener model, of which only the parameters of the non-
linear submodel are estimated, and that consider di�erent power
constraints on the input are equivalent.

Wiener models with power nonlinearity

For the subclass of Wiener models consisting of a linear subblock
followed by a power nonlinearity, it is easy to show that the partial
ordering is preserved for scaling of the input.

Theorem 4.3. For Wiener models that consist of a linear
subblock followed by a power nonlinearity, the partial order
relation de�ned by the corresponding D-optimal cost function
is preserved for scaling of the input.
Proof: The considered models have the following structure

�y(�u; � ) = c(n)Gf �u; � gn ;

as a result scaling from the input can be propagated to the
output as

�y(� �u; � ) = � n cn Gf �u; � gn :

Taking this into account when computing the cost function
leads to the following property

VD (� �u) = � 2nN � VD (�u):
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Based on this property it immediately follows that the order
relation is maintained.

VD (�u1) � VD (�u2)
, � 2nN � VD (�u1) � � 2nN � VD (�u2)
, VD (� �u1) � VD (� �u2):

Combining the result of Theorem 4.1 and Theorem 4.3 leads to
the following three equivalence relations.

Equivalence 5. Two D-OID problems that are de�ned for the
same Wiener model, which consist of a linear subblock followed
by a power nonlinearity, and that have di�erent co-centered range
constraints on the input signal are equivalent.

Equivalence 6. Two D-OID problems that are de�ned for the
same Wiener model, which consist of a linear subblock followed
by a power nonlinearity, and that have di�erent co-centered range
constraints on the intermediate signal are equivalent.

Equivalence 7. Two D-OID problems that are de�ned for the
same Wiener model, which consist of a linear subblock followed
by a power nonlinearity, and that have power constraints on the
input are equivalent.

Linear models with �xed static gain

For linear models of which the static gain is independent from
the estimated parameters, the partial ordering is preserved for
translation of the input.

Theorem 4.4. For linear models of which the static gain is
independent from the estimated parameters, the partial order
relation de�ned by the corresponding D-optimal cost function
is preserved for translation of the input.
Proof: The considered models have the following structure

�y(�u) = Gf �u; � g:

Since G is linear the following relation holds

�y(�u + �� ) = Gf �u; � g + G0 ��;

where G0 represents the static gain of the model and is as-
sumed to be independent of� . Di�erentiang y with respect

142



4.4 Equivalent optimization problems

to � eliminates the translation of the input. As a result, the
D-optimal cost function is invariant for a translation of the
input

VD (�u + �� ) = VD (�u);

which naturally implies that the partial order relation is main-
tained

Since Theorem 4.3 and Theorem 4.4 both apply for linear models
with known static gain, the following two equivalence relations
exist.

Equivalence 8. Two D-OID problems that are de�ned for the
same linear model of which the static gain is independent from the
estimated parameters and that have di�erent range constraints on
the input are equivalent.

Equivalence 9. Two D-OID problems that are de�ned for the
same linear model of which the static gain is independent from the
estimated parameters and that have di�erent range constraints on
the output are equivalent.

4.4.5 Equivalent cost functions
When both optimization problems consider the same search space,
Theorem 4.1 states that these optimization problems are equival-
ent if their cost functions de�ne the same order relation on the
search space. For an OID problem di�erent cost functions are
obtained by changing the information measure, the model or the
measurement conditions. In the next subsections it is investigated
for which changes to the model the problem remains equivalent.

Scaling the model gain

A straight forward example of a change in the cost function that
preserves the order relation is scaling the gain of the model. To
illustrate this, consider two models

y2(�u; � ) = �y 1(�u; � ); (4.29)

where the scaling factor� is assumed to be independent of� .
Because the scale factor in the model can be propagated in front
of the D-optimal information criterion results in

M 2 = � 2M 1 (4.30)
det(M 2) = � 2N � det(M 1); (4.31)
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which indicates that scaling the model only scales the cost function
and thus maintains the order relation. Therefore, the following
equivalence holds:

Equivalence 10. Two D-OID problems that consider the same
search space and which consider models that are a scaled version
of each other and of which the scaling factor is independent form
the estimated parameters, are equivalent.

Reparameterizing the model

Given two models with the same input-output relation but a dif-
ferent parametrization, one could expect that these models have
the same OID. However having the same input-output relation for
one set of parameter values is not su�cient. Theorem 4.5 speci�es
the additional conditions that are needed for two models to have
the same D-OID.
In essence the theorem states that two uniquely identi�able models
each should have at least an in�nitely small spherical space around
their corresponding true parameters for which both models have,
aside from a constant term, the same input-output relation. This
implies that there exist a bijection between the parameter spaces
of the models. If this bijection is di�erentiable then the D-optimal
information criterion of both models de�ne the same partial order
relation. In combination with Theorem 4.1 this implies that both
models have the same D-OID.

Theorem 4.5. Two models �y1(�u; � 0) and �y2(�u;  0) de�ne
the same partial order relation through their corresponding D-
optimal information criterion and as a result have the same
D-OID, if the following three conditions are met

1. Both models have the same number of estimated para-
meters and are uniquely identi�able.

2. There exists a bijection between the subsetS� � Rn
�

and the subsetS � Rn
 such that for every pair (�;  )

de�ned by the bijection, the following holds

(�;  ) 2 (S� ; S ) : 8�u; �y1(�u; � ) = �y2(�u;  ) + �c0(�u);

where �c0 is an arbitrary vector function, independent
from  and � .
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4.4 Equivalent optimization problems

3. The bijection can be described by two di�erentiable vec-
tor functions f ( ) : S� ! S and f � 1(� ) : S ! S� ,
of which the partial derivatives with respect to the ele-
ments of � and  are independent of�u and t.

4. The true parameter vector � 0 must be an interior point
of S� and the true parameter vector  0 must be and
interior point of S .

Proof: From the second, third and fourth condition it follows
that

@�y2(�u;  0)
@�(l)

=
@�y2(�u; f (� 0))

@�(l)
=

@�y1(�u; � 0)
@�(l)

Using this equality in combination with the chain rule makes
it possible to relate the partial derivatives of both models.

J1(t; k ) =
@�y1(t; �u; � 0)

@�(k)

J2(t; k ) =
@�y2(t; �u;  0)

@(k)

=
N �X

l =1

@�y1(t; �u; � 0)
@�(l)

@fl ( 0)
@(k)

; (4.32)

where f l ( ) is the l th vector component off ( ).
Before continuing, the chain matrix S� is de�ned as the
n� � n matrix containing the partial derivatives of f ( ) with
respect to  .

S� (l; k ) =
@fl ( 0)
@(k)

(4.33)

Because the number of estimated parameters is the same for
both models,S� is a square matrix.
Equation (4.32) can be rewritten as a matrix equation since
the partial derivatives @fl (  0 )

@k
are assumed to be independent

of t.

8�u : J2 = J1S� :

Substituting this matrix equation in the Fisher information
matrix leads to the following relationship

M 2 =
1
� 2 J �

2 J2 = S�
� M 1S� ;
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whereM 1 is the Fisher of the �rst model and M 2 is the Fisher
of the second model. Taking the determinant gives

det(M 2) = det( S� )2 det(M 1); (4.34)

which shows thatdet(M 2) is a scaled version ofdet(M 1).
The exact scaling factor depends onf , but is independent
from the input. Moreover the determinant of the chain matrix
cannot be zero, since both models are assumed to be uniquely
identi�able. As a result, the order relation imposed by the
D-optimal information criterion is the same for both models,
and Theorem 4.1 therefore states that also the D-OIDs are
the same for both models.

Example 4.1. In order to illustrate the usefulness of Theorem 4.5,
consider two LTI models �y1(�u; � ) and �y2(�u;  ) described by the fol-
lowing transfer functions

G1(!; � ) =
� (1)

� � (2)! 2 + � (3)!j + 1

G2(!;  ) =
 (1)

�  (2)! 2 + 1 !j +  (3)

In order to verify if Theorem 4.5 can be applied the four condi-
tions of the theorem should be checked. For the �rst condition is
is su�cient to notice that the models have the same number of
estimated parameters and are uniquely identi�able. To verify the
second and third condition, assume that the true parameter values
are inside the following sets.

S� = f � 2 R3j� (3) 6= 0g

S = f  2 R3j (3) 6= 0g

Notice that all elements inS� and S are internal points. Moreover
there exists a bijection between both sets, de�ned by the following
di�erentiable functions

f ( ) =
�

 1

 3
;

 2

 3
;

1
 3

�

f � 1(� ) =
�

� 1

� 3
;

� 2

� 3
;

1
� 3

�

For this bijection the following holds

8 2 S : �y1(�u; f ( )) = �y2(�u;  )
8� 2 S� : �y1(�u; � ) = �y2(�u; f � 1(� ))
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4.4 Equivalent optimization problems

As a result the second, third and fourth condition of Theorem 4.5
are ful�lled, and it can be guaranteed that both models have the
same D-OID.
For completeness, the chain matrix as de�ned in (4.33) is also
computed.

S� =

2

6
4

1
 (3) 0 �  (1)

 (3) 2

0 1
 (3) �  (2)

 (3) 2

0 0 � 1
 (3) 2

3

7
5 ; (4.35)

which shows that the determinant of the chain matrix is non-zero.

Evaluating the conditions of Theorem 4.5 is not always straight
forward, as is illustrated in Example 4.2. A pragmatic way to
verify if Theorem 4.5 can be applied, is to compute the ratio of the
information measures of both models for a large set of randomly
generated inputs. If this ratio changes for di�erent input signals
then (4.34) is not valid, and thus Theorem 4.5 cannot be used to
prove an equivalence between the problems. Of course this does
not exclude the possibility that other equivalence relations exist,
since Theorem 4.5 is only a su�cient condition for equivalence.

Example 4.2. To illustrate that the conditions of Theorem 4.5
are less straight forward than they seem, consider two LTI models
�y1(�u; � 0) and �y2(�u;  0) described by the following transfer func-
tions

G1(!; � ) =
� (1)

� � (2)! 2 + 1 !j + 1

G2(!;  ) =
 (1)

� ! 2 +  (2)!j + 1

Again it is clear that the �rst condition of Theorem 4.5 is satis�ed.
To verify the second and third condition a similar reasoning as in
Example 4.1 is followed. Assume that the true parameter values
are inside the following sets.

S� = f � 2 R2j� (2) = 1 g (4.36)
S = f  2 R2j (2) = 1 g (4.37)

Consider also the bijection between both sets, de�ned by the fol-
lowing functions.

f (� ) = ( � 1; 1)

f � 1( ) = (  1; 1)
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Figure 4.1: Left: the ratio of the information measures for the two
models of Example 4.2 for hundred random input sequences in the range
[-1,1]. The ratio clearly depends on the input signal. Right: the optimal
input spectrum for a unit power constraints for both models. In gray
the scaled amplitude of the transfer function. The designs are clearly
di�erent.

For this bijection the following holds

8� 2 S� : �y1(�u; � ) = �y2(�u; f (� ))
8 2 S : �y1(�u; f � 1( )) = �y2(�u;  )

While the reasoning presented here looks very similar to the one
followed in Example 4.2, there is one major caveat. The setsS�

and S , as de�ned in (4.36), are lines in R2 and as a result do
not contain any inner points. Therefore the fourth condition of
Theorem 4.5 is not satis�ed and the theorem cannot be applied.
The same conclusion could be obtained by computing the ratio of
the D-optimal information measures of both models for randomly
generated inputs. In the left plot of Figure 4.1 this ratio is plotted
for hundred randomly generated inputs. From this plot it can be
observed that the ratio of the D-optimal information measures is
not constant. This proves that (4.34) is not valid, and thus that
Theorem 4.5 cannot be applied to show equivalence between the
OID problems. Computing the D-OID for unit power constraints
with � 0 = [1 ; 1] and  0 = [1 ; 1] results in di�erent OIDs as can be
seen in the right plot of Figure 4.1.

In the remainder of this subsection, three di�erent reparameter-
izations of the Wiener model will be studied through the use of
Theorem 4.5. First, the impact of the choice of the �xed paramet-
ers is investigated. Instead of using Theorem 4.5 directly a slightly
altered version of the theorem is used. Second, it is shown that
many alternative parameterizations of the transfer function are

148



4.4 Equivalent optimization problems

equivalent. Finally is is shown that also di�erent choices for the
polynomial base functions result in equivalent OID problems.

Impact of �xing parameters in the model

Remember that the total number of parameters in a Wiener model
is (na + nb + nc) (see Subsection 4.1.1). However to obtain a
uniquely identi�able Wiener model, at least one parameter in the
linear submodel and one other parameter, which is not the con-
stant term, need to be �xed. This means the maximum number
of identi�able model parameters is only (na + nb + nc) � 2. Every
possible choice of the �xed parameters corresponds to a di�erent
model and thus a possibly di�erent OID.
In this subsection is will be shown that the di�erent choices for the
�xed parameters in the model lead to equivalent OID problems,
as long as the number of estimated parameters equals the max-
imum number of estimated parameters. In contrast, if the number
of estimated parameters is smaller than the maximum number of
uniquely identi�able parameters, the choice of the parameters does
in�uence the OID.
To obtain this result, a more general result is presented �rst in
Theorem 4.6. This theorem explains how two uniquely parameter-
ized models with the same D-OID can be obtained, starting from
a non-uniquely identi�able model. In essence the conditions of
Theorem 4.6 are nothing more than a special case of those men-
tioned in Theorem 4.6. It is important to note that this result is
not restricted to Wiener models but valid for all model structures
that satisfy the conditions of Theorem 4.6.

Theorem 4.6. Consider a model�y(�u; � ) that is not uniquely
identi�able in the whole parameter space and has� 0 as true
parameter vector. Given the three conditions below, it is pos-
sible to de�ne two uniquely identi�able models which have the
same input-output behavior as�y(�u; � 0) and the same D-OID.

1. There exist a smooth (n� � m)-dimensional subspace
S1 for which each parameter vector inS1 corresponds
to a di�erent input-output relation, and which contains
an internal point � � that de�nes the same input-output
relation as � 0.

2. For every element in S1, there exist a m-dimensional
subspace which can be described by an di�erentiablem-
dimensional function and of which all elements have
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the same input-output behavior. The union of all these
subspaces is calledS� = [

� 2 S1

S� .

3. There exist a second smooth (n� � m)-dimensional sub-
space of which the intersection withS� is called S2.

Proof: First consider the following implications of the given
conditions. Each parameter vector in S2 de�nes a unique
input-output relation. Thus there exists a parameter vector
in S2 that de�nes the same input-output relation as� � . This
parameter vector is called�  .
Based on the implicit function theorem an� � m-dimensional
parameterization for S1 and S2 can be de�ned around the
inner-points � � and �  .

8� 2 S�
1 � S1 : 9!� 2 S� : � = h1(� )

8� 2 S�
2 � S2 : 9! 2 S : � = h2( ):

where h1 and h2 are continuous di�erentiable functions.
Based in these parameterizations, the following two uniquely
identi�able models can be de�ned which have the same input-
output behavior as�y(�u; � 0)

�y1(�u; � 0) = �y(�u; h1(� 0))

�y2(�u;  0) = �y(�u; h2( 0)) ;

where the true parameters are de�ned as

� 0 = h� 1
1 (� � )

 0 = h� 1
2 (�  ):

To proof that these models have the same D-OID the condi-
tion of theorem 4.5 need to be ful�lled. First, notice that both
models have the same number of parametersn� � m. Second,
the bijection de�ned as

8(�;  ) 2 (S� ; S ) : �y1(�u; � ) = �y2(�u;  )

can be described by the following di�erentiable functions

f ( ) = h(h2( ))

f � 1(� ) = h� 1(h1(� ))
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4.4 Equivalent optimization problems

where the outer bijection h(� ) can be de�ned based in the
parameterizations of them-dimensional subspaces which con-
nects the points in S1 and S2 that de�ne the same input-
output relation. Third, the points � 0 and  0 are internal
points by de�nition. Since all conditions of Theorem 4.5 are
ful�lled it follows that both models have the same D-OID.

Example 4.3. To clarify the reasoning of Theorem 4.6 consider
a linear dynamic model �y(�u; � ), de�ned by the transfer function
below

G(!; � ) =
� 0(1)

� (2)!j + � (3)

This model is not uniquely identi�able since the following condi-
tions holds

8k 2 R0 : �y(�u; � ) = �y(�u; k� ) (4.38)

In other words scaling all parameters with a non-zero factor does
not change the input-output relation of the model. Geometrical
this implies that all parameter vectors on the same line through
the origin (with exclusion of the origin) de�ne the same input-
output behavior. These lines correspond the the m-dimensional
subspaces mentioned in the second condition of Theorem 4.6 (here
m = 1). To obtain a uniquely identi�able model structure the
parameters have to be restricted to a surface in the three dimen-
sional parameter space. Di�erent choices for the surfaces can be
considered. Let us focus on the following two planes

SI = f � j� (1) = 1 g

SII = f � j� (2) = 1 g

These planes can be parameterized as

h1(� ) = [1 ; � (1); � (2)] �

h2( ) = [  (1); 1;  (2)] �

By restricting the parameter vector to SI or SII two uniquely iden-
ti�able model structures are obtained

G1(!; � ) =
1

� (1)!j + � (2)

G2(!;  ) =
 (1)

!j +  (2)

151



Assume that the original model had the following true parameters

� 0 = [3 ; 2; 1]�

The true parameter values of the uniquely identi�able models then
become

� 0 = [
2
3

;
1
3

]�

 0 = [
1
2

3
2

]�

Consider now a disk aroundh1(� 0) with radius � in S1

S1 = f � 2 S1j k� � h1(� 0)k2 � � g

Every line that goes through a point ofS1 and the origin is a 1-
dimenesional subspace of which all elements have the same input-
output behavior due to(4.38). These lines will intersect with SII

and cut-out the disk S2. Notice that there can occur a problem
if one of the lines is parallel with SII . For a parameter value
in SI that results in a parallel line, there exists no corresponding
parameter in S2 with the same input-output relation. For this
example there is whole line of problem points described by

� j� (1) = 0

However it always possible to choose the diameter of the disk�
small enough to avoid this line. Assuming the problem points are
avoided, a bijection betweenS1 and S2 can be de�ned as

f ( ) = h(h2( ))

f � 1(� ) = h� 1(h1(� ))

where h(� ) and h� 1(� ) are de�ned as

h(� ) = [1 ;
� (2)
� (1)

;
� (3)
� (1)

]

h1(� ) = [
� (1)
� (2)

; 1;
� (3)
� (1)

]

as a result all conditions of Theorem 4.5 are ful�lled and the D-
OID for �y1(�u; � 0) and �y2(�u;  0) are identical.

Theorem 4.6 guarantees that for the Wiener models, the choice
of the two �xed parameters does not alter the D-OID. To better
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4.4 Equivalent optimization problems

understand this claim, consider the following. First, �xing two
parameters in the model corresponds to restricting the parameter
vectors to a smooth (n� � 2)-dimensional subspace. Second, all
parameter vectors de�ning the same input output-relation as � =
[a; b; c]� lie on the 2-dimensional subspace described by the vector
function h(� 1; � 2) of which the elements are de�ned as

hk (� 1 ; � 2) = � 1a(k) k 2 [1; :::; na ]
hk (� 1 ; � 2) = � 1 � 2b(1) k = na + 1
hk (� 1 ; � 2) = � 1b(k) k 2 [na + 2 ; :::; na + nb]
hk (� 1 ; � 2) = c(k)=� n c � k

2 k 2 [na + nb; :::; na + nb + nc ]

where it is assumed thatb(1) is a non-zero parameter. This as-
sumption can be made without loss of generality since the order of
the parameters is arbitrary and there will be always a parameter
b(k) which is non-zero (otherwise the output of the linear model
is always zero). Based on these two properties, it is follows that
Theorem 4.6 can be applied to show that any two choices for the
�xed parameters, the resulting OID problems are equivalent.
One could wonder if there exists a equivalence between the D-
OID for Wiener models with less estimated parameters than the
maximum identi�able amount. However, in general this is not the
case. A counter example of this statement was already given in Ex-
ample 4.2. The reason that models with less estimated parameters
than the maximum identi�able number do not lead to equivalent
OID problems is that the subspaces, which contain the parameters
for which two models have the same input-output relation, do not
contain any internal points. Or, stated in terms of Theorem 4.6,
the intersection betweenS� and the subspacesS1 and S2 are sub-
space of a lower dimension than the spacesS1 and S2.
The results obtained from Theorem 4.6 can be summarized by the
following equivalence relation:

Equivalence 11. Two D-OID problems that consider the same
search space, each consider a Wiener model of which the number of
estimated parameters corresponds to maximal number of estimated
parameters, and have the same parameterization with exception of
the choice of the �xed parameters, are equivalent.

Reparameterizing the transfer function

Through the use of Theorem 4.5, it can be proven that the follow-
ing reparameterizations of the transfer function lead to equivalent
optimization problems. Notice that all parameter vectors are as-
sumed to be real vectors.
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� Classic rational form parametrized as

G0(!; [a; b]) =
P n b

k=1 b(k)( !j )(n b � k )
P n a

l =1 a(l)( !j )(n a � l )

� Arbitrary rescaling of the parameters

G3(!; [c; d]) =
P n b

k=1 d(k)� k (!j )(n b � k )
P n a

l =1 c(l)� l (!j )(n a � l ) ;

where � l and � k are constant non-zero scaling factors.

� Partial fraction expansion parametrized as

G2(!; [a1b1;::: ; a; b]) =
n �

aX

k =1

bk

ak (1)( !j )2 + ak (2)( !j ) + ak (3)
;

where n �
a is the smallest power of two larger than na

� Pole-zero representation parametrized as

G1(!; [K; a R ; aI ; bR ; bI ]) = K
Q n b�

k =1 (!j � bR (l ) + bI (l )j ))
Q n �

a
l =1 (!j � aR (l ) + aI (l )j )

;

where n �
a is the smallest power of two large thanna and n �

b is the
smallest power of two large thannb, and K is a parameter to set
the gain of the transfer function

To obtain the equivalence between all parameterization, it is suf-
�cient to prove that all parameterizations are equivalent with the
classical form, since all equivalence relations are transitive. To
prove that each of these forms is equivalent with the classical
parametrization it should be shown that there exists a di�erenti-
able bijection between the parameters of both model structures.
Consider two optimization problems which are identical, except
for the parametrization of the linear part of the model. Assume
that in the �rst problem the classical parametrization is used and
in the second model one of the other parameterizations that were
listed. The structure of the second model can be reduced to the
structure of the classical parametrization, where the coe�cients
are all functions of the parameters of the second model.

G(!; � ) =
P n b

k=1 gk ( )( j! )k
P n a

l =1 gl ( )( j! ) l
: (4.39)

Because every choice of the �xed parameters leads to a di�erent
but equivalent optimization problem, it can be assumed without

154



4.4 Equivalent optimization problems

loss of generality that one of the �xed parameters is linear and one
of the �xed parameters is nonlinear. Assume that the �xed linear
parameter in the �rst model has index q. This implies that gq( )
has to be non-zero, otherwise both models cannot have the same
input-output behavior. Therefore the following relation between
the parameters of both models can be de�ned as

f k ( ) = � 0(q)
gk ( )
gq( )

; (4.40)

where � 0(q) is the true value of the �xed parameter in the �rst
model. The functionsgk and gq can only contain products and ad-
ditions of  . This implies that the inverse of f ( ) is well de�ned.
Hence,f k ( ) and its inverse establish a bijection between the para-
meters of both models, which results in the following equivalence
relation.

Equivalence 12. Two D-OID problems that consider the same
search space, each consider a Wiener model of which the number
of free parameters corresponds to the maximal number of identi�-
able parameters and which use a parameterization for the transfer
function that can be reduced to(4.39), are equivalent.

Example 4.4. To illustrate Equivalence 12, consider two linear
dynamic models �y1(�u; � ) and �y2(�u;  ) with the following paramet-
erizations for their transfer functions

G1(�; s ) =
� (1)

� (2)s2 + � (3)s + 1

G2(; s ) =
 (1)

(s � ( (2) +  (3)j )) ( s � ( (2) �  (3)j ))

=
 (1)

s2 � 2 (2)s + (  (2)2 +  (3)2)

The �rst model has a classical parameterization, while the second
model has a pole-zero parameterization. Both models have the
same number of parameters. Now it will be evaluate if all con-
ditions of Theorem 4.5 are satis�ed. First assume the parameter
values are restricted to the following two sets

S� = f � 2 R3j� (2) 6= 0 ; j� (3)j < 2
p

� (2)g

S = f  2 R3j 2(2) +  2(3) 6= 0g; (4.41)
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Second, notice that all points in these sets are internal points.
Third, notice there exists a bijection de�ned by two di�erentiable
functions

f (� ) =

 
� (1)
� (2)

; �
1
2

� (3)
� (2)

;

s
1

� (2)2 �
1
4

� (3)2

� (2)2

!

f � 1( ) =
�

 (1)
( (2)2 +  (3)2)

;
1

( (2)2 +  (3)2)
;

� 2 (2)
( (2)2 +  (3)2)

�

which de�nes the parameter pairs for which both models have the
same input-output relation. Consider now two true parameter vec-
tors from the sets de�ned in (4.41) and for which the following
holds

 0 = f (� 0)

Since all conditions of Theorem 4.5 are ful�lled it follows that both
models have the same D-OID, as is stated by Equivalence 12.

Reparameterizing the polynomial nonlinearity

After the parametrization of the transfer function, a next logical
step is to evaluate the parametrization of the nonlinearity. Re-
member that the nonlinearity is parametrized by a linear combin-
ation of monomials

�y(k) =
n � nlX

l =1

� nl (l ) � �v(k)n c � l : (4.42)

The question that comes to mind is if representing the nonlinearty
in a di�erent basis, changes the OID. To answer this question,
consider two Wiener models that have the same input-output be-
havior, that have an identical linear part, but have a di�erently
parametrized nonlinear part (but still the same number of estim-
ated parameters).

�y1(k) =
n � nlX

l =1

� nl (l ) � pl (�v(k)) �y2(k) =
n  nlX

l =1

 nl (l ) � ql (�y(k)) ;

where pl (�v(k)) and ql (�v(k)) are the polynomial base functions of
both models. Since both models have the same input-output be-
havior, the polynomial base function of �y1 can be used to express
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the polynomial base function of �y2.

ql (�v(k)) =
n � nlX

l 2 =1

� (l; l 2) � pl (�v(k)) : (4.43)

Substituting this equation in the expression of �y2 yields

�y2(k) =
n � nlX

l 1 =1

 n  nlX

l 2 =1

� (l1; l2) �  nl (l2)

!

pl 1 (�v(k)) : (4.44)

This equation shows that there exists a linear bijection between
both parameter vectors which satis�es the conditions of The-
orem 4.5

f ( ) =
n � nlX

l =1

� (l; k ) �  (k): (4.45)

From this and Theorem 4.5, the following equivalence can be con-
cluded.

Equivalence 13. Two D-OID problems that consider the same
search space, but di�erent models, which have the same linear part,
have the same input-output relation and of which the polynomial is
parametrized with a di�erent set of basis functions are equivalent.

4.4.6 Summary of all equivalences

In this section 13 di�erent equivalence relations were derived for
the optimization problem described in (4.27). In this �nal subsec-
tion the implications of these equivalences for the OID problem
are summarized.

Invariants

The following changes to the OID problem do not change the
optimal sequence.

� Scaling the frequency axis

� Scaling the static gain of the Wiener model

� Changing the choice of the two �xed parameters in the Wiener
model

157



� Changing the parameterization of the transfer function between
the classic rational form, the pole-zero representation or the
partial fraction expansion

� Changing the polynomial base vectors in which the nonlinear
polynomial is expressed

Rescaling of centered constraints

If the range constraints are centered around zero and one of the
next conditions is met

� Only the parameters of the nonlinear submodel of the Wiener
model are estimated

� The nonlinearity of the Wiener model is a single power

then following changes to the OID problem result in a simple
scaling of the optimal sequence.

� Changing the numerical values of the range constraints on
the input signal

� Changing the numerical values of the range constraints on
the intermediate signal

� Changing the numerical values of the power constraint on
the input signal

Rescaling of the non-centered constraints

If the model is reduced to a linear model with known static gain,
then the following changes to the OID problem result in a simple
scaling of the optimal sequence.

� Changing the numerical values of the range constraints on
the input signal

� Changing the numerical values of the power constraint on
the input signal
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4.5 Wiener models with single power nonlinearity

4.5 Wiener models with single power non-
linearity

From the previous section, it follows that for the subclass of
Wiener models that consist of the linear dynamic model followed
by a single power nonlinearity, the OID problem has many equi-
valence relations. As a result, this subclass forms an ideal starting
point for the exploration of the OID problem.
In this section, the OID is studied for two Wiener models. The
�rst consists of a linear dynamic �rst order model followed by
a power nonlinearity. The second consists of a linear dynamic
second order model followed by a power nonlinearity. It is shown
how the complexity of the OID problem for these two models
can be reduced, based on the equivalence relations of Section 4.4.
Next, the numerical aspects of solving the OID problem are con-
sidered. Afterwards, the properties of the OID and their relation
with the problem settings are studied for both models and all three
constraint types. Finally, the most important results and observa-
tions are summarized, and extensions of the obtained results are
brie�y discussed.

4.5.1 Standardizing the OID problems
In this subsection, it is determined which changes in the problem
settings in�uence the OID for both a �rst order model with power
nonlinearity, and a second order model with power nonlinearity.

Sign invariance

An important invariance that holds for all Wiener models with a
single power nonlinearity is the fact that the D-optimality criterion
is invariant for sign changes of the input since all entries in the
Fisher information matrix are raised to an even power. This can
easily be veri�ed as follows

M k;l (� u; � ) =
�

@y(� u)
@�k

� � @y(� u)
@�l

= n2(� v(t))2(n � 1)
�

@Gf ug
@�k

� � @Gf ug
@�l

=
�

@y(u)
@�k

� � @y(u)
@�l

= M k;l (u; � )

where v is the output of the linear subblock for the input u. This
equivalence can be used during the optimization to restricted the
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range of one of the optimization parameters to only positive or
negative values.

First order model with power nonlinearity

The input-output relation for a linear �rst order model with a
power nonlinearity is given by

v(t) = G1f u(t)g

y(t) = v(t)n

G1(! ) =
� 0(1)

� 0(2)!j + � 0(3)
:

To make the model structure uniquely identi�able, one of the lin-
ear parameters is �xed. From Equivalence 11, it follows that the
choice of the �xed parameter does not alter the OID. It is opted
to �x the third parameter � 0(3) to one, since this facilitates the
interpretation of the other two parameters.
To better indicate the e�ect of each parameter on the transfer
function, the following reparameterization is introduced.

� 0(1) = G0 � 0(2) =
1

2�f 3db
;

whereG0 is called the static gain of the transfer function, andf 3db

is the frequency at which the amplitude of the transfer function
decreases 3db relative to the static gain. In Figure 4.2 the e�ect
of these two parameters on the transfer function is plotted. From
Equivalence 12 it follows that this reparameterization does not
change the OID.
SinceG0 only changes the static gain of the model, Equivalence 10
states that the design is invariant for changes ofG0. Therefore,
it can be assumed without loss of generality that the value ofG0
is �xed to one. Moreover, Equivalence 1 states that the OID is
also invariant for scaling of the frequency axis, hence only the
ratio between the 3db-bandwidth of the model and the maximal
frequency of the input in�uences the OID, and not the absolute
value of f 3db. For practical convenience, the value off 3db is �xed
to one, and the value of f max will be changed to cover di�erent
ratios.
From Equivalence 5, 6 and 7 it follows that the shape OID is in-
dependent from the numerical values of the power constraint, as
well as of the numerical values of zero-centered range constraints.
Therefore, the OID problem will only be solved for a unit power
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4.5 Wiener models with single power nonlinearity

constraint and a range constraint that limits the input signal or
intermediate signal to [� 1; +1] . The OID for other values of the
constraints can be generated by accordingly scaling the OID ob-
tained for these normalized constraints.
Combining the above equivalence relations, it can be concluded
that the OID for a linear �rst order model followed by a power
nonlinearity depends only on the following four problem settings.

� the constraint type

� the power of the nonlinearity n

� the base frequency of the inputf 0

� the maximum frequency of the input f max

Hence, exploring the behavior of the OID design requires a four
dimensional sweep.
The e�ect of the di�erent problem settings will be explored in a
speci�c order. First, the e�ect of the constraint type in combin-
ation with the model power on the OID is investigated while the
other problem settings are �xed. During this step the properties
of the OID are carefully studied in the time and frequency domain.
Next, the e�ect of altering the base frequency and maximum fre-
quency will be studied one at the time.
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Figure 4.2: E�ect of changing the parameters Gdc and f 3db on the
magnitude of the transfer function. Left transfer function for Gdc

equal to [0:25; 0:5; 1; 2; 4]. Right transfer function for f 3db equal to
[0:8; 1:7; 2:5; 3:3; 4:2]. Curves that correspond to low parameter values
are red and high parameter values are blue.
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Second order model with power nonlinearity

The input-output relation of a Wiener model that consists of a
linear second order model, followed by a power nonlinearity is
given by

v(t) = G2f u(t)g

y(t) = v(t)n

G2(! ) =
� 0(1)

� � 0(2)! 2 + � 0(3)!j + � 0(4)
:

Similar as for the �rst order model with power nonlinearity, the
parameter � 0(4) (which corresponds to the constant term in the
denominator) is �xed to one, such that an uniquely identi�able
model structure is obtained. Next, the transfer function is re-
parameterized.

� 0(1) = G0 � 0(2) = 1
(2 �f 0 )2 � 0(3) = 2�

(2 �f 0 ) ;

where G0 is the static gain of the model, � corresponds to the
damping of the model, and f 0 is called the natural frequency of
the model. The e�ect of each parameter is illustrated in Fig-
ure 4.3.
Based on Equivalence 12, it can be concluded that the OID is
independent of the value ofG0, therefore G0 is �xed to one. Fur-
thermore, Equivalence 1 states that the OID is only depending on
the ratio between f n and f max . For convenience the value off n is
�xed to 1 and f max will be changed to cover the di�erent ratio’s.
Since the nonlinearity is a single power, Equivalence 5 till 7 state
that the OID is independent from the numerical values of the
power constraint, as well as of the numerical values of zero-centered
range constraints on the input and the intermediate signal. There-
fore, the power constraint is normalized to unit power and the
range constraints are both scaled to[� 1; +1] .
To summarize, the problem settings are listed on which the OID
for a linear second order model with a power nonlinearity depends.

� the constraint type

� the value of the damping �

� the base frequency of the inputf 0

� the maximum frequency of the input f max

� the power of the model
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4.5 Wiener models with single power nonlinearity

In other words, exploring the behavior of the OID design requires
a �ve dimensional sweep. To limit the exploration even further the
parameters are changed in separate steps. First, the e�ect of the
constraint type in combination with the model power on the OID
is investigated, while the other problem settings are �xed. Next
the e�ect of altering the base frequency, maximum frequency and
damping will be studied one at the time.
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Figure 4.3: E�ect of changing the parameters � and f n on the mag-
nitude of the transfer function. Left transfer function for � equal
to [0:1; 0:2; 0:3; 0:4; 0:5]. Right: transfer function for f n equal to
[0:4; 0:8; 1:3; 1:7; 2:1]. Curves corresponding to low parameter values are
red and high parameter values are blue.

4.5.2 Overview of the case studies

To explore the behavior of the OID for the two considered models,
eighteen OID problems were solved numerically. An overview of
these problems is given in Table 4.1. Each problem consists of
�nding the most informative multisine for an unique combination
of a model and constraint. Below more details about the problem
settings are provided

Models

Six di�erent Wiener models with a single power nonlinearity are
considered. The linear submodel of the Wiener models is either
a �rst order model, with unit static gain and a 3db-bandwidth of
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1Hz, of which � 0(1) and � 0(2) are estimated

G1(!; � 0]) =
� 0(1)

� 0(2)( !j ) + 1
(4.46)

� 0 = [1;
1

2�
]; (4.47)

or a second order model with a unit static gain, damping of 0.1,
and a natural frequency of 1Hz, of which� 0(1), � 0(2) and � 0(3)
are estimated.

G2(! ) =
� 0(1)

� 0(2)( !j )2 + � 0(3)( !j ) + 1
(4.48)

� 0 = [1;
1

10�
]: (4.49)

The transfer function, which describs the input-output relation of
each submodel, is plotted in Figure 4.4. The nonlinear submodel
is either linear, quadratic, or cubic. To obtain an uniquely iden-
ti�able model structure, the constant term in the denominator of
the transfer function and the gain in front of the nonlinear model
are �xed to one for each Wiener model.

Constraints

Three di�erent constraints are considered: a power constraint on
the input (p), a centered around zero range constraint on the input
(u), and a centered around zero range constraint on the interme-
diate signal (v). From Equivalence 5, 6 and 7 in Section 4.4, it
follows that the numerical values of the constraints do not alter
the OID. For convenience, the ranges are chosen inside [-1,+1],
and the power is limited to 1.

Sampling grids

Each optimization problem is solved for the class of multisines
with a base frequency of 0.04Hz and bandwidth of 6Hz. This im-
plies that the multisine contains 150 frequency components and
has a period of 25 seconds. In total 300 input samples are optim-
ized in each optimization. The upsampling factor is chosen equal
to the power of the nonlinearity in order to completely capture the
frequency components of the output signal. This implies that the
sampling frequency changes depending on the considered model.
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4.5 Wiener models with single power nonlinearity

Upsampling

To evaluate the information measure, the input is upsampled with
a integer factor m, such that all spectral components of the out-
put are correctly captured. The value of m is chosen equal to the
highest power of the nonlinear submodel. Notice thatm does not
in�uence the number of optimized samples. Moreover, choosing
m higher than the nonlinear power does not yield a more accurate
result for band limited periodic signals.
The upsampling factor mconst , which is used to evaluate the con-
straints, depends on the constraint type. For the power con-
straint the upsampling factor of 1 (no upsampling) is su�cient
since the power of the signal is completely captured by the 100
input samples. For the range constraints, the upsampling factor is
chosen equal to 10, to avoid that the signal spikes in between the
input samples. Again it should be noticed, that the upsampling
factor mconst does not change the number of optimized samples.
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Figure 4.4: On the left: magnitude of the transfer functions of
the �rst order model with parameters � 0 = [0 :1592; 1; 1]. On the
right: magnitude of the transfer function with parameters � 0 =
[0:0253; 0:0318; 1; 1].

4.5.3 Numerical optimization

The considered OID problems can only be solved with a nonlinear,
non-convex, numerical solver. Since the main focus of this work
lies on the properties of the OID, a detailed study of the di�erent
available solvers falls outside the scope of this thesis. Instead, the
OID problems are solved with the general purpose solver fmincon
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index a b n constr. m mconst

1 [1|0.1592] [1] 1 p 1 1
2 [1|0.1592] [1] 2 p 2 1
3 [1|0.1592] [1] 3 p 3 1
4 [0.0253|0.0318|1] [1] 1 p 1 1
5 [0.0253|0.0318|1] [1] 2 p 2 1
6 [0.0253|0.0318|1] [1] 3 p 3 1
7 [1|0.1592] [1] 1 u 1 10
8 [1|0.1592] [1] 2 u 2 10
9 [1|0.1592] [1] 3 u 3 10
10 [0.0253|0.0318|1] [1] 1 u 1 10
11 [0.0253|0.0318|1] [1] 2 u 2 10
12 [0.0253|0.0318|1] [1] 3 u 3 10
13 [1|0.1592] [1] 1 v 1 10
14 [1|0.1592] [1] 2 v 2 10
15 [1|0.1592] [1] 3 v 3 10
16 [0.0253|0.0318|1] [1] 1 v 1 10
17 [0.0253|0.0318|1] [1] 2 v 2 10
18 [0.0253|0.0318|1] [1] 3 v 3 10

Table 4.1: Overview of the eighteen problems that are used to evalu-
ate the algorithms provided by fmincon. The columns from left to right
contain: the problem index, the parameters of the denominator of the
transfer function, the parameters of the numerator of the transfer func-
tion, the parameters of the polynomial nonlinearity, the constraint type,
the upsampling factor used to evaluate the cost function, and the up-
sampling factor used to evaluate the constraint.
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4.5 Wiener models with single power nonlinearity

[62] in Matlab version 7.14.0.739 (R2012a) [41]. This solver is
designed to �nd the minimum of a constrained nonlinear multi-
variable function. In the remainder of this subsection, di�erent
aspects of the numerical optimization are investigated based on
the results obtained for the eighteen problems that are presented
in Table 4.1.

Choice of the optimization algorithm

The presented OID problems are solved with the general pur-
pose solver fmincon in Matlab version 7.14.0.739 (R2012a). This
solver is designed to �nd the minimum of a constrained nonlinear
multi-variable function. The solver fmincon supports four di�er-
ent optimization algorithms, namely

� the active-set algorithm (AS)

� the interior-point algorithm (IP)

� the trust-region-re�ective algorithm (TRR)

� the sequential-quadratic-programming algorithm (SQP)

For more details about the implementation of the algorithms, the
reader is referred to the Matlab help documentation [62]. No-
tice that due to the presence of inequality constraints, the TRR-
algorithm is not applicable for the presented problem. This leaves
three possible choices for the algorithm.
To evaluate the performance of the di�erent algorithms, the prob-
lems presented in Table 4.1 are solved for each of the remaining
algorithms. Since the optimization happens locally, the solver can
get stuck in a local optimum. To avoid this scenario, each prob-
lem was solved for hundred randomly generated initial values that
satisfy the constraint of the problem. In Figure 4.5, the informa-
tion, obtained for each problem, is given for each of the applicable
algorithms. To express the information of di�erent models on the
same axes, the information is normalized by dividing with the
highest information level that was found for each problem.

Sensitivity towards the initial value

When looking at the spread on the information, it becomes clear
that the sensitivity of the �nal solution, with respect to the initial
value, strongly depends on the constraint type. For problems with
the power constraint all initial values lead to designs with similar
information levels. In contrast, the information levels for problems
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Figure 4.5: Relative information of the optimized design for every initial
value for each of the eighteen problems. The information values are
scaled relative to the highest information found for each problem. Blue:
problems with a power constraint on the input. Green: problems with
a range constraint on the input. Red: problems with a range constraint
on the intermediate signal. Black line: median of the hundred random
initializations
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4.5 Wiener models with single power nonlinearity

Figure 4.6: Computation time for every initial value for each of the
eighteen problems. Blue: problems with a power constraint on the input.
Green: problems with a range constraint on the input. Red: problems
with a range constraint on the intermediate signal. Black line: median
of the hundred random initializations
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that consider range constraints on the input and range constraints
on the intermediate signal strongly dependent on the initial value.

Information

When comparing the di�erent algorithms, it can be observed that
the IP-algorithm has di�culties to �nd inputs that are equally
informative as the inputs found by the other algorithms. Closer
investigation of this result learns that, with the exception of prob-
lems which consider linear models together with power constraints,
the IP-algorithm ends its search prematurely, because the update
of the solution falls below the default tolerance. This is an in-
dication that the convergence of the IP-algorithm becomes very
slow. Of course decreasing the tolerance can help to reach more
accurate results, but this comes at the cost of higher computation
times.
The SQP-algorithm and the AS-algorithm provide designs with
similar levels of information. Which methods generates the most
informative design depends on the problem and the realization
of the initial values. The fact that both these algorithms have
similar performance should not come as a surprise, since the im-
plementation of both method is also very similar (see [62]).

Computation time

In Figure 4.6, the computation time of the algorithms is plotted
for each problem. From these plots, it can be observed that the
IP-algorithm needs substantially more computation time for all
problems compared to the other methods. This can again be
contributed to the slower convergence of the IP-algorithm.
The SQP-algorithm needs computation times that are similar to
the AS-algorithm for problems with a power or range constraints
on the input, but needs more computation time than the AS-
algorithm, when range constraints on the intermediate signal are
present.

Choice of the algorithm

From the numerical results obtained for the eighteen OID prob-
lems presented in Table 4.1, it is concluded that the AS-algorithm
is the most appropriate algorithm to solve the instance of the OID
problems considered in this chapter.
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4.5 Wiener models with single power nonlinearity

Figure 4.7: Convergence of the projected gradient method for problems
considering power constraints on the input (�rst six problems given in
Table 4.1). Information is expressed relative to the highest information
found for each problem.

Projected gradient method

When inspecting the obtained solutions for problems with a power
constraint, two interesting properties were discovered. First, the
optimized designs use all the power available.

PX

k =1

�u(k)2 = 1 :

Intuitively, this does not come as a surprise, since more power at
the input normally results in an increase in power at the output,
and thus a better signal to noise ratio.
Second, the derivative of the cost function, with respect to the
input samples and evaluated for the optimal design, is equal to a
scaled version of the optimal design.

@VD
@�u(k)

= � �uopt (k):

This implies that in �rst-order approximation, the information of
an OID can only be improved by scaling the input and thus in-
creasing its power. Geometrically, this means that the gradient of
the cost function, evaluated in the OID, is perpendicular to the
hypersphere de�ned by the power constraint.
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Inspired by these two observations, a projected gradient method
was implemented to compute the OID in the case of power con-
straints. This method is based on a gradient descent search, where
the updated solution is projected on the boundary of the con-
straints after each iteration step. The pseudo-code for this method
is given in Algorithm 6.

Algorithm 6 Projected Gradient method

Input: V, x0, P : cost, initial value, and maximum power
Output: x : optimized solution

x  x0
err  0

while err>tolerance do

g  @V
@x(x)

x  1
2

x
jx j + 1

2
g

jgj

x  
p

P � x
jx j

err  ( g
jgj � x

jx j )
� ( g

jgj � x
jx j )

end while

return x

The search starts from an arbitrary design satisfying the power
constraint. For the current design, the gradient of the cost func-
tion with respect to the input samples is computed. The current
point is then updated in two steps. First, the search direction
is computed as the average between the direction of the current
point and the direction of the gradient. Next, the updated design
corresponds to the intersection along the search direction and the
hyper sphere de�ned the power constraint.
Notice, that when the current point and the gradient have the
same direction, the current point is no longer updated. There-
fore, the di�erence between the normalized gradient and the cur-
rent point is used as a stopping criterion.
To evaluate its performance, the projected gradient method is ap-
plied for the problems with power constraints. In Figure 4.7 the
evolution of the information is plotted for �fty iterations of the
algorithm. The information is normalized relative to the best solu-
tion found with the AS-algorithm of fmincon. From these plots, it
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4.5 Wiener models with single power nonlinearity

is observed that the method converges fast and monotonically for
all considered problems and �nds designs with the same informa-
tion levels as the AS-algorithm of fmincon.

Generating initial values

From the results presented in Figure 4.5, it is clear that the quality
of the solution strongly depends on the initial value from which
the optimization starts. This is especially true for problems with
range constraints on the input and intermediate signal. To re-
solve this issue, each problem can be solved for a set of randomly
generated initial values that satisfy the constraint of the problem.
However, this approach has a high computational cost. Addition-
ally, the longer the input sequence the more initial values need to
be generated to su�ciently cover the search space. An alternat-
ive solution consists of providing an initial value in the vicinity
of the global optimum, such that local optima can be avoided.
Two strategies to generate a good initial value for the problems
described in Table 4.1 are now discussed.

Power initialization

In Figure 4.5, it can be seen the information of the optimized
designs for problems with power constraints on the input, are
far less sensitive to the initial value. Therefore, it is suggested
to initialize the problems that consider range constraints, with
the scaled solution of the corresponding problem with power con-
straints. The scaling factor is applied to ensure that the initial
value satis�es the range constraints. An initial value obtained in
this way will be referred to as a power initialization. Geometrically
a power initialization is also meaningful, since the scaled solution
for power constraints corresponds to the solution found inside the
largest hypersphere centered around the origin and is completely
inside the polyhedron described by the range constraints.
In Figure 4.8 the information obtained for the designs generated
with a random initialization and the power initialization are com-
pared for problem 6 till 18. For problems 7, 8 and 9, the power
initialization leads to designs with a higher information than the
best design obtained with random initialization. For problem 10,
11, 12, 13 and 16, the power initialization leads to designs close
to the most informative designs of the random initialization. For
problems 14 and 15 the power initialization leads to designs with
information far below the information levels obtained with the
random initialization. For problems 16, 17 and 18 the power ini-
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Figure 4.8: Performance of the power initialization compared to the
random initialization. Blue circled dot: Relative information of the
OID found with the AS-algorithm, starting from the power initializa-
tion. Green: relative information of the random initialization for prob-
lems with range constraints on the input. Red: relative information
of the random initialization for problems with range constraints on the
intermediate signal. Black line: median of the random initializations

tialization leads to design inside the same information range as
for random initializations,
From the above observations, it can be concluded that, for prob-
lems that consider range constraints on the input, the power ini-
tialization is a better initialization strategy than random initializ-
ation. Intuitively, this can be explained by noticing that polyhed-
ron, which describes the boundary of the range constraints on the
input, corresponds to a hyper cube. Replacing this hyper cube
with the largest hypersphere inside the cube, still covers most of
the original search space with exception of the corner points (see
Figure 4.9).
In contrast, the power initialization performs worse than random
initialization for problems that consider a range constraints on
the intermediate signal. Again a geometrical justi�cation for this
result can be given. The range constraints on the intermediate
signal describe a polyhedron of which the shape depends on the
dynamics of the linear submodel. Depending on the shape of this
polyhedron, it is possible that the largest hyper sphere inside the
polyhedron only covers a small part of the search space. For ex-
ample one of the corner points of the polyhedron is very sharp see
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4.5 Wiener models with single power nonlinearity

(Figure 4.9). In this case the initialization can be far away from
the optimal solution.

Figure 4.9: Illustration of the search spaces de�ned by the di�erent
constraint types in the 2 dimensional case. Left: the cube corresponding
to the range constraint on the input and the corresponding sphere of
the power constraint. Right: Polygon described by the range constraints
on the intermediate signal and the corresponding sphere of the power
constraint. Blue dot: optimal solution for the power constraint. Red
dot: Optimal solution for the range constraint.

Heuristic initialization

The second strategy initializes the problem with a problem spe-
ci�c initialization that is based on insight about which properties
of the signal are most informative. This type of initialization will
be referred to as the heuristic initialization.
For OID problems with range constraints on the input, it was
observed that the solutions obtained with power and random ini-
tializations often looks like square waves that contains one or more
constant pauses (see Figure 4.23 and Figure 4.44 in the next sub-
section). For OID problems with range constraints on the inter-
mediate signal, the OID results in an intermediate signal which
also resembles a square wave that contains one or more constant
pauses (see Figure 4.33 and Figure 4.53 in the next subsection).
The above observations inspired the de�nition of squarelike signals
with pause. To formally de�ne this type of signals, an auxiliary
signal is introduced �rst. The signal, ws;f is a periodic signal with
period p de�ned as

ws;f (t) = � 1 t 2 [0; s]
= sign(sin(2�f t )) t 2 ]s; p]:

(4.50)

175



A period of the signal ws;f consists of a constant pause with a
duration of s followed by a square wave with a frequencyf . No-
tice that it does not matter which sign is attributed to the pause
since the D-optimal criterion is invariant for the sign of the input,
and the range constraints are centered around zero.
While ws;f could be a informative signal, it is not band limited.
The best band limited approximation of ws;f in least square sense
is referred as a squarelike signal with pause~ws;f . A formal de�n-
ition for this type of signal is given in De�nition 4.3. An example
of such a signal is plotted in Figure 4.10.

De�nition 4.3. The squarelike signal with pause,~ws;f , is
de�ned as the multisine that best approximates the signalws;f
on the sampling grid, in least square sense, while satisfying
the range constraints.

us;f = arg u min f ( �ws;f � T �u) � ( �ws;f � T �um )g (4.51)
s:t: K �um � �qu ;

where K u and �qu are chosen in order to express the range
constraints on the input (see (4.24)), T is the interpolation
matrix used to upsample the signal as de�ned in(4.23).

Figure 4.10: Example of a squarelike signal with pause fors = 8s and
f = 3Hz .

Observe that the distance betweenus;f and ws;f is computed on
the sampling grid. As a result, the squarelike signals depend on
the input settings of the problem. This implies that the set of
squarelike signals need to be recomputed whenever the input set-
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4.5 Wiener models with single power nonlinearity

tings are changed.
To compute a squarelike signal ~ws;f , an optimization problem
needs to be solved. A good solution for this problem can be
found, starting from a zero initialization, with the interior-point
algorithm of fmincon.
To initialize a problem with a range constraint on the input, all
squarlike signals with a pause were computed for the following
values

s 2 [ts; 2ts; :::; Nt s] f 2 [f 0; 2f 0; :::; Sf 0]:

Notice that a �ner gridding of the intervals of s and f is not pos-
sible, given the considered frequency grid. Once the set of square-
like signals is computed, the OID problem is initialized with the
most informative signal in the set. This type of initialization will
be referred to as the heuristic initialization.
For OID problems with range constraints on the intermediate sig-
nal, the initialization step is slightly di�erent. Remember that
it was the intermediate signal that resembled a square wave and
not the input signal. Therefore, the inverse of the linear model is
applied to set of squarelike signals with pause. From this new set
of signals, the most informative signal is used as an initial value
for the OID problem.
In Figure 4.11, the information of the OID obtained starting from
an heuristic initialization is plotted for the di�erent OID problems
of Table 4.1. From this plot it can be observed that the heuristic
initialization results in the most informative design for all prob-
lems that consider a range constraint on the input (Problem 7
till 12). For problem with range constraints on the intermediate
signals, the heuristic initialization leads to the most informative
design for problems which consider a Wiener model that contains a
linear second order model (Problem 16 till 18), but performs worse
than the worst random initialization for problems that consider
Wiener model which contains a linear �rst order model (Problem
13 till 15).

Most informative optimized designs

All eighteen problems were solved with AS-algorithm of fmincon
for hundred random initializations, a power initialization, and the
heuristic initialization. The most informative optimized design
found for each problem, is plotted is Figure 4.12 and Figure 4.13.
In the title of each plot, the absolute information of each design is
mentioned as a reference. In the following sections the properties
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Figure 4.11: Performance of the heuristic initialization compared to
the random initialization. Blue circled dot: Relative information of
the OID found with the AS-algorithm, starting from a heuristic ini-
tialization. Green: relative information of the random initialization for
problems with range constraints on the input. Red: relative information
of the random initialization for problems with range constraints on the
intermediate signal. Black line: median of the random initializations

of these design in time and frequency domain will be studied in
more detail.

4.5.4 First order model with single power

In this subsection, the OIDs for a �rst order model with power
nonlinearity are studied. The results are organized by constraint
type. To present the results as general as possible, the frequency
axis is scaled with the f 3db of the model, and the time axis is
scaled with � = 1=f 3db.

Power constraints on the input signal

For power constraints on the input, the properties of the OID
design for a Wiener model, consisting of a linear �rst order model
followed by a power nonlinearity, are studied based on the solu-
tions that are found for the following problems:

� Problem 1: OID design, given a power constraint, for a lin-
ear �rst order model. ( f max = 6 f 3db; f 0 = 0 :04f 3db)
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4.5 Wiener models with single power nonlinearity

Figure 4.12: Most informative designs for the problems 1 till 9, obtained
by solving the problem with the AS-algorithm of fmincon starting from
hundred random initialization, the power initialization and the heuristic
initialization
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Figure 4.13: Most informative designs for the problems 10 till 18, ob-
tained by solving the problem with the AS-algorithm of fmincon start-
ing from hundred random initialization, the power initialization and the
heuristic initialization
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4.5 Wiener models with single power nonlinearity

� Problem 2: OID design given a power constraint, for a lin-
ear �rst order model followed by a quadratic nonlinearity.
(f max = 6 f 3db; f 0 = 0 :04f 3db).

� Problem 3: OID design, given a power constraint, for a
linear �rst order model followed by a cubic nonlinearity.
(f max = 6 f 3db; f 0 = 0 :04f 3db)

More details about these problems are given in Table 4.1.
In Figure 4.14 the designs, obtained with the AS-algorithm out of
100 random initializations, are plotted for each of these problems.
Similar looking designs were also obtained with the project gradi-
ent method. In the following paragraphs, the di�erent aspects of
the OIDs will be studied in more detail.

Linear model

For a linear �rst order model, the OID corresponds to a unit power
sine at f opt = 0 :567f 3db [16]. However, the optimization is done
on a discrete frequency grid. When the optimal frequency is not
part of the grid, the power is distributed amongst the frequency
lines around the optimal frequency, and therefore results in a two
tone. The exact power distribution is dependent on the properties
of the grid and the value of the optimal frequency.
Since both the information and the power constraints are convex
functions of the normalized power spectrum of the input and are
independent from the input phase [16, 25], the optimal power dis-
tribution over a given frequency grid can be globally solved with
a convex optimization algorithm such as the min-max-dispersion
algorithm described in [55].
In Figure 4.15 the optimal power spectra for a linear dynamic �rst
order model, obtained with di�erent solvers, are plotted. When
comparing the obtained spectra, it can be observed that all three
methods put most of the input power into the frequency lines
around f opt . All obtained designs have similar levels of informa-
tion. This illustrates that, even without exploiting the convexity
of the problem, a good design can be found through a numerical
optimization of the samples.

E�ect of the nonlinearity

When adding a power nonlinearity at the output of the linear
dynamic �rst order model, the OID problem becomes more com-
plex, since the information of the design depends both on the
power spectrum and the phase. In Figure 4.14, it can be seen
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that OID for a �rst order model followed by power nonlinearity is
very di�erent from the OID for the linear model. Instead of a two
tone, the OID for the nonlinear model corresponds to a pulse in
time, which has a smooth low-pass shaped power spectrum and a
close to linear evolution of the phase.
When comparing the OID of the models with a cubic and a quad-
ratic nonlinear term, it can be observed that the optimal power
spectrum for the cubic nonlinearity decreases slower than the
power spectrum for the quadratic term. To verify if this trend
holds for higher powers, the designs are also computed for a fourth
and �fth power nonlinearity. In Figure 4.17, the OID, computed
for the di�erent powers of the nonlinearity, are plotted. From
this plot, it can be concluded that the higher the nonlinearity,
the higher and wider the peak becomes in the time domain. This
translates into slower decreasing power spectrum in the frequency
domain.

Information of the designs

In Figure 4.16 the information of the linear OID and each of the
�ve nonlinear OIDs is evaluated for nonlinear models with di�er-
ent nonlinear power. From this �gure, it can be observed that
the linear OID only preforms well for the linear model, but lacks
information when a power nonlinearity is added to the model.
This indicates that it is important to bring the nonlinearities into
account during the computation of the OID. In contrast, the non-
linear OIDs seem to maintain a high information level for di�erent
power nonlinearities, as long as the di�erence between the nonlin-
ear powers of the model for which the design is computed and the
model on which the design is applied is not too big.

Spectral properties of the OID

To study the properties of the power spectrum of the OIDs in
Figure 4.14, two simple tests are performed. In the �rst test, the
power of all frequencies above a given cuto� frequency is put to
zero. By sweeping the value of the cuto� frequency and looking
how the information of the design is a�ected, it can be seen which
part of the power spectrum is important for the information of
the design. In the second test, the power of the frequencies be-
low a given power threshold are put to zero. By sweeping the
threshold, it can be seen which power levels are relevant for the
information of the design. The results of the two tests are plotted
in Figure 4.18 and Figure 4.19.
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4.5 Wiener models with single power nonlinearity

Figure 4.14: Time signal, power spectrum and phase of the OIDs found
with the AS-algorithm, starting from a random initialization, for a lin-
ear �rst order model (blue), a linear �rst order model with a quadratic
nonlinearity (green), and a linear �rst order model with a cubic non-
linearity (red), given a power constraint on the input. In color the
best design out of 100 random initializations. In gray: the design for
remaining 99 initialization.
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Figure 4.15: Optimized power spectra for a linear dynamic �rst or-
der model. In green: min-max-dispersion algorithm (MMD). In blue:
AS-algorithm of fmincon (AS). In red: the projected gradient method
(PGM). In gray: the 99 suboptimal solutions found with fmincon. Val-
ues in the legend correspond to the normalized information of each
design. Dashed magenta line corresponds tof opt .
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4.5 Wiener models with single power nonlinearity

Figure 4.16: Evolution of the information of the OID, computed for
a �rst order model followed by a power nonlinearity, while imposing
a power constraint on the input, as a function of the actual nonlinear
power of the model, assuming a linear (blue), quadratic (green), or cubic
(red) power during the design.
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Figure 4.17: E�ect of the power on the OID for a linear �rst order
model followed by a power nonlinearity. Designs are computed with the
projected gradient method for f 0 = 0 :04f 3db and f max = 10 � f 3db
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4.5 Wiener models with single power nonlinearity

From the �rst test, it can be concluded that the OID for the linear
model requires only the frequencies up 60% of the bandwidth in
order to obtain its full performance. This is understandable, since
all of the power of the design is concentrated around the frequency
f opt = 0 :567f 3db. In contrast, the design for the power nonlinear-
ity requires 2n times the bandwidth of the model, to obtain its
full performance. This indicates that the slowly decreasing power
spectrum of the design is not an artifact of an incomplete optim-
ization, but an actual property of the OID.
From the second test, it follows that the part of the spectrum be-
low -10dB is irrelevant for the information of the design and can
be considered a numerical noise of the solver. For the designs com-
puted for the nonlinear models, spectral components below -40dB
can be considered irrelevant for the information of the design.
This means that the bandwidth of the OID for a linear model
with a quadratic power nonlinearity can be limited around four
times the bandwidth of the model, and that the bandwidth of the
OID for quadratic power nonlinearity can be limited around six
times the bandwidth of the model.

Figure 4.18: Evolution of the relative information as a function of dif-
ferent cuto� frequencies, for a linear �rst order model followed by a
power nonlinearity.
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Figure 4.19: Evolution of the relative information as a function of dif-
ferent power thresholds, for a linear �rst order model followed by a
power nonlinearity.

E�ect of the maximum frequency

To evaluate the e�ect of the maximum excitable frequency of the
input class, the OID of each model is recomputed for di�erent
values of f max , while the other problem settings are �xed. The
evolution of the information of the OIDs as a function of the max-
imum frequency is plotted in Figure 4.20.
For the linear model, the information of the design does not change
for an increase in the maximum frequency. This could be expec-
ted since the OID focuses all its power around a single frequency
inside the 3db-bandwidth of the model.
For the OID for the nonlinear models, the increase of the max-
imum frequency enables a more informative design, which again is
expected since the OID has a wide power spectrum. For the OID
for the model with a quadratic nonlinearity, the information of the
design reaches its maximum forf max = 4 f 3db. For the OID for
the model with a cubic nonlinearity, the information of the design
reaches its maximum for f max = 6 f 3db. These two observations
are in accordance with the conclusion drawn before, based on the
top plot in Figure 4.18.
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4.5 Wiener models with single power nonlinearity

Figure 4.20: Change in relative information as a function of the max-
imum excitable frequency for a linear �rst order model followed by a
power nonlinearity, while imposing a power constraint on the input.
When sweeping the value off max the value of f 0 is �xed at 0:04f 3db .

E�ect of the base frequency

To evaluate the e�ect of the base frequency of the input class,
the OID of each model is recomputed for di�erent values of f 0,
while the other problems settings are �xed. By lowering the base
frequency, the number of excitable frequency lines inside the 3db-
bandwidth of the model increases and the power spectrum of the
design can be more accurately tuned. However, this �exibility
comes at the cost a higher number of variables in the optimization
problem. In Figure 4.21, the relative information of the OID is
plotted as a function of the number of frequency lines in the 3db-
bandwidth of the model.

E�ect of the base frequency for the linear model

For the linear �rst order model, the information level of the design
is largely independent of the base frequency. When zooming in,
two types of �uctuation in information can be observed. The �rst
type of �uctuation occurs at the beginning of the curve and is
smooth in nature. This type of �uctuation can be attributed to a
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miss alignment of the frequency grid. The second type of �uctu-
ation occurs at the end of the curve and is more noise like. This
�uctuation occurs due to the fact that the solver sometimes stops
at a suboptimal design. The higher the number of frequency lines
the more variables the solver needs to optimize and the higher the
variability with respect to the initial value.
To validate the above explanation, the information of the optimal
single tone design on the grid, is computed for every base fre-
quency. Remember that the OID for the linear �rst order model
is a single tone atf opt . If this frequency is on the frequency grid,
the information will peak. If the f opt falls next to the frequency
grid, the information will decrease, depending on the distance
with the closest grid line. In Figure 4.22, the change in informa-
tion of the single tone design is plotted and compared to the OID
of the linear model. Clearly, the information of the single tone
design corresponds well with the �uctuations of the numerically
optimized design.

E�ect of the base frequency for the nonlinear model

For the OIDs of the nonlinear models, a more than linear increase
of the information can be observed for an increase of the base
frequency. Keep in mind that the information is normalized with
respect to the highest information that was encountered during
the sweep off 0. As a result, the fact that the information reaches
one, does not indicate that the information cannot further in-
crease outside this range. If the sweep would be extended, the
curves for the OID of the quadratic and cubic model would con-
tinue to increase. The rate of the increase seems strongly related
to the power of the nonlinear subblock.
The behavior of the information for the nonlinear models can in-
tuitively be explained as follows. Lowering the base frequency in-
creases the number of optimized samples. Since the OID is pulse
shaped, these additional samples are given a value close to zero.
Therefore, they do not contribute to total power of the input and
enable an even higher peak, which results in a strong increase of
the information.

Concerns about applicability

While the peaked nonlinear OIDs are more informative, it should
be noted that they are also less plant friendly due to their high
crest-factor. Moreover, the main gain in information is obtained
by maximizing the output amplitude of the system, which can
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4.5 Wiener models with single power nonlinearity

Figure 4.21: Change in relative information as a function of the base
frequency for a linear �rst order model followed by a power nonlinearity,
while imposing a power constraint on the input. When sweeping the
value of f 0 the value of f max is �xed at 6f 3db .

Figure 4.22: Change in relative information of the OID as a function
of the base frequency for a linear �rst order model, while imposing a
power constraint on the input.
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lead to problems such as unstable plant operation or saturation of
the measurement devices. This is a clear indication that imposing
only a power constraint at the input, will not be su�cient to obtain
a plant-friendly OID in the case of expanding nonlinearities.

Range constraints on the input signal

For range constraints on the input, the properties of the OID
design for a Wiener model, consisting of a linear �rst order model,
followed by a power nonlinearity, are studied based on the solu-
tions found for the following problems:

� Problem 7: OID design, given a range constraint on the
input, for a linear �rst order model. ( f max = 6 f 3db; f 0 =
0:04f 3db)

� Problem 8: OID design, given a range constraint on the
input, for a linear �rst order model followed by a quadratic
nonlinearity. ( f max = 6 f 3db; f 0 = 0 :04f 3db).

� Problem 9: OID design, given a range constraint on the
input, for a linear �rst order model followed by a cubic non-
linearity. ( f max = 6 f 3db; f 0 = 0 :04f 3db)

More details about these problems are given in Table 4.1.
In Figure 4.23 the designs, obtained with the AS-algorithm out
of 100 random initializations, are plotted for each of these prob-
lems. As stated before, the sensitivity of the solution with respect
to the initial value, is much larger for range constraints than for
power constraints. Visually this can be observed by comparing
the spread of the gray curves in Figure 4.23 with the spread in
Figure 4.14.
In an attempt to guide the solver to a better solution, the optimiz-
ation of each problem was repeated for a power initialization. The
results of this optimization are presented in Figure 4.24. Clearly
the di�erent initializations lead to di�erent optimized designs.
The di�erences between these two designs will be studied in the
following paragraphs.

Comparing the optimized designs

Starting from a random initialization, the optimized designs for
each model resemble a square wave. However, the frequency of
the wave is not consistent, which leads to a non-structured power
spectrum. Notice that the designs found from a power initializa-
tion are also more informative than the best designs found from
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4.5 Wiener models with single power nonlinearity

Figure 4.23: Time signal, power spectrum and phase of the OIDs found
with the AS-algorithm, starting from a random initialization, for a lin-
ear �rst order model (blue), a linear �rst order model with a quadratic
nonlinearity (green), and a linear �rst order model with a cubic non-
linearity (red), given a range constraint on the input. In color the best
design out of 100 random initializations. In gray: the design for re-
maining 99 initialization.
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100 random initializations. This shows that the best design, found
from a random initialization, is suboptimal.
Starting from a power initialization, the optimized design for the
linear model resembles a square wave, with a frequency of0:56f 3db,
which is close to the optimal frequency of the OID for power con-
straints. For the nonlinear models, both designs resemble a square
wave, with a frequency of0:72f 3db and which contains a constant
pause of about10� . The frequency of the square wave and the
duration of the pause seem to be independent from the power of
the nonlinearity.
As a heuristic initialization, the OID problem was solved for the
most informative squarelike signal with and without a pause. The
resulting optimized designs are depicted in Figure 4.25 and Fig-
ure 4.26. Notice, that all these designs have even higher informa-
tion levels than the designs found with a power initialization.
Combining all previous observations, it can be concluded that two
types of informative signals exist for a linear �rst order model fol-
lowed by a power nonlinearity. The �rst type corresponds to a
squarelike without a pause, the second corresponds to a square-
like wave with a pause. Depending on the initial value, the solver
converges to one these two informative designs.

Information of the designs

In Figure 4.27 the information of the linear OID and the two non-
linear OIDs is evaluated for nonlinear models with di�erent non-
linear power. Compared to the OID with power constraints (see
Figure 4.16), the information of the OID linear model decreases
slower for higher nonlinear powers. Additionally, the OIDs for the
nonlinear models have high information for all nonlinear powers
and not only for powers close to the power of model for which
they were computed.

Spectral properties of the OID

Similar as for the power constraints, the spectral properties of the
OIDs for the nonlinear models, are evaluated by performing two
tests. In the �rst test, all frequency components above a given
cut-o� frequency are put to zero. In the second test, all frequency
components below a certain threshold level are put to zero. In
Figure 4.28 and Figure 4.29, the evolution of the relative inform-
ation and the average relative constraint error are plotted as a
function of the cut-o� frequency and threshold level.
The information is normalized with respect to the most inform-
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4.5 Wiener models with single power nonlinearity

Figure 4.24: Time signal, power spectrum and phase of the OIDs found
with the AS-algorithm, starting from a random initialization, for a lin-
ear �rst order model (blue), a linear �rst order model with a quadratic
nonlinearity (green), and a linear �rst order model with a cubic non-
linearity (red), given a range constraint on the input. In color the best
design out of 100 random initializations. In gray: the design for re-
maining 99 initialization.
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Figure 4.25: Time signal, power spectrum and phase of the OIDs found
with the AS-algorithm, starting from the most informative us;f signal
without a pause, for a linear �rst order model (blue), a linear �rst
order model with a quadratic nonlinearity (green), and a linear �rst
order model with a cubic nonlinearity (red), given a range constraint
on the input.
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Figure 4.26: Time signal, power spectrum and phase of the OIDs found
with the AS-algorithm, starting from the most informative us;f signal
with a pause, for a linear �rst order model (blue), a linear �rst order
model with a quadratic nonlinearity (green), and a linear �rst order
model with a cubic nonlinearity (red), given a range constraint on the
input.
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Figure 4.27: Evolution of the information of the OID, computed for
a �rst order model followed by a power nonlinearity, while imposing
a range constraint on the input, as a function of the actual nonlinear
power of the model, assuming a linear (blue), quadratic (green), or cubic
(red) power during the design.

ative problem encountered for each problem. Notice, that the
relative information can exceed one, since the constraints are not
enforced for all values of the cut-o� frequency. The average relat-
ive constraint error is de�ned as

err u =
1
N

NX

k=1

j �u(k) � umax j
umax

� (j �u(k)j � umax ); (4.52)

where N = (2 � S � mconst ), and the inequality operator returns 1
if the inequality holds and 0 otherwise.
When observing the changes in relative information with respect
to the cut-o� frequency, it becomes clear that for all designs, most
information is located in the �rst peak at 0:56f 3db. For the linear
model a second, but much smaller increase in information is ob-
tained at 1:68f 3db, which corresponds to the second peak in the
spectrum. For the nonlinear models the power, located past the
�rst peak, has a negative contribution towards the information of
the design.
From the changes in the constraint error, it can be seen that the
frequency components located above0:56f 3db are mostly used to
satisfy the range constraint that was imposed on the design. Since
the OID for the linear model is very concentrated at certain fre-
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4.5 Wiener models with single power nonlinearity

quency the evolution of the constraint error follows a staircase
pattern. In contrast, the evolution for the OID of the nonlinear
models is much smoother.
When looking at the evolution of the relative information and
constraint error with respect to the threshold power, it can be
seen for all designs, that the part of the spectrum below -20dB
has only a small e�ect to the information of the design. For the
linear model, spectral components below -40dB no longer seem
to a�ect the information or constraints error of the design. This
indicates that for the nonlinear models the spectral components
between the odd multiples of0:56f 3db can be considered numerical
noise of the solver. For nonlinear models the spectral components
below -40dB no longer a�ect the information of the design, and
components below -60dB no longer a�ect the constraint error.

E�ect of the maximum frequency

To evaluate the e�ect of the maximum excitable frequency on the
input class, the OID of each model is recomputed for di�erent
values off max . Each of the problems was initialized with a power
initialization. The evolution of the information as a function of
the maximum frequency is plotted in Figure 4.30. A higher signal
bandwidth leads to OID with higher information, which could be
expected since the OID consists of a squarelike signal.

E�ect of the base frequency

To evaluate the e�ect of the base frequency of the input class, the
OID of each model is recomputed for di�erent values off 0, while
the other problems settings are �xed. To save time, the OID was
computed starting from a power initialization. The results are
plotted in Figure 4.31.
While noisy due to the variance with respect to the initial value,
the plots in Figure 4.31 reveal two important trends. First, unlike
for power constraints, the information does not increase inde�n-
itely with an increasing frequency resolution. Second, all designs
are sensitive to a miss alignment of the frequency grid. Moreover,
the �uctuations are signi�cantly larger than for power constraints.

Range constraints on the intermediate signal

For range constraints on the intermediate signal, the properties
of the OID design for a Wiener model consisting of a linear �rst
order model followed by a power nonlinearity are studied based
on the solutions found for the following problems:
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Figure 4.28: Evolution of the relative information and the average re-
lative constraint error, as a function of di�erent cut-o� frequency, for
a linear �rst order model followed by a power nonlinearity, assuming
range constraints on the input signal
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4.5 Wiener models with single power nonlinearity

Figure 4.29: Evolution of the relative information and the average rel-
ative constraint error, as a function of di�erent threshold, for a linear
�rst order model followed by a power nonlinearity, assuming range con-
straints on the input signal
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Figure 4.30: Change in relative information as a function of the max-
imum excitable frequency for a linear �rst order model followed by a
power nonlinearity, while imposing a range constraint on the input.
When sweeping the value off max the value of f 0 is �xed at 0:04f 3db

Figure 4.31: Change in relative information as a function of the base
frequency for a linear �rst order model followed by a power nonlinearity,
while imposing a range constraint on the input. When sweeping the
value of f 0 the value of f max is �xed at 6f 3db
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4.5 Wiener models with single power nonlinearity

� Problem 13: OID design, given a range constraint on the
intermediate signal, for a linear �rst order model. ( f max =
6f 3db; f 0 = 0 :04f 3db)

� Problem 14: OID design, given a range constraint on the
intermediate signal, for a linear �rst order model followed
by a quadratic nonlinearity. ( f max = 6 f 3db; f 0 = 0 :04f 3db).

� Problem 15: OID design, given a range constraint on the
intermediate signal, for a linear �rst order model followed
by a cubic nonlinearity. ( f max = 6 f 3db; f 0 = 0 :04f 3db)

More details about these problems can be found in Table 4.1.
In Figure 4.32 the designs obtained with the AS-algorithm, out of
100 random initializations, are plotted for each of these problems.
The corresponding intermediate signals are plotted in Figure 4.33.

Absence of a good initialization

Again it can be observed that the sensitivity of the OID with
respect to the initial value is rather large and thus requires a lot
of random initialization in order to �nd a good design. To solve the
problem more e�ciently, a good initial value is required. However,
no better designs could be obtained with a power initialization
or heuristic initialization. Without a good initialization, scanning
the problem space for di�erent problem settings becomes very time
consuming. Therefore, only properties of the most informative
design out o� 100 random OID are studied.

Observations about the design

From the plots in Figure 4.32 and Figure 4.33, it can clearly be
seen that the OIDs try to generate a squarelike signal at the out-
put of the linear submodel. However, the period of the squarelike
wave is not consistent, which results in an unstructured power
spectrum at the output of the linear model. Since the linear sub-
model is a low pass �lter, a lot of power at the higher frequencies
is required to obtain a squarelike output. This explains the non-
smooth signal behavior of the OID in time.
Similar to OID for range constraints on the input signal, the OID
for range constraints on the intermediate constraints seems to con-
tain constant pauses. Similar pauses were also presented in the
optimized designs found with the power initialization and heur-
istic initialization. Therefore, it seems plausible that they are a
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Figure 4.32: Time signal, power spectrum and phase of the OIDs found
with the AS-algorithm for a linear �rst order model (blue), a linear �rst
order model with a quadratic nonlinearity (green), and a linear �rst
order model with a cubic nonlinearity (red), given a range constraint
on the intermediate signal. In color the best design out of 100 random
initializations. In gray: the design for remaining 99 initialization.
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4.5 Wiener models with single power nonlinearity

Figure 4.33: Time signal, power spectrum and phase of the intermediate
signal, v corresponding to the OIDs found with the AS-algorithm for a
linear �rst order model (blue), a linear �rst order model with a quad-
ratic nonlinearity (green), and a linear �rst order model with a cubic
nonlinearity (red), given a range constraint on the intermediate signal.
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property of the OID.

Spectral properties of the design

In Figure 4.34, the evolution of the relative information and the
average relative constraint error are plotted for di�erent cut-o�
frequencies. In Figure 4.34, the evolution of the relative informa-
tion and the average relative constraint error are plotted for dif-
ferent threshold levels.
The information is normalized with respect to the most informat-
ive problem encountered for each problem. Keep in mind that the
relative information can be higher than one, since the constraints
are not satis�ed for all values of the cut-o� frequency.
For range constraints on the intermediate signal, the average rel-
ative constraint error is de�ned as

err v =
1
N

NX

t =1

jvh � vmax j
vmax

� (jv(k)j � vmax ); (4.53)

where N = (2 � S � mconst ), and the inequality operator returns 1
if the inequality holds and 0 otherwise.
From Figure 4.34, it becomes apparent that the spectral compon-
ents inside the passband of the model do not signi�cantly contrib-
ute to the information of the OID. Instead, the most informative
spectral components are located betweenf 3db and 2f 3db. For a
nonlinear model with cubic nonlinearity, adding additional power
above2f 3db, has a negative contribution towards the information
of the design. For the other models the information keeps increas-
ing, be it at a lower rate than before. When looking at the evol-
ution of the average relative error, it is observed that the power
located at higher frequencies is mostly used to satisfy the range
constraint.
In Figure 4.35, the evolution of the relative information and the
average relative constraint error is plotted for di�erent power
thresholds. From this plot, it can be seen that Spectral compon-
ents below -30dB no longer contribute towards the information of
the designs. Spectral components below -40dB no longer e�ect
the relative information or average error and can be considered
numerical noise of the solver.

4.5.5 Second order model with single power
In this subsection, the OIDs for a second order model with power
nonlinearity are studied. The results are organized by constraint
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4.5 Wiener models with single power nonlinearity

Figure 4.34: Evolution of the relative information and the average re-
lative error, as a function of di�erent cut-o� frequencies, for a linear
second order model followed by a power nonlinearity, assuming range
constraints on the intermediate signal
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Figure 4.35: Evolution of the relative information and the average relat-
ive error, as a function of di�erent thresholds, for a linear second order
model followed by a power nonlinearity, assuming range constraints on
the intermediate signal
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4.5 Wiener models with single power nonlinearity

type. To present the results as general as possible, the frequency
axis is scaled with thef n of the model, and the time axis is scaled
with � = 1=f n . Unless otherwise stated, it is assumed that� = 0 :1.

Power constraints on the input signal

For power constraints on the input, the properties of the OID
design for a Wiener model that consists of a second order model
followed by a power nonlinearity, are studied based on the solu-
tions that are found for the following problems:

� Problem 4: OID design, given a power constraint, for a lin-
ear second order model. (f max = 6 f n ; f 0 = 0 :04f n )

� Problem 5: OID design given a power constraint, for a linear
second order model followed by a quadratic nonlinearity.
(f max = 6 f n ; f 0 = 0 :04f n ).

� Problem 6: OID design, given a power constraint, for a
linear second order model followed by a cubic nonlinearity.
(f max = 6 f n ; f 0 = 0 :04f n )

More details are found in Table 4.1. In Figure 4.36 the designs,
obtained with the AS-algorithm out of 100 random initializations,
are plotted for each of these problems. Based on the gray curves
in the plot, it is observed that the sensitivity of the solution with
respect to the initial value is low. Each of the presented OIDs will
now be studied in more detail.

Linear model

Theoretically, the OID for a linear second order model with damp-
ing of 0.1, is a two tone signal, for which the power is distrib-
uted equally amongst the two frequenciesf opt 1 = 0 :96f n and
f opt 2 = 1 :05f n [16]. If the optimal frequencies are not on the
considered frequency grid, the power will be redistributed among
the adjacent frequencies on the grid. Similar to the �rst order
model, �nding the optimal power distribution over a given grid
can be formulated as a convex optimization problem.
In Figure 4.37 the optimal power spectra for a linear second order
model, obtained with di�erent solvers, are plotted. In blue, the
best solution out of 100 random initial values obtained with AS-
algorithm of fmincon. In green, the solution obtained with the
min-max-dispersion algorithm. In red, the solution found with
projected gradient method. Values in the legend correspond to
the normalized information of each design.
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Figure 4.36: Time signal, power spectrum and phase of the OIDs found
with the AS-algorithm for a linear second order model (blue), a lin-
ear second order model with a quadratic nonlinearity (green), and a
linear second order model with a cubic nonlinearity (red), given power
constraints on the input. In color the best design out of 100 random
initializations. In gray: the design for remaining 99 initialization.
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4.5 Wiener models with single power nonlinearity

When comparing the obtained spectra, it can be observed that
all three methods put most of the input power around f opt 1 and
f opt 2. As a result, all obtained designs have similar levels of in-
formation. This illustrates again that a good design can be found
for a linear dynamic model, through a numerical optimization of
the samples.

Figure 4.37: Optimized power spectra for a linear dynamic second or-
der model. In green: min-max-dispersion algorithm (MMD). In blue:
AS-algorithm of fmincon (AS). In red: the projected gradient method
(PGM). In gray: the 99 suboptimal solutions found with fmincon. Val-
ues in the legend correspond to the normalized information of each
design.

E�ect of the nonlinearity

Adding a power nonlinearity to the linear second order model,
leads to a drastically di�erent OID than for the linear model. In
the time domain, the design is shaped as a single tone burst of
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which the frequency corresponds to the natural frequency of the
model. In the frequency domain, the design contains one high
peak at the natural frequency of the model, which is followed by
one or two lower peaks, located at odd multiples of the natural
frequency.
To see if the observed properties of the nonlinear OID hold for
higher powers, the OID is also computed for models with a fourth
and �fth power nonlinearity. The OIDs for the di�erent powers of
the nonlinearity are plotted in Figure 4.38. In the time domain, it
can be observed that the signal becomes slightly more peaked for
higher nonlinear powers. In the frequency domain, the number of
peaks in the spectrum correspond to the power of the nonlinearity.
Moreover, the peaks also become wider for higher powers, creating
a stronger overlap between the peaks.

Information of the designs

In Figure 4.39 the information of the linear OID and each of the
�ve nonlinear OIDs is evaluated for nonlinear models with di�er-
ent nonlinear powers. The obtained plot is similar to the results
presented for the �rst order model. Again the linear OID only
preforms well for the linear model, but lacks information when a
power nonlinearity is added to the model. In contrast, the nonlin-
ear OIDs seems to maintain a good information level for di�erent
power nonlinearities as long as the di�erence in power between the
model for which the design is computed and the model on which
the design is applied, is not too big. This con�rms once more that
it is important to bring the nonlinearities into account during the
computation of the OID.

Spectral properties of the OID

In Figure 4.40, the evolution for the information for di�erent cut-
o� frequencies is plotted for each OID. For all designs, the power
above two times the natural frequency no longer has signi�cant
contribution towards the information of the designs. This implies
that most of the information of the signal resides in the �rst power
peak of the signal. This should not come as a surprise, since this
peak contains more than 99% of the total power.
Based of the above insight, one could wonder if the secondary
peaks are indeed a property of the OID, or just an artifact of the
numerical optimization. To exclude this last possibility, the OID
for each problem is recomputed, starting from the signal that con-
tains only the frequency components up to two times the natural
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4.5 Wiener models with single power nonlinearity

Figure 4.38: E�ect of the power on the OID for a linear second order
model followed by a power nonlinearity. Designs are computed with the
projected gradient method for � = 0 :1, f 0 = 0 :04f n and f max = 10 � f n
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Figure 4.39: Evolution of the information of the OID, computed for a
second order model followed by a power nonlinearity, while imposing
a power constraint on the input, as a function of the actual nonlinear
power of the model, assuming a linear (blue), quadratic (green), or cubic
(red) power during the design.

frequency. Form this special initial value, the solver converged
again to a solution that contains the smaller peaks at higher fre-
quencies, which shows that the peaks are indeed a property of the
OID.
In Figure 4.40, the evolution for the information for di�erent
power thresholds is plotted for each OID. From this plot it can
be concluded that all power below -40dB has a marginal contri-
bution towards the information of the OID. This again con�rms
that most information of the OID resides around the resonance
frequency of the second order model.

E�ect of the maximum frequency and base frequency

In Figure 4.42, the e�ect of the input settings on the informa-
tion the OID is plotted. As expected, increasing the maximum
excitable frequency above the natural frequency does not change
the information of the design, since most power is concentrated
around the natural frequency of the model. When changing the
base frequency, a similar evolution as for the �rst order model is
observed. The information of the OID for the linear second order
model has strong �uctuations. These can again be attributed to
the misalignment of the excitable frequency grid and the optimal
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4.5 Wiener models with single power nonlinearity

Figure 4.40: Evolution of the relative information as a function of dif-
ferent cuto� frequencies, for a linear second order model followed by a
power nonlinearity, assuming a power constraint on the input

Figure 4.41: Evolution of the relative information as a function of dif-
ferent power thresholds, for a linear second order model followed by a
power nonlinearity, assuming a power constraint on the input
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frequenciesf opt 1 and f opt 2 of the best theoretical design. For the
nonlinear design the same explosive behavior of the information
can be observed due to an ever increasing output amplitude.

Figure 4.42: Evolution of the relative information as a function of the
base frequency and the maximum frequency, for a linear second order
model followed by a power nonlinearity, while imposing a power con-
straint on the input. When sweeping the value of f 0 the value of f max

is �xed at 6f 3n . When sweeping the value off max the value of f 0 is
�xed at 0:04f 3n .

E�ect of the damping factor

Up till now, the damping factor of the second order model was
kept constant (� = 0 :1). To evaluate the e�ect on this model para-
meter, the OID of the nonlinear models with power nonlinearity
is recomputed for di�erent damping factors. In Figure 4.43 the
OID for a second order model with cubic nonlinearity is plotted,
for di�erent damping factors. The observations made from this
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4.5 Wiener models with single power nonlinearity

plot are representative for all second order models with a power
nonlinearity.
From Figure 4.43, it can be observed that increasing the damping
factor, makes the burst duration of the OID shorter. In frequency
domain, this corresponds to a widening of the peaks in the power
spectrum. When lowering the damping factor, the duration of the
burst becomes longer. In the frequency domain, the peaks of the
power spectrum become sharper.
To explain the above observations, one should realize that chan-
ging the damping factor, moves the OID between two extremes.
If the damping factor tends to zero the magnitude of the transfer
function tends to in�nity at the resonance. In that case, the OID
degenerates into a single sine at the resonance frequency, since
this would lead to an in�nite signal to noise ratio at the output.
When the damping factor becomes higher than1=

p
2 the model

loses its resonance and the magnitude of the transfer function of
the second order model becomes similar to that of a �rst order
model. Hence for high damping factors, the OID converges to-
wards a signal that is similar to the OID for a �rst order model
with power nonlinearity.

Concerns about applicability

Similar as for the �rst order model with power nonlinearity, the
OID tries to maximize the output amplitude of the model by gen-
erating a peak shaped signal at the input, while still su�ciently
exciting the dynamics of the model. Moreover, the more samples
are added to the signal, the higher the peak becomes. This makes
the obtained OID unsuited for practical use since it may lead to
saturation or instability of the system.

Range constraints on the input signal

For range constraints on the input, the properties of the OID
design for a Wiener model, consisting of a linear second order
model followed by a power nonlinearity, are studied based on the
solutions found for the following problems:

� Problem 10: OID design, given a range constraint on the
input, for a linear second order model. (f max = 6 f n ; f 0 =
0:04f n )

� Problem 11: OID design, given a range constraint on the in-
put, for a linear second order model followed by a quadratic
nonlinearity. ( f max = 6 f n ; f 0 = 0 :04f n ).
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Figure 4.43: Time signal, power spectrum and phase of the OID for a
second order model followed by a cubic nonlinearity for di�erent damp-
ing factors. Designs are computed with the projected gradient method
for f 0 = 0 :02f n and f max = 3 f n
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4.5 Wiener models with single power nonlinearity

� Problem 12: OID design, given a range constraint on the
input, for a linear second order model followed by a cubic
nonlinearity. ( f max = 6 f n ; f 0 = 0 :04f n )

More details are found in Table 4.1.
The problems were solved with the AS-algorithm starting from
100 random initializations and 1 power initialization. All initial-
izations lead to similarly shaped designs both in time and fre-
quency. The designs obtained with the best random initialization
performed slightly better than the design found for the power
initialization. In Figure 4.44 the designs obtained with the AS-
algorithm out of 100 random initializations is plotted for each
problems. These designs will now be studied in more detail.

Similarities between the designs

From Figure 4.44 it can be seen that, for range constraints on the
input, there are no visible di�erences between the properties of
the OID for a linear model and the OIDs for nonlinear models.
This is in contrast with the results obtained for power constraints
on the input. For all models, the OID has a squarelike behavior,
of which the frequency lies around the natural frequency of the
model. All designs have also three distinct peaks in their power
spectrum at odd multiples of the natural frequency.

E�ect of the nonlinearity

The presence of the nonlinearity in the model, does not seem to
visually a�ect the properties of the OID. In order to verify if this
trend remains valid for higher powers, the OID is recomputed
for a model whose nonlinear power ranges from 1 till 5. The
designs were computed forf 0 = 0 :04f n and f max = 10f n . The
The OIDs for the di�erent powers of the nonlinearity are plotted
in Figure 4.45. From this �gure, it can be observed that the
properties of the OID remain more or less unchanged, even for
higher powers of the nonlinearity.

Information of the designs

The information of each OID is computed for a second order model
with power nonlinearity of which the power is changed form 1 till
5. The resulting information levels are plotted in Figure 4.46.
The behavior of the OID for the linear model di�ers from those
of the OIDs computed for the nonlinear models. This seems to
indicate that there exists subtle di�erences between the designs
that cannot be observed in the plots of Figure 4.44. At the mo-
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Figure 4.44: Time signal, power spectrum and phase of the OIDs found
with the AS-algorithm for a linear second order model (blue), a linear
second order model with a quadratic nonlinearity (green), and a lin-
ear second order model with a cubic nonlinearity (red), given a range
constraint on the input. In color the best design out of 100 random
initializations. In gray: the design for the remaining 99 initializations.
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4.5 Wiener models with single power nonlinearity

Figure 4.45: E�ect of the power on the OID for a linear second order
model followed by a power nonlinearity. Designs are computed starting
from a power initialization, for � = 0 :1, f 0 = 0 :04f n and f max = 10 � f n
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ment it is unclear which properties may explain this di�erence in
information.
Comparing the results in Figure 4.46 with those obtained for in-
put power constraints (see Figure 4.39), it can be seen that the in-
formation of the OID, computed for linear model, decreases much
slower for higher nonlinear powers. Additionally, the OIDs have a
high information for all nonlinear powers and not only for powers
close to the power of model for which they were computed.

Figure 4.46: Evolution of the information of the OID, computed for a
second order model followed by a power nonlinearity, while imposing
a range constraint on the input, as a function of the actual nonlinear
power of the model, assuming a linear (blue), quadratic (green), or cubic
(red) power during the design.

Spectral properties of the OID

In Figure 4.47 the evolution, of the relative information and aver-
age relative error (as de�ned in (4.52)), is plotted as a function of
the cut-o� frequency. From the evolution of the information, it can
be seen that most information is inside the �rst peak of the power
spectrum, located at the natural frequency of the model. From
the evolution of the average relative constraint error, it can be
observed that the remaining peaks at higher frequencies primarily
help the design to satisfy the range constraints.
In Figure 4.55, the evolution of the relative information and aver-
age relative error are plotted as a function of the threshold amp-
litude. These plots indicate that the information of the designs
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4.5 Wiener models with single power nonlinearity

is primarily determined by the spectral components above -20dB.
In order to satisfy the range constraints, components up to -60dB
are needed.

Figure 4.47: Evolution of the relative information as a function of dif-
ferent cuto� frequencies, for a linear second order model followed by a
cubic nonlinearity, assuming a range constraint on the input.

E�ect of the maximum frequency and base frequency

In Figure 4.49 and Figure 4.50 the e�ect of the base frequency
and maximum frequency can be observed. From these plots, the
same two conclusions as for the linear �rst order model followed
by a power nonlinearity, can be drawn. First, the higher the max-
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Figure 4.48: Evolution of the relative information as a function of dif-
ferent power thresholds, for a linear second order model followed by a
cubic nonlinearity, assuming a range constraint on the input.
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imum frequency the more informative the OID becomes. Second,
the information of the OID �uctuates signi�cantly with the base
frequency due to grid e�ects.

Figure 4.49: Change in relative information as a function of the max-
imum excitable frequency, for a linear �rst order model followed by a
power nonlinearity, while imposing a range constraint on the input.
When sweeping the value off max the value of f 0 is �xed at 0:04f n .

E�ect of the damping factor

Until now, the damping factor of the second order model was
kept constant (� = 0 :1). To evaluate the e�ect on this model
parameter, the OID of the nonlinear models with power nonlin-
earity is recomputed for di�erent damping factors, starting from
a power initialization. In Figure 4.51 the OID for a second order
model with cubic nonlinearity, assuming range constraints on the
input, is plotted for di�erent damping factors. The observations
made from this plot are representative for all second order models
with a power nonlinearity.
From Figure 4.51 it can be seen that while the OID seems in-
variant for changes of the nonlinear power, it does depend on the
value of the damping factor. For � = 0 :2, the design is still sim-
ilar in shape, however the peaks of the power spectrum are less
distinguishable.
For � = 0 :5 and � = 0 :8 the OID contains constant pauses, sim-
ilar to those present in the OID for the �rst order model with
power nonlinearity. Additionally, there is also a time window dur-
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Figure 4.50: Change in relative information as a function of the base
frequency for a linear second order model followed by a power nonlin-
earity, while imposing a range constraint on the input. When sweeping
the value of f 0 the value of f max is �xed at 6f n .

ing which the designs makes small �uctuations around zero. At
the moment of writing this thesis, it is unclear if these features
are the result of an incomplete optimization are true properties of
the OID. Future research will be needed to further clarify these
results.

Range constraints on the intermediate signal

For range constraints on the intermediate signal, the properties
of the OID design for a linear second order model followed by a
power nonlinearity are studied, based on the solutions found for
the following problems:

� Problem 16: OID design, given a range constraint on the in-
termediate signal, for a linear second order model. (f max =
6f n ; f 0 = 0 :04f n )

� Problem 17: OID design, given a range constraint on the
intermediate signal, for a linear second order model followed
by a quadratic nonlinearity. ( f max = 6 f n ; f 0 = 0 :04f n ).

� Problem 18: OID design, given a range constraint on the
intermediate signal, for a linear second order model followed
by a cubic nonlinearity. ( f max = 6 f n ; f 0 = 0 :04f n )
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4.5 Wiener models with single power nonlinearity

Figure 4.51: Time signal, power spectrum and phase of the OID for a
second order model followed by a cubic nonlinearity for di�erent damp-
ing factors. Designs were computed for f 0 = 0 :02f n and f max = 3 f n ,
starting from a power initialization.
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More details about these problems can be found in Table 4.1.
The presented problems were solved for 100 random initializations,
the power initialization and the heuristic initialization. From all
three initializations, the heuristic initializations resulted in the
most informative OID. In Figure 4.52 the OIDs, obtained with
AS-algorithm starting from a heuristic initialization, are plotted.
The corresponding intermediate signals are plotted in Figure 4.53.

Observations about the design

For range constraints on the intermediate signal, the OID for a
second order model with power nonlinearity, signals are very sim-
ilar to the OID for a �rst order model with power nonlinearity.
Again, the OID tries to generate a squarelike wave at the output
of the linear submodel. Therefore, the design requires a lot of
power at the higher frequencies, since the submodel behaves as a
lowpass �lter. These high frequency components explain the non-
smooth behavior of the OID in time. Additionally, the OIDs also
contain short pauses, similar to those in the designs for the �rst
order model with power nonlinearity.

Spectral properties of the OID

In Figure 4.54 the relative information and average relative con-
straint error (see (4.53)) are plotted as a function of the cut-o�
frequency. From these plots, it can be observed that the frequency
components below the natural frequency of the model do not con-
tribute to the power of the OID. The information of the design
is located at the natural frequency and its third harmonic. For
these frequencies, peaks can be observed in the power spectrum
of the intermediate signal.
In Figure 4.54 the relative information and average relative con-
straint error (as de�ned in (4.53)) are plotted as a function of the
amplitude theshold. From these plots, it can be seen that the most
important spectral components are located between -40dB and -
20dB. When looking at the spectrum of the OIDs this corresponds
to the spectral components in the interval [0; 3f n ]. The other fre-
quency components do not signi�cantly in�uence the design.

E�ect of the maximum frequency and base frequency

In Figure 4.56 and Figure 4.57 the e�ect of the base frequency and
maximum frequency can be observed. To save time the designs
were solved, starting from the power initialization instead of the
heuristic initialization. However, the power initialization some-
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Figure 4.52: Time signal, power spectrum and phase of the OIDs found
with the AS-algorithm for a linear second order model (blue), a linear
second order model with a quadratic nonlinearity (green), and a linear
second order model with a cubic nonlinearity (red), given a range con-
straint on the intermediate signal. In color the best design out of 100
random initializations. In gray: the design for remaining 99 initializa-
tion.
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Figure 4.53: Time signal, power spectrum and phase of the intermediate
signal, v corresponding to the OIDs found with the AS-algorithm for a
linear second order model (blue), a linear second order model with a
quadratic nonlinearity (green), and a linear �rst order model with a
cubic nonlinearity (red), given a range constraint on the intermediate
signal.
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Figure 4.54: Evolution of the relative information as a function of dif-
ferent cuto� frequencies, for a linear second order model followed by
a power nonlinearity, assuming a range constraint on the intermediate
signal.
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Figure 4.55: Evolution of the relative information as a function of dif-
ferent power thresholds, for a linear second order model followed by a
power nonlinearity, assuming a range constraint on the intermediate
signal.
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times leads to suboptimal designs. This explains the noisy nature
of the curves.
From the presented plots, the same two conclusions as before can
be drawn. First, the higher the maximum frequency the more in-
formative the OID becomes. Second, the information of the OID
�uctuates signi�cantly with the base frequency, due to grid e�ects.

Figure 4.56: Change in relative information as a function of the max-
imum excitable frequency, for a linear �rst order model followed by a
power nonlinearity, while imposing a range constraint on the interme-
diate signal. When sweeping the value off max the value of f 0 is �xed
at 0:04f n .

E�ect of the nonlinear power and damping

The e�ect of the nonlinear power and damping factor were not
studied due to time constraints.

4.5.6 Most important observations
In this subsection, an overview is given of the most important ob-
servations that were made based on the numerical results presen-
ted in the previous subsections.

Observation about the algorithms

� From the three applicable algorithms available in fmincon,
the AS-algorithm has the best performance for the eighteen
considered OID problems.
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Figure 4.57: Change in relative information as a function of the damp-
ing for a linear second order model followed by a power nonlinearity,
while imposing a range constraint on the intermediate signal. When
sweeping the value off 0 the value of f max is �xed at 6f n .

� For problems that consider power constraints, the projec-
ted gradient method �nds a similar OID as the fmicon al-
gorithm.

� For problems that consider linear models in combination
with power constraints, the fmincon algorithm and projected
gradient method �nd an OIDs similar to the OIDs found
from the convex formulation of the problems.

Observations about the initial values

� For problems with range constraints on the input, the power
initialization leads to designs with an information level that
is higher than the average information level of designs found
with random initializations.

� For problems with range constraints on the intermediate sig-
nal, the power initialization leads to designs with an inform-
ation level that is lower than average information level of
designs found with random initializations.

� For problems with range constraints on the input, the heur-
istic initialization leads to the most informative designs.
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� For problems with range constraints on the intermediate sig-
nal and models which contain a linear second order model,
the heuristic initialization leads to the most informative
design.

Observations about the shape of the OIDs

� For problems that consider nonlinear models in combina-
tion with power constraints on the input signal, the OID is
strongly peaked.

� For problems that consider nonlinear models in combination
with range constraint on the input signal, the OID resembles
a square wave whith constant pauses.

� For problems that consider nonlinear models in combination
with range constraint on the intermediate signal, the OID
results in intermediate signals that resembles a square wave
which may contain constant pauses.

Observations about spectrum of the OIDs

� The OIDs for the nonlinear models all have a wide power
spectrum that extends far outside the passband of the linear
submodel.

� With the exception of problems which consider a linear �rst
order model followed by a power nonlinearity and power
constraints, the part of the power spectrum of the OIDs for
the nonlinear models that falls inside the passband of the
linear submodel contributes most to the information of the
design.

� The part of the power spectrum of the OIDs for the nonlinear
models that falls outside the passband of the linear submodel
is used to satisfy the constraints on the design.

Observations about the information

� The OIDs computed for the linear model contain little in-
formation for nonlinear models.

� The OIDs computed for the nonlinear models contain con-
siderable amouts of information for the linear model.
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� The OIDs computed for the nonlinear models contain con-
siderable information for nonlinear models with a di�er-
ent nonlinear power, as long as the di�erence between the
powers of both models is small.

Observations about the base frequency

� For problems considering nonlinear models with power con-
straints, the information of the OID increases faster than
linear with the base frequency.

� For problems considering nonlinear models with range con-
straints on the input or intermediate signal, the information
of the OID �uctuates with the base frequency.
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4.6 Summary and future work
In this chapter the D-optimal input design problem for the class
of Wiener models that consist of a linear dynamic submodel with
in�nite memory, followed by a polynomial nonlinearity, has been
studied. The input class was restricted to multisine excitation
which are subject to either power constraints on the input, range
constraints on the input, or range constraints on the intermedi-
ate signal. For the measurement conditions it was assumed that
the system operates in steady-state, that the sampling did not
introduce leakage or aliasing errors and that there was only i.i.d
distributed output noise with known covariance.

Proposed research strategy

The OID problems were formulated as a nonlinear non-convex
optimization problem, in which a subset of the input samples is
optimized. Details were given on how to correctly upsample the
input signal in order to correctly evaluate the information criterion
and the constraints, while avoiding the introduction of unneces-
sary optimization parameters.
A general exploration strategy was presented, to explore the be-
havior of the OID in a structured and systematic way. The key
idea of this strategy consists of identifying the equivalence rela-
tion between the di�erent instances of the OID. Based on these
equivalences, the dimensionality of the optimization problem can
be signi�cantly reduced. This enables the exploration of the OID
based on a limited set of numerical optimizations.

Equivalence relations

In total, thirteen equivalence relations were identi�ed for the OID
problem. At the basis of all these equivalences lies Theorem 4.1
which states that two optimization problems are equivalent if there
exists a bijection between the search spaces of the problems that
maintains the order relation de�ned by cost function of each prob-
lem.
For two optimization problems that consider the same cost func-
tion, but di�erent set of search spaces, Theorem 4.1 states that
these problems are equivalent if there exists a bijection that links
both search spaces and maintains the order relation of the cost
function. From this insight, it follows that the OID problems for
linear models, Wiener models with known linear part, and Wiener
models with a single power nonlinearity remain equivalent for scal-
ing of the constraints.
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For two optimization problems that consider the same search
space, but a di�erent cost functions, Theorem 4.1 states that these
problems are equivalent if the cost functions of both problems es-
tablish the same order relation. Based on this insight, it was
shown that reparameterizing the Wiener model does not a�ect
the OID as long as the number of estimated parameters remains
maximal.

Linear low order models followed by a power nonlinearity

The proposed research strategy was illustrated on two models,
namely: a linear �rst order model followed by a power nonlin-
earity, and a linear second order model followed by a power non-
linearity. For these two models, the properties of the OID were
extensively studied based on the numerical solutions for a limited
set of instances of the OID problem.
The problem instances were numerically solved with the fmincon
solver provided in Matlab. Special attention went to the choice of
the optimization algorithm and the sensitivity of the solution with
respect to the initial value, from which the optimization starts.
Two initialization strategies were proposed, and their performance
was numerically evaluated. Additionally, an alternative optimiz-
ation routine for problem with power constraints was suggested.
The numerical solution for each problem was extensively studied.
It was observed that for input power constraints, the OID cor-
responds to a peaked signal, while for range constraints the OID
resembles a square wave with one or more constant pauses. Addi-
tionally it was seen that the properties of the frequency grid have
a considerable impact on the performance of the OID.

Linear higher order models with polynomial nonlinearity

For Wiener models that consist of a linear higher order model fol-
lowed by a full polynomial nonlinearity, the dimensionality of the
OID problem grows rapidly, since every model parameter intro-
duces an extra dimension that needs to be explored. In addition,
also the numerical values of the constraints need to be considered
as an extra dimension of the optimization problem, because Equi-
valence relation 5, 6 and 7 are not valid in the presence of full
polynomial nonlinearity.
With the current knowledge about the OID problem, an e�ective
exploration of the OID for linear higher order models with poly-
nomial nonlinearity is not (yet) tractable. Future research should
initially focus on obtaining a better understanding of why cer-
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4.6 Summary and future work

tain properties observed for OID are resulting in high information
levels.

Future Work

At the moment two major limitations prohibit the e�ective ex-
ploration of the OID for Wiener models which consist of a linear
dynamic in�nite memory model followed by a polynomial nonlin-
earity. The �rst is the high dimensionality the OID problem. The
second is the sensitivity of the numerical solver of the optimal in-
put design.
The �rst limitation could be resolved by performing a more ex-
tensive study on the equivalence relations of the OID. During the
exploration of the equivalence relations, in this work, only simple
bijections such as a scaling and a translation were considered.
However possibly more complex bijections could be explored in
order to �nd more equivalence relations that allow to reduce the
dimensionality of the problem.
The second limitation could be resolved by obtaining a better un-
derstanding of the numerical aspects of the optimization problem
related to the OID problem. A wider range of optimization al-
gorithms and initialization strategies could be explored in order
to obtain a special tailored optimization method for this type of
problems.
Aside from completing the exploration of the properties of the
OID problem for the considered class of Wiener models, the ex-
ploration strategy presented in this chapter could also be applied
to other block-oriented models. Some interesting models of which
the exploration of the problem space is expected to be feasible
are:

� Wiener models which contain a saturating nonlinearity.

� Wiener models which contain a linear model with high pass
dynamics.

� Hammerstein models that consist of a power nonlinearity
followed by a linear dynamic in�nite memory model.

� Simple parallel block oriented models that consist of a non-
linear branch in parallel with a linear branch.
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Chapter 5

Suboptimal Design
Methods

Aside from the two optimal input design methods described in
the previous chapters, some suboptimal methods were also stud-
ied during the research. These methods are based on a heuristic
reasoning and do not have a strong theoretical foundation. It was
hoped that the designs provided by these methods could be used as
a good starting point for more complex and rigorous optimization
methods. However, based on numerical examples, it was observed
that the designs provided with these suboptimal methods are far
less informative than the ones obtained with the methods of the
previous chapters and therefore do not provide a viable alternat-
ive. As a result only a general overview of the methods is given
instead of a lot of technical details.

5.1 Sequential input design

The sequential input design is a simpli�ed version of the sample
based optimization described in Chapter 4. Instead of updating
all samples of the input sequence at once, the sequential input
design updates one sample at a time.
The order in which the samples are updated is speci�ed by a se-
lection mechanism. Three di�erent selection mechanisms are con-
sidered: cyclic, random and greedy. The cyclic selection optimizes
the samples in the order in which they occur in the sequence. The
random selection randomly selects the order in which the samples
are updated, assuming a uniform distribution over the samples.
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The greedy selection updates the sample of which the update leads
to the highest increase in information.
The major advantage of the sequential input design is that in every
iteration only a one dimensional optimization problem needs to be
solved, which is far easier than the original multidimensional prob-
lem. Di�erent optimization algorithms can be applied, depending
on the properties of this one dimensional search. Three di�erent
optimization approaches were implemented. The �rst selects the
most optimal solution based on a one dimensional gridding. The
second selects the most informative sample value on the constraint
boundaries. The third performs a line search with the nonlinear
optimizer fmincon.
The biggest drawback of the sequential design method is that it
can easily get stuck in a local minimum, since it cannot take a sub-
optimal step at the current iteration, in order to get better solution
in future iterations. Additionally, it is also not straight forward to
accommodate all constraint types introduced in Subsection 4.1.2
of Chapter 4. Especially power constraints are di�cult to handle,
since the method tends to use all available power to optimize the
current point.

5.2 Naive dictionary design

The naive dictionary design constructs a suboptimal input se-
quence by �rst solving a simpler optimal experiment design prob-
lem. This experiment design problem consists of selecting the
most informative combination of independent experiments out of
a prede�ned set. Each of these experiments is performed under the
same experimental conditions but with a di�erent input sequence.
The set of prede�ned input sequences is called the dictionary. The
Fisher information matrix of a combination of independent ex-
periments can be written as a convex combination of the Fisher
information matrices of di�erent experiments in the combination.
As a result, the optimal experiment design problem can be solved
with a convex optimizer.
The key idea of the naive dictionary design is that the Fisher
information matrix of the optimal combined experiment forms a
good indication of the information of the input sequence that is
obtained by concatenating the input signals used in each of the
experiments. Of course, the information content of the total input
sequence will be di�erent from the information content computed
for the combined experiments, due to the transition between the
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5.3 Decoupled optimal input design

di�erent signals. However, it seems reasonable to assume that the
additional transitions will only add information and not lower the
information.
While the concept of the naive dictionary design seems elegant and
concise, the method contains some unexpected di�culties. First,
there is the issue of the order in which the selected input sig-
nals are concatenated. Di�erent concatenation orders will lead to
di�erent signal transitions, and thus di�erent information levels.
Unfortunately, �nding the optimal concatenation order leads to a
combinatorial optimization problem.
A second issue with the method is the fact that concatenating the
di�erent signals leads to abrupt changes in the signal, and thus
requires high frequent components in the design. When the input
is imposed to be band limited, the transitions in the signal are
smoothed. However, this smoothing may lead to the violation of
other constraint types due to ringing. Moreover, the smoothing
also a�ects the information of the design. How this smoothing
can be done in an optimal way is not straight forward.
Finally there is the selection of signals in the dictionary, which is
of course crucial for the performance of the method. If the dic-
tionary does not contain signals with informative properties the
naive dictionary will perform poorly. One could argue that this
problem could be solved by using very large dictionaries. How-
ever, the method then reduces to an exhaustive search over the
signals in the dictionary, instead of a combination of di�erent sig-
nals.
Form the above explanation it becomes clear that the complexity
of a proper tuning of the naive dictionary design is probably as
complicated, if not more complicated, than the brute force op-
timization method presented in Chapter 4. Therefore no further
exploration of the method was pursued.

5.3 Decoupled optimal input design

The decoupled optimal input design tries to construct an inform-
ative input signal for a special class of parallel block structured
models, consisting of a nonlinear and linear branch. Each branch
receives the same input and produces its corresponding output.
At the end, all outputs are combined through a summation. The
combined output is then corrupted by i.i.d. white Gaussian addit-
ive noise. For this type of models the Fisher information matrix
of the parallel model contains the Fisher information matrices of
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the submodels on its block diagonal. This observation inspired
the following two step procedure.
In the �rst step, the OID related to each of the branches is solved.
This yields an optimal input spectrum for the linear subsystem
and an optimal amplitude distribution for the nonlinear system.
In a second step an iterative scheme is used to �nd the phases
of the multisine for which the optimal amplitude distribution is
approximated as close as possible given the optimal power spec-
trum.
The viability of the method has some theoretical di�culties. First
of all, it cannot be guaranteed that the Fisher information matrix
is decoupled. Moreover, handling constraints is not straightfor-
ward, since for the nonlinear block, range constraints are pre-
ferred, while for the linear block, power constraints are preferred.
Regardless of the theoretical counter arguments, the method was
still implemented to validate if it can be used as a good heuristic.
Based on numerical examples, it is concluded that the presen-
ted method does not work in practice, since the optimal power
spectrum is too sparse, meaning not enough sine components are
present to approximate the desired amplitude spectrum.
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Chapter 6

Conclusion

In this work, two OID problems for nonlinear dynamic models
were extensively studied.
The �rst problem consists of �nding most informative periodic
digital signal for nonlinear �nite memory models. The OID prob-
lem was formulated as a convex optimization problem, in which
the tuple frequency vector, which represents the input sequence, is
optimized. This convex optimization problem was solved with the
min-max dispersion algorithm. Once the optimal tuple frequency
vector is obtained, a graph based method was used to generate
a sequence that realizes this optimal tuple sequence. Aside from
the theoretical aspects of the presented solution method, also the
numerical aspects of the method were studied. This revealed that
the method is only tractable for short memory models.
The second problem consists of �nding most informative multisine
excitation for nonlinear in�nite memory Wiener models. The OID
problem was reformulated as a nonlinear and nonconvex optimiza-
tion problem, in which the time samples of the input sequence are
directly optimized. This optimization problem was solved with
the nonlinear general purpose solver fmincon in Matlab. In order
to obtain insight about how the properties of the OID problem
depended upon the problem settings, di�erent case studies of the
problem were solved. To reduce the number of cases studies that
need to be considered, the problem settings for which the optimiz-
ation problem remains equivalent were identi�ed. The suggested
strategy was applied to explore the properties of the OID for lin-
ear �rst order model followed by a power nonlinearity, and linear
second order models followed by a power nonlinearity.
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6.1 Main Contributions
The main contributions of Chapter 3 are:

� Formulating the D-OID problem of �nding the most inform-
ative periodic digital signal for nonlinear �nite memory mod-
els as a convex optimization problem.

� Providing a graph-based signal generation method to gener-
ate the optimal informative periodic digital signal

� Illustrating that the min-max-dispersion algorithm can be
applied to solve the OID problem for �nite memory models.

� Providing an extensive discussion of the di�erent search spaces
for the OID problem for �nite memory models.

� Providing a detailed overview of the numerical aspects of
the optimization of the OID problem �nite memory models

� Illustrating all aspects of the method on a nontrivial numer-
ical example.

The main contributions of Chapter 4 are:

� Formulating the D-OID problem of �nding the most inform-
ative periodic, bandlimited input signal for the class of non-
linear in�nite memory Wiener models as a nonconvex, non-
linear optimization problem

� Providing a general strategy to explore the properties of
the OID for in�nite Wiener models based on the numerical
solution of a limited set of case studies.

� Establishing thirteen equivalence relations for the OID prob-
lem for in�nite memory Wiener models.

� Exploring the properties of the OID for the linear �rst order
model followed by a power nonlinearity through an exhaust-
ive scan of the problem space.

� Exploring the properties of the OID for the linear second
order model followed by a power nonlinearity through an
exhaustive scan of the problem space.
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