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Abstract

Many systems over different elds of engineering exhibit either linear or a nonlinear dynamic
behavior. Discrete-time models are very convenient to simulate a dynamical system on a
computer therefore both linear and nonlinear discrete-time models are often used to model
dynamical systems.

In the rst part of the thesis one major fundamental question, which will be answered
is "How to develop discrete-time models (with bounded output errors) for continuous time
linear and nonlinear systems under band-limited conditi6n$f order to build the fast
recursive discrete-time simulation models for the linear and nonlinear systems (described
asy(t) = gi(u(t);y(t)), one has to solve at each time step a nonlinear algebraic loop for
y(t)). If a delay is present in the loop iyét) = go(u(t);y(t 1)), fast recursive simulation
models can be developed and the need to solve the nonlinear differential-algebraic (DAE)
equations is removed. In this work, we provide the theoretical error bounds for such
kind of approximated models for both linear as well as nonlinear models (especially for
nonlinear state space models) developed under band-limited assumptions. Furthermore a
measurement methodology is proposed for quantifying and validating qualitatively the error
bounds experimentally.

In the second part of thesis, the emphasis shifts towards the characterisation and the
development of nonlinear models for lithium-ion batteries. Nowadays, due to the environ-
mental concerns, there is an increasing demand for cleaner energy supply and energy ef cient
systems. Availability, certainty and ef ciency of rechargeable electro-chemical energy sys-
tems, persuade us to consider them as alternative energy source in different applications
such as electric and hybrid vehicles, heavy transportation systems, renewable energy systems
and smart grids. Lithium-ion batteries are well-suited for fully electric and hybrid electric
vehicles due to their high speci ¢ energy and energy density relative to other rechargeable
cell chemistries. However, these batteries have not been widely deployed commercially
in these vehicles yet due to safety, cost, and poor temperature performance, which are all
challenges related to battery thermal management. In addition, due to slow dynamics, the
data acquisition process for battery characterisation and modelling is a time consuming



process. Hence, our understanding regarding the behaviour of different types of energy
storage systems under different operating conditions must be improved.

Therefore even before proceeding towards the modelling step, it is important to fully
characterise and understand the dynamic behaviour of the battery at varying operating
conditions. In this work, a data-driven methodology for characterising the battery's short
term electrical response at varying operating conditions, e.g. at very low levels of SoC and
different temperature levels, is discussed. A decision can be made by the battery modeller
at this stage to develop either a linear or nonlinear model based on the information and
knowledge gained from the nonparametric chracterisation step.

In this work, a novel way to estimate the best linear approximation and the polynomial
nonlinear state-space model (PNLSS) from the data acquired at multiple operating conditions
with varying levels of noise and nonlinear distortions, especially suited for operating points
lying in the nonlinear regime of the battery's electrical operation is proposed.
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Chapter 1

Getting started

Measurement is the rst step that leads to control and eventually to improvement.
If you can't measure something, you can't understand it. If you can't understand
it, you can't control it. If you can't control it, you can't improve it.

H. James Harrington

1.1 Introduction

Simulation or prediction models for the continuous time dynamical systems are usually
obtained from the application of physical principles, e.g. conservation of energy, mass and
momentum. Through the application of the physical laws to the real-world phenomena,
these models take the form of linear or nonlinear differential equations. But in practice, in a
control loop where digital controllers are used to controlling a real-world system, the control
action can only be applied (or updated) at particular time instants (known as the sampling
instants). Similarly, in a data-driven approach to modelling, the system models (both the
continuous time and the discrete time models) are developed from the data acquired only
at sampling instants. As a consequence of this practice, sampling, as well as sampled data
models (discrete time models), have always been one of the foundational concepts in all
aspects of modern identi cation, estimation and control theory.

Furthermore, in real-world scenarios, whenever the systems operate in their nonlinear
regime, or wherever the application calls for an increased ef ciency and high performance,
then accurate nonlinear models are required to simulate or predict the output correctly.
Examples of such systems are modern mechatronics systems, energy-based systems such
as the fuel cell systems, Lithium-ion batteries, super-capacitors etc. Thereforel 88tre
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there has been a growing interest and a gradual shift towards the modelling of the nonlinear
dynamical systems in the system identi cation community.

1.1.1 Discrete time modelling of the Lithium-ion battery

The high energy/power density and operating voltage make Lithium-ion battery well suited
for a wide variety of applications in various domains. The dynamical behaviour of the
battery cell varies over time from linear to nonlinear due to many different factors such
as stress-induced material damage, capacity fade, and temperature, etc. For the safe and
reliable operation of the battery-operated components as well as battery operated vehicles,
the health of the battery packs must be monitored by the battery management systems (BMS).
Moreover, some essential states of the battery such as the state of charge (SoC), the state
of health (SoH), the state of function (SoF) and the state of power (SoP). Most of these
dynamical states are usually associated with internal electrochemical reactions and cannot be
directly measured by physical sensors; hence model-based estimation algorithms are required
to estimate these dynamical states.

Since last few years, there has been a growing interest and activity in the eld of battery
modelling as well as control of battery based systems. Both discrete time and continuous
time models are proposed in the literature for modelling the battery's dynamics. From the
control point of view, it is always good to have access to a continuous time model of the
battery under consideration because continuous time models are able to depict the physics of
the battery. Furthermore, the control of physical states of the battery using the continuous
time models becomes direct and easier as compared to the discrete time models.

As mentioned above continuous time models are usually developed using the application
of rst principle laws on the real-world problems but identi cation of the continuous time
models using the sampled data is major research area in the system identi cation community
[12]. A rst attempt to the continuous time modelling of the lithium-ion battery using the
sampled data is recently reported &8]. The authors discussed the issues such as the system
identi ability, the sensitivity of discrete time model poles, and the pre-scaling in xed-point
storage related to discrete time modelling of batteries. Most of the issues mentioned above
were discussed and demonstrated using a case study involving the equivalent circuit models
(ECM). Although the case study shows some advantages of using the continuous time models
for batteries, their applicability and validity under different operating conditions are still
guestionable.

Therefore, due to the ease of identi cation and implementation, the discrete time mod-
elling of the lithium-ion battery still is a major thrust area and a dominating paradigm for the
lithium-ion battery research. In addition to that the battery electrical response at different
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operating conditions can be time-varying or nonlinear, and a linear model might not be well
suited to capture its dynamics. Hence a proper care must be taken while developing the
discrete time models for the batteries.

It has been shown in the literature that the battery displays both fast and slow dynamics
[14]. Therefore the application of the discrete time model identi cation methodologies to
model the lithium-ion batteries requires a careful choice of the data acquisition set-up. The
data-driven discrete time modelling of the dynamical systems requires an understanding of
the approximation errors when a continuous time system like a battery is represented by the
identi ed discrete time model. One of the most critical aspects which affect the nature of
the above-stated approximation error is the measurement set-up assumptions (zero-order
hold (ZoH), rst-order hold (FoH), bandlimited (BL) etc.) under which the data are acquired
for identifying the model. The bandlimited measurement assumptions are usually preferred
when the model is developed using the measured input and output signals (which is usually
the case in most of the practical applications), and a discrete-time model is required for
simulation or prediction purposes [11].

Based on the discussion above two key issues which are not well addressed }1 the
literature are mentioned below.

» How to identify good discrete time models and assess their approximation cppa-
bility to describe the underlying continuous-time dynamics under bandlimited
measurement set-up?

» How can such discrete time models be used to describe the Lithium-ion baftery
fast dynamics ?

Hence, the primary emphasis of Part-1 of the thesis is to propose a measurement method-
ology to understand and control the approximation errors, when the continuous time dynamic
systems are represented by the discrete time models, especially under the bandlimited mea-
surement assumption. In Part-Il, the focus shifts towards application of data driven discrete
time linear and nonlinear identi cation techniques to model the short term electrical response
of the lithium-ion batteries. A more in depth introduction on that is provided in Chapter 4.

In that context, to start with, an introduction of the general system identi cation frame-
work is given in Section 1.2. A brief overview of some of the most common nonlinear model
structures relevant to this thesis is given in the next Section 1.3. The research objectives and
outline of Part-I of the thesis are discussed in Section 1.5.1. Finally, the research motivation
as well as objectives of the Part-1l of the thesis are detailed in Section 1.5.2.
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1.2 System identi cation

Mathematical models are employed by engineers and scientists for the design optimisation,
failure diagnosis and prognosis, control design or simulation purpose, to assess the in uence
of various factors on system's output, and to understand the behaviour of the dynamic
systems. System identi cation is a eld of engineering science that infers a mathematical
model for a dynamic system from measured, noisy input-output data collected from a system
by utilising the statistical methods. Under some prior assumptions and prior knowledge of
the characteristics of the disturbing noise, it is made sure that the in uence of disturbing
noise sources on the behaviour of the model during the identi cation process is minimised.

The classic bookslb, 16] provide a good overview of the principles, general frameworks
and various methods, which are prevalent in the system identi cation community, mainly
for the identi cation of the linear time-invariant (LTI) dynamic systems. The text written
by authors in 11] introduces the general framework for the identi cation of LTI systems as
well as the best linear approximation in nonlinear settings in the frequency domain.

Based on the classic literature, the system identi cation process mainly consists of four
major steps: the data acquisition, the selection of an appropriate model structure, the model
estimation (the cost function) and the model validation. Each step is discussed brie y below.

» Data acquisitionThe data acquisition step involves, the design of the experiment and
the selection of a set of input excitation signals, which are appropriate for extracting the
maximum information from the system under consideration. The selection of the input
signals should be made such that the acquired data are suf ciently rich in information
to estimate or infer the parameters of the selected model structure (see below for further
details). The choices during the design of experiments, which the engineers have to
make, involve the selection of the bandwidth of the signal, the probability distribution
of the signal, the choice of the sampling rate, and the duration of the experiments.

Depending on the application, constraints and the intended use of the models, other
relevant choices include the choice between the BL or the ZoH measurement set-up,
and open or closed loop measurement etc. Once these choices have been made then
nally the input and the output signals are acquired.

» Model structure selectiorAfter the data acquisition step, the next most important
guestion is the selection of the mathematical structure to t the data so that the
behaviour of the considered system can be explained through the use of this model.
This step is called the model structure selection step. During this step, for the linear
systems, a whole range of options between white-box, grey-box or black-box models,
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parametric or nonparametric models, etc. are available from the literature. These
choices become even more challenging in the case of nonlinear dynamic models.

Some recent developments starting from the best linear approximation may help in
the model structure selection step for a class of nonlinear systiefkd. In most
practical problems, this choice is heavily in uenced by some prior knowledge about
the system and on the nal purpose of the model.

» Model estimation:The parameters of the selected mathematical structure need to
be estimated and tuned/optimised in order to achieve a good match between the
modelled and the measured system behaviour. This is achieved by selecting a suitable
optimisation criterion (cost function). The parameters of the selected model structure
are then estimated by minimising the selected cost function. If the chosen model
structure is linear-in-the-parameters and the residual errors are assumed to be normally
distributed then one of the most common cost functions is the quadratic cost function or
thek k 2 norm of the output error. This is also known as the least squares minimisation
criterion.

The linear least squares estimate can still be used if the normality assumption on the
residual errors does not hold true. For example, the Gauss-Markov theorem states that
the linear least squares estimates are still the best linear unbiased estimator (BLUE) in
mean squared sense as long as the errors have expectation zero, are uncorrelated and
have constant variance [20].

If the selected model structure is nonlinear-in-the-parameters, then a solution can
be obtained by decomposing the original nonlinear-in-the-parameters optimisation
problem into a series of smaller sub-problems which are linear-in-the-parameters, or by
using more advanced nonlinear optimisation algorithms available in the literature such
as the Levenberg-Marquardt optimisation algoritt#h][ In the optimisation literature,
various other methods such as non-linear programming methods, local search methods
such as gradient search, Newton Method, conjugate gradient methods, Gauss-Newton
methods are also proposed to tackle such problems. Though computationally expensive
but global search methods such as stochastic search, genetic algorithms, evolutionary
algorithms etc. can also be used for nding solutions to such problems.

* Model validation: The estimated model should be able to generalise well and its
performance must be robust on the unseen datasets, which are acquired under similar
or slightly different experimental conditions. Hence, a model validation step must
be performed before the model can be used for the intended purpose. In this step,
there exists a possibility to compare various models of different complexity obtained




6 Getting started

on the same data. Many different model selection and validation criteria exist in
the literature, including but not limited to, Minimum Description Length (MDL),
Akaike information criteria (AIC), Bayesian information criteria (BIC), leave-one-out
validation, cross-validation, regularisation based criteria etc. [11, 16, 22].

1.3 Nonlinear system identi cation

Most real life systems and phenomena are nonlinear, and vary with time therefore in many
situations, a nonlinear model might outperform a simple linear model, but still, the engineers
in the industry usually prefer to use a linear model. This is because a general unifying
framework for both the linear identi cation and the linear control theory exists since many
decades. Even though there is a vast amount of literature available on the modelling and the
identi cation of the nonlinear dynamical systen#3[ 24], but a lack of unifying framework

and a large amount of possible nonlinear modelling structures discourages many engineers to
do nonlinear modelling in practice.

If during the experiment design step, it is permitted to use an excitation signal belonging
to a special input class such as specially designed periodic excitation signals (e.g. a multisine
signal), then at an early stage of the identi cation process, it is quite easy to assess the level
of nonlinearities present in the system [11].

By accessing the level of nonlinear distortions with respect to the output of the system,
one can easily quantify the gain and assess the need of developing a nonlinear model as
compared to a linear model, even before proceeding towards the nal modelling of the system.
This might be suf cient in certain situations, but the question about the choice of a suitable
nonlinear modelling structure is still an open question, in situations where a nonlinear model
is required.

The choice between different nonlinear modelling techniques available in the literature
is very extensive e.g. nonlinear state-space mo@gls Yolterra and the Wiener theory
[26-28], NARMAX models [29], block-structured models3D, 31], neural networks and
fuzzy models 82, 33], restoring force models3§] etc.. In the section below, a short overview
of the class of the nonlinear model structures which are most relevant in the context of this
dissertation is given.

1.3.1 Volterra systems

One of the most general representations for the nonlinear systems is the \Volterra series
representationd6] named afteNito Volterra[35]. Basically the Volterra series representation
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extends the idea of the impulse response of the linear systems in (1.1) to the nonlinear systems,
asin (1.2).

+

¥
y(t) = Gu(t) = gP(t)u(t t)dt (1.1)
¥

y(t) = Vu(t) = Gou(t) + Gpu(t) + Gou(t)+  + Gau(t) + (1.2)
whereGou(t) = go = constant and

+¥ +

¥
Gau(t) = , ¥g<a>(t1 ta)ult t1) ut ta)dt; dty  (1.3)

is called thea th order Volterra operator. The integral kerng® (t1; ;ta) are called
the Volterra kernels. The output of a (causal discrete time) Volterra kgtfét; t,) of
degreea is given by:

Nm
va)= & o®(ty; sta)ult ty) ut ty)dty dt, (1.4)
ty; ;ta=0
wheret1;t> ta 2 Np andny, is the memory of the Volterra kernel. Due to symmetry of the
kernelg®)(ty; :ta), the order of the delayis;;to; ;ta becomes irrelevant [26].

In an output error framework, it is well known that the problem of the estimation of the
\olterra series coef cients can be formulated as a Linear Least Squares (LS) optimisation
problem. However, depending on the number of available data samples and the large number
of coef cients, the LS problem is not always the most ef cient way to obtain a solution of
acceptable precision. Recent developments have tried tackling this problem using Regularised
Least Squares (RLS) methods [36].

Equivalently a representation of the Volterra kernel in the frequency dovhéli) can
be written as [11]

N Z

1

YaW= & Gl 4 ULIUK) Ulka 1) (1.5)
ki ka 1=05+1
whereLy= k ki1 ko ka 1 andN is the total number of samples in one period. To

obtain the frequency domain representatf@(k), the Discrete Fourier Transform gf (t)
is taken. G(Li:)kl; «, epresents the symmetrised frequency domain representation of the
\olterra kernel of degrea. The frequency domain formulation helps in the nonparametric

analysis for separating the contributions of even and odd nonlinear terms, when specially
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designed input signals are usdd] (see Chapter 5 for an application on the characterisation
of the battery's short term response).

1.3.2 Block-oriented models

In block-oriented model structures two basic building blocks, namely the linear time invariant
(LTI) blocks, and the static nonlinear (SNL) blocks are interconnected either in series, parallel
and/or feedback connection to represent the system model under consid&#ti@ome
simple examples of such systems are: Hammerstein (SNL-LTI) and Wiener (LTI-SNL)
block structures which can be extended further to the Wiener-Hammerstein block structure
(LTI-SNL-LTI) by sandwiching a SNL block between two LTI blocks or to the Hammerstein-
Wiener (SNL-LTI-SNL) block structure by sandwiching a LTI block between two SNL
blocks respectively [37—-40].

In order to capture the behaviour of the nonlinear system, the complexity of the model, can
even be increased either by connecting several branches in parallel e.g. as in parallel Wiener,
parallel Hammerstein or parallel Wiener-Hammerstein mod&ls45] or by introducing the
feedback in the model structure as #5[46, 47]. Identi cation and structure detection of
this class of models has been extensively studied in literature [17, 18, 30, 48-52].

1.3.3 Nonlinear state-space model

A physical interpretation of the system under test is not always required, for instance in
control or prediction problems. In that case, the user prefers a exible and an easy-to-initialize
black box model with an ability to describe Multiple-Input Multiple-Output (MIMO) systems

in a compact manner. A state-space representation of the system is often a good choice,
because it ef ciently captures the MIMO behaviour. A geneifllorder discrete-time
state-space model is described by the following equations:

x(t+ 1) = f(x(t);u(t))
(1) = g(x(t); u(t) (1.6)

with u(t) 2 R™ the vector containing tha, inputs at timet, andy(t) 2 R"™ the vector
containing theny outputs. The state vecta(t) 2 R" represents the memory of the system.

In this recent past, the black box identi cation of nonlinear state space systems has
received quite some attentioB3-55]. Nonlinear state space models can describe a wide
range of nonlinear systemSg-58]. They are a good candidate to model systems that exhibit
nonlinear feedback behaviol2g]. There exist approaches in the literature which convert
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the unstructured black box nonlinear state space models to structuredb6hes iIse some
prior knowledge to impose grey-box structures in order to get a parsimonious model [60].

1.4 Continuous time or discrete time

Most of the real world systems are continuous time dynamical systems. Discrete time models
for the continuous time systems are used for many tasks, such as, control, simulation, and
estimation of system parameters (system identi cation). For the modelling purpose, the input
and output signals are usually sampled. Thereafter, often a discrete time model is estimated
(as itis easier to run on a computer) from the sampled input and output data for the prediction,
simulation or discrete time controller design purposes.

For any non-zero sampling period, there is always a loss of information, which is
associated with the use of the discrete time representation of the continuous time systems.
In the time domain, the inter-sample (the time between the sampling instants) behaviour of
signals (measured) is unknown, whereas in the frequency domain, high frequency signal
components will fold back to low frequencies, which makes them impossible to distinguish.
This loss of information between tisampling instantss one of the key differences between
the discrete time and continuous time systems.

The discrete time representation of any continuous time system can be developed either
under zero-order hold, rst order hold, generalised h@t pr bandlimited measurement
assumptions. The nature of the measurement assumption will affect the nal approximation
errors between two representation of the system, which is under consideration. Under
zero-order hold measurement assumptions, it is not always possible to represent a sampled
continuous time system, using a discrete time model with the same model structure. This
is especially true for the nonlinear systems. However, under bandlimited measurement
assumptions, the approximation error can be made arbitrarily small if the input and output
signals are sampled suf ciently fast [62].

The problem of identifying a discrete time model for sampled deterministic (stochastic)
continuous time linear (nonlinear) systems and associated approximation errors is already
very well studied in$3-70]. The identi cation of the sampled Volterra systems is studied in
[71]. Further details on this issue can be found in Chapter 2 and Chapter 3.

1.5 Organisation of the thesis

As mentioned before, this thesis is divided into two main parts. The rst part of the thesis
deals with more fundamental questions related to the discrete time modelling of continuous
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time dynamical systems, whereas the main emphasis of the second part of the thesis is on the
discrete time modelling of lithium-ion batteries. In the section below, the research objectives
(motivation) of both parts are explained brie y and an outline is provided.

1.5.1 Research objectives and outline of Part-|

The major objective of Part-1 of this work is to understand and answer the below-mentioned
guestions for both linear and nonlinear systems.

r

* What issues are important, when identifying a discrete time model to repregent
a system, especially under bandlimited measurement assumptions?

* How to design a measurement methodology to identify a discrete time madel
for continuous time systems under bandlimited assumptions ?

* How do the results on discrete time identi cation of linear systems apply|to
nonlinear systems, and how can they be generalised or extended to the nonlinear
systems?

In order to achieve the above stated objectives, the following contributions have been
made in this dissertation.

* In Chapter 2, a measurement methodology to analyse the approximation errors made
during the identi cation of a discrete time model of a continuous time linear system
under the bandlimited measurement assumptions is proposed. A theoretical analysis is
presented to understand the nature of the errors. It has been discussed in details, how
various experimental factors can be modi ed to control the errors. Finally, laboratory
experiments are performed for the validation of the hypothesis.

The content of the Chapter 2 has been published as a journal article:
— R. Relan and J. Schoukens. Recursive Discrete-Time Models for Continuous-

Time Systems Under Band-Limited AssumptioHSEE Transactions on Instru-
mentation and Measureme®s(3):713—-723, 2016.

and also presented in the peer-reviewed conferences

— R. Relan and J Schoukens. Output error bounds for discrete-time models with
forced delay under band-limited assumptions: An experimental studizBHR
International Instrumentation and Measurement Technology Conference (I2ZMTC



1.5 Organisation of the thesis 11

2015) Proceedinggages 228-233, Palazzo dei Congressi, Pisa, Italy, May 2015.
IEEE.

— J. Schoukens, M. Vaes, A.F. Esfahani, and R. Relan. Challenges in the identi-
cation of discrete time block oriented models for continuous time nonlinear
systemsIFAC-PapersOnLing48(28):596-601, 2015 (Invited paper).

* In Chapter 3, rst the classical ZoH and BL signal assumptions are uni ed in the
more general concept of low pass (LP) signals with a relative degridas shown
that, this property is an invariant for a wide class of nonlinear systems. Thereatfter,
building on the understanding gained on the nature of the approximation errors for
discrete time model identi cation of the linear system under bandlimited assumptions
and the LP signal class, the problem of modelling continuous time nonlinear (closed
loop) systems using a discrete time recursive model is studied and the error bound
on recursive discrete time models for continuous time systems is given. Finally, the
experiments are performed to validate (qualitatively) the theory.

The content of the Chapter 3 has been accepted for publication in the proceedings of
the IFAC WC 2017.

— R. Relan, K. Tiels, J. M. Timmermans, and J. Schoukens. Estimation of Best
Linear Approximation from Varying Operating Conditions for the Identi cation
of a Li-ion Battery Model. In20" IFAC World Congress Proceedingsages
454-459, Toulouse, France, July 2017. IFAC.

1.5.2 Research motivation and organisation of Part-I

The second part of the dissertation work has been impelled by a collaborative IWT-Strategisch
basisonderzoek (SBO) research project "BATTLE: Battery Modelling of Lithium Chemistries
Based on an Eclectic Approach” with local as well as international partner companies. To
obtain a fundamental understanding of the short term and the long term dynamics (see
Chapter 4 for details) of the battery during different operating conditions; simulations of the
battery's mathematical model are employed as an effective tool.

The BATTLE project aims to introduce a high performance interdisciplinary battery
modelling unit (by combining different dedicated models from different domains) that can
be used to address a diverse set of phenomena occurring on an electrode/electrolyte level and
on a cell level. Hence, in the framework of this project, different partners are responsible for
developing dedicated electrical, thermal, electrochemical and mechanical (considering the
fatigue induced factors) battery models.


http://etec.vub.ac.be/battle/
http://etec.vub.ac.be/battle/
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In the context of this dissertation key issues observable over a short time scale,
as electrical and thermal responses of the battery are examined. Based on the
analysis of the battery's electrical response different data driven techniques have
employed for modelling the battery's short term electrical response.

such
nitial
been

* In Chapter 4, a brief introduction to Li-ion battery technology and its working is
provided. Furthermore the state of art battery models are discussed. In the end, the

scope of Part-Il of the dissertation and the contributions are clearly stated.

* In Chapter 5, a frequency domain methodology to analyse nonparametrically the
short term electrical response of the battery is discussed. This analysis is the rst
step towards the development of a comprehensive data-driven modelling approach for

modelling battery's short-term response.

Further in the chapter, the details about the assumptions about signal class, system class
etc. are clearly stated. An overview about the experiment design and data acquisition

system is also provided.

The content of the Chapter 5 was published as a peer-reviewed conference article:

— R. Relan, Y. Firouz, L. Vanbeylen, J. M. Timmermans, and J. Schoukens. Non-
parametric analysis of the short-term electrical response of Li-ion battery cells.
In 2016 Indian Control Conference (IC()ages 1-6, Jan 2016. doi: 10.1109/

INDIANCC.2016.7441097.

* In Chapter 6, the de nition of the Best Linear Approximation (BLA) is provided.
This tool will then be used to estimate the linear dynamics in the presence of the
nonlinear distortions, that are present in the battery system around an operating point.
Both nonparametric and parametric methods to estimate the BLA are discussed in this

chapter.

Impact of various operating conditions such as temperature, input current pro le RMS
value and SoC is also studied in this chapter. Finally the a method to estimate the BLA

from the data acquired from multiple operating conditions is described.

Some of the results obtained in Chapter 6 have been published or accepted for publica-

tions in the following articles:

— Y. Firouz, R. Relan, J. M. Timmermans, N. Omar, P. van den Bossche, and
J. van Mierlo. Advanced lithium ion battery modeling and nonlinear analysis



1.5 Organisation of the thesis 13

based on robust method in frequency domain: Nonlinear characterization and
non-parametric modeling=nergy 106:602 — 617, 2016. ISSN 0360-5442. doi:
http://dx.doi.org/10.1016/j.energy.2016.03.028.

— R. Relan, K. Tiels, J. M. Timmermans, and J. Schoukens. Estimation of Best
Linear Approximation from Varying Operating Conditions for the Identi cation
of a Li-ion Battery Model. In2G" IFAC World Congress Proceedingsages
454-459, Toulouse, France, July 2017. IFAC.

— R. Relan, K. Tiels, J. M. Timmermans, and J. Schoukens. A local polynomial
approach to nonparametric estimation of the best linear approximation of lithium-
ion battery from multiple dataset$EEE Control Systems Letters:182—-187,
2017.

— R. Relan, K. Tiels, J. M. Timmermans, and Johan Schoukens, A Local Polynomial
Approach to Nonparametric Estimation of the Best Linear Approximation of
Lithium-lon Battery from Multiple Dataset&6" IEEE Conference on Decision
and Control (CDC), 2017, Melbourne, Australia.

* In Chapter 7, for the rst time nonlinear identi cation method to estimate the poly-
nomial nonlinear state-space model for the battery's short-term electrical response is
discussed. Along with the assumptions made, a comprehensive introduction about
the model structure, parametrisation, initialisation and optimisation framework is also
provided.

Some of the results obtained in Chapter 7 have been published in the following articles:

— R. Relan, Y. Firouz, J. M. Timmermans, and J. Schoukens. Data-driven nonlinear
identi cation of li-ion battery based on a frequency domain nonparametric analy-
sis. IEEE Transactions on Control Systems Technol@§y5):1825-1832, Sept
2017. ISSN 1063-6536. doi: 10.1109/TCST.2016.2616380.

— R. Relan, K. Tiels, and J. Schoukens. Dealing with Transients due to Multiple
Experiments in Nonlinear System Identi catioiFAC-PapersOnLing49:181
— 186, 2016. 12th IFAC Workshop on Adaptation and Learning in Control and
Signal Processing, The Netherlands.

Furthermore an article about the nonlinear modelling of battery's short term electrical
response using the data obtained from multiple operating conditions is under review

— R. Relan, K. Tiels, J. M. Timmermans, and J. Schoukens. Using the Best Linear
Approximation for the Identi cation of a Polynomial Nonlinear State-Space
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Getting started

Model of Li-ion Battery from Multiple DatasetdEEE Control Systems Letters
2017.

 Finally in Chapter 8, the overall conclusions of the thesis and some future research
directions are discussed.
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Chapter 2

Discrete time modelling of continuous
time dynamical systems

The purpose of models is not to t the data but to sharpen the questions.

Samuel Karlin

Discrete time models are very convenient to simulate a dynamical (linear or nonlinear)
system on a computer. For example, in order to build the discrete time simulation models
for the nonlinear feedback systems (see further for proper description), which is a very
important class of systems in many applications. The output of a nonlinear feedback system
(e.g. the Luré system: a linear time invariant (LTI) plant in the forward path is connected to a
static nonlinearity in the feedback path) with a slight abuse of the notation can be written
asy(t) = gi(u(t);y(t)), whereu(t) andy(t) are the input and output of the system at time
instantt andgs is an operator respectively.

To simulate such a system on a computer one has to solve at each time step a nonlinear
algebraic loop for(t). If a delay is present in the loop i.e if the system output can be written
asy(t) = go(u(t);y(t 1)) orin other words, if the direct term of the model is explicitly
set equal t®, fast simulation models can be identi ed and the need to solve the nonlinear
differential-algebraic (DAE) equations is removed.

In this chapter, a theoretical analysis is provided, in order to understand the nature of the
approximation errors which are made, while modelling the continuous time system using
the discrete time representation with the direct term equal to zero. The theoretical error
bounds for the such discrete time models under bandlimited signal assumptions are calculated.
Furthermore, a measurement methodology is proposed for the identi cation of such models
as well as qualitative validation of the output error bounds experimentally.
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2.1 Discrete time modelling

Modern measurement instruments make frequent use of advanced signal processing and
control algorithms that are designed as well as implemented using discrete time models. Since
most of the real-world systems evolve in continuous time, it should be carefully checked,
if a discrete-time model can be used to describe such systems, and what errors might be
created in the discretisation step. Especially under the bandlimited assumption (signals have
no power above a given maximum frequency, for example measurements using anti-alias
protection) this question becomes important.

While for the linear systems, the error mechanism related to the discretisation step is well
understood, it turns out that, it is not obvious how to quantify these errors for the nonlinear
systems. This problem is addressed in this dissertation. In this chapter, rst the nature of the
error for the systems with direct term forced to zero is analysed theoretically, and using these
insights, it is shown how the measurement procedures can be designed in order to keep the
error below the user speci ed level by making a proper choice for the sampling frequency.

2.1.1 Sampled data models: general remarks

Identi cation of continuous time systems from sampled d&@ s a problem of considerable
importance in the control system community. These discrete time representations of the
continuous time system can be developed under ZoH or BL assumption of the inter-sample
behaviour 81]. In linear system identi cation, it is well known that a continuous time
system that is excited by a ZoH can be replaced by a discrete time model that gives an exact
description of the discrete time input-output relations at the sampling instatis,d6] 82—

85].

This argument that there exists an exact discrete time representation for dynamical
systems may however, lead to a false sense of security when using sampled data as the
pole-zeros patterns of the discrete time systems may not be similar due to the presence
of the extra zeros calledampling zerosin the associated discrete time transfer function.
These extr@ampling zerosire a consequence of the sampling process. These zeros have no
counterpart in the underlying deterministic continuous time model [86].

In principle, this problem (the discrete time modelling and simulation of the continuous
time systems) can be tackled by utilising dedicated numeric (integration) solvers. Researchers
and engineers in the control engineering community tend to use or prefer the Euler inte-
gration method for integrating the continuous time system without fully understanding the
repercussions of it. To fully understand the argument, rst, the de nition of the relative
degree of a dynamical system is given below.
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De nition 2.1.1: Relative degree

The relative degree of a continuous time LTI transfer function describes the smoothhess
of the system output. It corresponds to the number of times that the output has {o be
differentiated to make the input appear explicitly. It is represented by the differepce
in the degree of the numerator and the denominator polynomials of a LTI tranffer
function.

Remark 2.1.1: Relative degree for nonlinear systems

The same notion can be extended to the nonlinear system Lisifdgebra Note the
nonlinear system can have state-dependent relative degree [87].

It has been shown by Goodwin and his co-authors that with fast sampling the Euler model
(termed as simple derivative replacement (SDR) model) has the smallest relative errors up
to a frequency which is around ten times the frequencies of the open loop poles and zeros
[88, 61]. Thus, one is allowed to use the Euler model with con dence provided one samples
quickly but the bandwidth of operation of these model is restricted to alibtines the
location of the open loop poles and zeros.

At higher frequencies, the relative error of Euler models converges to araden
the relative degree is even. On the other hand, the model using asymptotic sampling zeros
gives good performance up to the vicinity of the folding frequency but diverggsatip =D,
whereD is the sampling time, for even relative degree. The model with corrected asymptotic
sampling zero has relative errors that are of the ordé€riafall cases.

As it has been shown by Goodwin and co-authors3®j all transfer functions of relative
degree have response of ordéf at the sampling frequency. Take, for example the case of
a continuous time syster&,. Then, at frequencw = p=D, the magnitude of the continuous-
time response iB'=p". Hence, the relative error in such models does not go to zelb as
tends to zero for relative degree greater than or equal to two. This observation motivates
the search for approximate models that are more accurate than those obtained by Euler
integration.

A further idea for achieving a more accurate sampled-data model is to append the
asymptotic sampling zeros to the Euler approximate model. These approximate model
achieve the objective of having its relative errors go to zer approaches zero. For a good
overview on this topic the reader is referred to the plenary paper of Goo@@jinThe issue
of sampling zeross of lesser relevance here because for the purpose of this study, the focus
is on the input-output behaviour of the underlying system at the discrete time samples.



20 Discrete time modelling of continuous time dynamical systems

Similarly, the result for the ZoH measurement setup and other integration methods
such asTruncated Taylor Series Approximate Modg8] might sometimes be extended to
some speci ¢ nonlinear open-loop systems like Wiener, Hammerstein, Hammerstein-Wiener
[29, 31, 39, 90] but it does no longer hold in general.

For example nonlinear feedback systems (see further for more explanations) or nonlinear
systems with cascaded dynamics (e.g. Wiener or Hammerstein connected in series) have no
exact discrete time equivalent because the ZoH-nature is lost inside the nonlinear loop or
the cascade as will be explained later (see Section 2.2). For that reason, the approximation
of continuous time nonlinear systems by discrete time models has been studied for a long
time [29, 91, 92]. Further in-depth information about the sampled data models for linear
(nonlinear) deterministic (stochastic) systems with different sample and hold characterisations
can be found in [61, 88, 89, 93-97] and the references mentioned therein.

2.2 Measurement assumptions

As mentioned above the discrete time models for the dynamical systems can be developed
under different assumptions of the measurement set-up, e.g. the ZoH, the FoH and the
BL measurement setup and it has been shown in the literature that different models arise
when using different measurement set-ups B9]. In the section below, this issue has

been elaborated further and it has been discussed how under the bandlimited measurement
assumptions, the discrete time models for the continuous time dynamical system can be
developed.

Linear systems

For the LTI system, this problem has been well studied. In this section below, two of the
most common measurement setups for the identi cation of the LTI discrete time model are
brie y described.

Zero-order hold measurement set-up

In the case of a ZoH measurement set-up, as shown in Figure 2.1, the output of the linear-time
invariant (LTI) system can be described using the discrete-time representation [16]:

¥
yt)= & gult k) (2.1)
k=1

whereg(k) is the impulse response of the LTI system.
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Fig. 2.1 ZoH measurement set up

Bandlimited measurement set up

For the bandlimited measurement setup, as shown in Figure 2.2, the discrete-time representa-
tion of the LTI system can be written as

g(kju(t k)
0

¥
gOu®M+ & gut K (2.2)
k=1

y(t)

1
;IT_QJOK

It can be seen in (2.1), that it does not contain any direct terg(@eterm. This kind
of representation is very popular in discrete time control systems whereas the discrete-time
representation (2.2) contains the direct-term. This kind of model representation is very
popular in the digital signal processing community and it is more appropriate for simulation
as well as measurement applications [11, 12].

Nonlinear systems

One would reasonably expect similar arguments to hold for the nonlinear systems. However,
the situation for the nonlinear case is more complex than for the linear systems. In the case
of a ZoH measurement set-up, one would like to write the output of the system as:

y(t) = gi(ut Hyt b (2.3)
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Fig. 2.2 Band-limited measurement set-up

whereu' =[u(t);u(t  1);:::u(D)] andyt = [y(t);y(t  1);::::y(1)]. In general this does
not hold true for e.g. nonlinear feedback systems.

Nonlinear feedback systems

In the case of nonlinear feedback systems (system with linear dynamic block in the feedfor-
ward path and a static nonlinearity in the feedback path, see further for details), (2.3) becomes
y(t) = go(ut;y!) and one needs to solve nonlinear algebraic loops due to the presence of a
direct-term. Also for the bandlimited measurement set-up similar constraints exist. The
guestions which one would like to raise is:

« whether it is possible to approximagét) = gi(u';y!) by y(t) = gi(ut Lyt b,

» and how the approximation error depends on the experimental conditions.

Consider for example a nonlinear feedback system as shown in Figure 2.3,8digre
is a Laplace transfer function between the input sigg@) and the output signak(t). The
memoryless/static nonlinearity in the feedback loop is representéd hy Many electrical,
electronic and physical systems, e.g. oscillat®g,[biomedical P9 and mechanical
systems J00-107, contain in an implicit manner, a nonlinear feedback loop and can be
described using the similar model structure.
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Fig. 2.3 Nonlinear feedback system: continuous time

Fig. 2.4 Nonlinear feedback system: discrete time

Figure 2.4 shows a possible model structure for a discrete time representation of the
continuous time system in Figure 2.3. For a bandlimited input siggfal (see later for a
precise de nition), the linear systef&:(s) can be approximated by a discrete time model:

¥
ya(t) = & da(K)xa(t K); (2.4)
k=0

provided that the sampling frequentyis suf ciently high such that the aliasing errors are
acceptably small. For a given sampling periQé- fls the discrete time signaitsandy can
be represented as

Ug(K) = Uc(kTs) 5 Ya(K) = ye(KTs): (2.5)

The output of the discrete-time model described by Figure 2.4 can be written as

ya(t) = 9a(q;a)(ua(t)  f (ya(t))): (2.6)
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whereq 1 is the backward shift operator. This is an example of a nonlinear algebraic loop
[103, which implies that a set of nonlinear differential-algebraic equations (DAE) should be
solved at each time step in order to calculate the model output.

Again the main disadvantage of using a numerical integration solver for nonlinear alge-
braic loop is, that it can have multiple solutions. In fact, it is even possible that no solution
exists [LO4]. Moreover, it is a very time consuming approach as well as the robustness of the
obtained solution can not be guarante®@q 106. Therefore these approaches are not well
suited for real-time applications.

In addition to that in the control engineering community, in order to deal with the
problem, many discrete time modelling approaches implicitly assume that the direct term
is equal to zero. Interested readers are referred to the Section 2.1.1 for a brief introduction
to the literature dealing with the issues of sampled data models within the control system
community.

The identi cation of block-oriented nonlinear feedback models shown in Figures 2.3
and 2.4 received considerably less attention and still is in its infancy. This issue of (how to
avoid) nonlinear algebraic loop has not been tackled before by the community interested in
the block-oriented modelling. The authors #6[ 107, 108 used a block-oriented nonlinear
feedback structure to model a microwave crystal detector RF application, but it turns out that
in that work, the nonlinear algebraic loop created convergence problems for larger inputs.

In order to avoid the nonlinear algebraic loops while developing the discrete time
nonlinear-LFR (linear fractional representation) model (another representation of nonlinear
feedback system), the authors #¥] 109-112 assumed that one sample delay is present
implicitly in the loop, or in other words the direct feed-through terr@.i3 he authors did not
check the validity (neither theoretically nor experimentally) of their assumption. As stated
above, the assumption that the delay is present in the loop is not valid assumption under
different measurement settings.

The authors in113 proposed a solution by means of geometrical transformation of the
nonlinearities and algebraic transformation of the time-dependent equations in order to deal
with algebraic loops in nonlinear acoustic systems. This approach may not be optimal for
fast simulation models intended for real-time scenarios.

Hence, the main idea in this work is to show under which experimental conditions and
constraints one can develop a fast discrete time simulation model. To do this in a simple way,
one sample delay for the linear block will be imposed or, equivalegty in (2.4) will be
set to zero. Taking into account the imposed delay, the following model equation is obtained:
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¥
ya(t)= A ga(Kxa(t K)
k=1
xd(t) = ug(t) T (ya(t))
¥
ya®) = & ga(K)(ualt k) f(yalt K) (2.7)
k=1

Under the bandlimited assumption this discrete time representation does not contain any
direct term and for nite limits of summation it is recursive in nature. Hence fast discrete
time simulation models by forcing the direct-term of the identi ed model equél(ie. by
introducing explicitly a delay in to the loop) can be developed. In order to do this, some
associated questions need to be answered:

* How to quantify the errors associated with the approximated models ?
» What are the different factors/parameters which can in uence the errors ?

» How can one keep the error in the approximated model small enough by choosing
the appropriate experimental conditions ?

In order to answer these questions, in this work, a measurement approach to analyse and
bound the output error of the developed discrete time model for bandlimited measurements is
proposed. The rest of the chapter is organized as follows. Section 2.3 formalises the problem
statement and provides a comprehensive theoretical analysis of the errors associated with
approximated linear discrete-time models with direct-term equél t8ection 2.4 gives
an overview of an experimental investigation performed in order to validate the theoretical
error bounds qualitatively for the linear dynamical system and conclusions are formulated in
Section 2.5.

2.3 Theoretical analysis

It has been pointed out in the previous section that the linear models identi ed under ZoH

measurement assumption do no contain the direct term (see also (2.1)) but most of the
assumptions for ZoH measurement set-up do not hold true for nonlinear dynamical systems,
including networked dynamical systems, as the signals in the loop are no longer ZoH. Hence,
it is important to consider discrete time models under bandlimited measurement assumptions.
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Even under bandlimited assumptions, an arbitrary good discrete time representation of
the underlying continuous time system can be retrieved. However, in that case, due to the
presence of the non-zero direct term, the impulse response will depart very slowly from zero.
The direct term in the discrete time representation of such continuous time models will be
small, and will diminish to zero as the sampling frequency is increased.

The main emphasis of this study is to analyse the impact of explicitly setting this term
to zero. The resulting error will not only depend on the signal properties (bandlimited in
this study), but also on thelative degreef the underlying continuous time system. In this
section, a thorough theoretical analysis using the measurement methodology proposed by
[72] and as shown in Figure 2.5 is provided.

2.3.1 Proposed methodology

Fig. 2.5 Proposed methodology for the error quanti cation. Please not&dtst Iter is
explicitly placed before the system under consideration.

The aim in this study is to identify the discrete-time mo@g(k), with direct-termgg(0)
forced equal to 0, from the sampled measureme(k%s), y(kTs) of the continuous-time plant
Gc(9), with input signalu: and output signaj., under bandlimited measurement conditions.
Ts is the sampling period.

The input signali; can be an output from an actuator or a generator Rgs) which
in turns can be excited by an arbitrary signal, e.g. white noise, random-phase multisines or
any ZoH. Please notice that, in this measurement methodology, the generaté(Heis
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explicitly placed in front of the plant to be identi ed. The main aspects which can in uence
the magnitude of the error in the output signal of the identi ed discrete time model are:

* Is it possible to make an accurate prediction about the future upgiven its
past sampled values i.gg(fjt 1) ?

* How much is the erroe(t) that would be introduced in case one can not makg a
perfect or accurate enough prediction of the inputugt) = Gc(t) + e(t) ?

* What is the in uence of the error in the one-step ahead predicii(it 1)
and of the directqy(0)Uc(t) term on the nal output signal of the discrete-time
model i.e.y(t) in (2.2) ?

The reasoning mentioned above holds equally true in the case of block-oriented nonlinear
feedback models as discussed in Section 2.2, because there are bandlimited signals in the
loop, hence it is enough for one system to have a delay to break the nonlinear algebraic loop.

Hence, the rst step in the analysis is to quantify the error in the one-step ahead prediction
of the input signalic(t). Next its effect on the system's output is analysed. In this next
section, rst a brief introduction to the bandlimited signals and processes is given. Thereafter,
to address the problem, the following steps mentioned below will be taken.

1. Quanti cation of the one-step ahead prediction error in the case of a perfeftly
BL signaluc(t),

2. Quanti cation of the one-step ahead prediction error in the case of an actual| BL
signaluc(t), e.qg., Itered ZoH signal,

3. Quanti cation of the error in the nal output signg(t).

2.3.2 One step ahead prediction of a bandlimitedi(t)

In this section, the theoretical aspects related to the one-step ahead prediction of the perfectly
BL and the actual BL signals are brie y discussed. Furthermore, the error bounds associated
with the prediction are calculated.
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Fig. 2.6 Power spectrum of an ideal bandlimited signal

De nition 2.3.1: Band-limited signals and processes

A signal is said to be BL (perfectly) if the amplitude of its spectrum goes to zero for
all frequencies beyond some threshold called the cut-off frequencWi.gw) = 0O for
jwj > wg. A wide sense stationary (WSS) random process is termed BL if its poyver
spectral density (PSD) is BL, i.65,.y.(jw) = 0 for jwj > wg is zero for frequencies
outside some nite band. The power spectrum of a perfectly BL signal is shown in
Figure 2.6.

Error quanti cation: Perfectly bandlimited signal

An interesting problem in linear-prediction theory is the following: lueft) be a real
continuous-time signal, bandlimited to the regj@ap  wg or in other words consider a
stationary stochastic proceggt) with power spectrum

Sw)= 0 for jwj> wg= g;where T is the Nyquist rate (2.8)

r

Then, what is the smallest sampling frequerfigywhich will enable us to predict the
present sample valueg(nTs) (where, E represents the sampling period), based on a
nite number of past samples with an arbitrarily small (pre-speci ed) error, and with
predictor coef cients independent of the signg(t)?
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For an arbitrary positive number> 0, one can nd a set of conditions such that

Nn
(c(t) = & an,Uc(t NTy); (2.9)
1
" I #
gn
E Ue(t) a anuc(t nTy) < e (2.10)
1

2
Here T; is less than Nyquist raf€ i.e Ty < T . For bandlimited processes with absolutely
continuous spectral measure i.e., processes with spectral density, Wainstein and Zubakov
[114] proved that, if the sampling rate is increased at least three times above the Nyquist
rate, a bandlimited process can be predicted with arbitrarily small error from its past samples
using an universal formula (see (2.10)) for the predictor.

A better result in this direction isLfL5, where a similar predictor is constructed when
the samples are taken at twice the Nyquist rate. This sequence of predictors converges with
exponential rate. However, it could be more dif cult to nd explicit coef cients for the
predictor. These results were further improved by Splettst6$4€} ih 1982, who showed
that this kind of prediction is possible even with the sampling frequency eqid tones
the Nyquist frequency.

Brown [115 and Splettstossef [LG have also observed that, it is theoretically possible
to predict the samples a@k(t) in the above manner, as long as the sampling frequency is
larger than the Nyquist rate by any arbitrarily small amagpr# 0. This observation has also
been made by Papouli$17] who has given a different proof showing that the greatest lower
bound of the prediction error (G.L.B.E) is zero.

(" ) L #)
GLBE E Ue(t) & anUc(t nTy) =0 (2.11)
n 1 )
Further references, and proofs can be foundLitg],[119, and the references contained
therein. The result presented itilfd and [L17] are in fact particular cases af20. This
discussion concludes that a bandlimited signal can be perfectly predicted from its past values
(samples) provided that the sampling frequeriigis larger that the Nyquist rate by any

arbitrarily small amouné > 0.

Error quanti cation: Low-pass lItered signal

In practice, it is impossible to have a perfectly bandlimited signal. In practice, a bandlimited
signaluc(t) can be considered to be made of two paug(t) a part of the signal which
can be perfectly predicted, angd(t) which can not be predicted or remains unexplained as
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shown in Figure 2.7
Uc(t) = upi(t) + Ue(t)

Fig. 2.7 Power spectrum of an actual bandlimited signal

Therefore the lower bound of the one-step ahead prediction error would be:

E et)? E ue(t)? (2.12)

Further in the discussion below a concise theoretical explanation is given to quantify as well
as to identify the factors associated with the error in a one-step ahead prediction of an actual
bandlimited signal.

One-step ahead prediction of an actual bandlimitedi(t)

Fig. 2.8 Setup for the analysis of one-step ahead prediction of a bandlimited signal
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Consider the case of alow pass ItE¢(s) shown in Figure 2.8 for example, a Butterworth
or a Chebyshev lIter of orden, with cut-off frequencyf., excited by white noise input
signal.

Fig. 2.9 Representation of the error in an actual bandlimted signal

From the literature it is a well known fact that, the gain of the low-pass lIter in the roll-off

region varies as a factor of
f " f

wheref is the frequency of the signal; is the cut-off frequency, andthe lter order (see
Figure 2.9). The lter roll-off beyond the cut-off frequency is usually de ned in dB/decade.

Filtered white noise The PowerPusUg) contained in the unexplained part of a bandlimited
signal generated by Itering a white noise signal can be calculated by integrating the signal
over the frequency barids f¢;¥[ i.e.

PUglUe = 2 — df
fs f. I

21, fo N1
2n 1 fg f¢

= o 01 f—‘; (2.13)
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becausefs f.= fsasfs f.. From (2.13) it can be concluded that the power in the
unexplained part of the bandlimited signg(t) varies as

f 2n 1
PusUe = (@) _c (2.14)

fs
ZoH white noise In the case of the ZoH, the signal is considered to be constant between
consecutive samples. As seen from the envelope in the Figure@l]LOthe envelope of
S, for fis >1is (fis) 2, hence the ZoH will create an additional roll-off and therefore it
will not increase the order of magnitude of the error given in (2.14) .

-2
Envelope for i >1is (%)

1
NYQUIST

W_/

FIRST NYQUIST ZONE

f

Fig. 2.10 Envelope of the ZoH Spectrum

Conclusion From the analysis above it can be concluded that

h i f.om1
Plee = jue(t) Ge(i® O £ (2.15)
S
for an all pole generator Iter/actuator, independent of the ZoH or BL measurement of the

signal.

The next step in the analysis of error is to observe the impact of the error in the one-step
ahead prediction aic(t) on the nal outputy(t) of the discrete-time model. In the section
below, a concise theoretical explanation of the impact of the erndt)non the nal output
y(t) is provided.
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Error quanti cation of the output of a linear system

For the purpose of quantifying the impact of the errodii(t) on the nal outputy(t) the
following assumptions are made:

Assumption 2.3.1

The data can be acquired at suf ciently high sampling rates and effect of samp
zeros, folding, etc. can be neglected.

Remark 2.3.1

This can also be resolved sometimes by virtually up-sampling the data. It mugt be
clearly understood that the virtual up-sampling of the measured data is not alwgdys a
solution to mitigate the effect of sampling zeros and folding. Hence the measurerpent
must be done at a suf ciently high rate.

ing

Fig. 2.11 Impulse response for the system with relative degréeThe dominant term is the
direct term.

Assumption 2.3.2

The discrete-time model representation of the continuous-time system with any frbi-
trary relative degree equal tbwill be close to the impulse invariant transform (I.I.T
[121-129 of the continuous time impulse responsedor 1;2, as shown in Figures
2.11 and 2.12 respectively.
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Fig. 2.12 Impulse response for the system with relative degréeleparts slowly from zero.

The theoretical analysis is based on the impulse invariant representation of the comtinu-
ous time system, but it is equally valid for any other discrete time model representation.

2.3.3 Impact Of the error in U(t) on the nal output y(t)

Using the initial-value theorem of the Laplace transform, the impulse respg(t3®f the
continuous time system with relative degee 1 [126-128] meets

o’ Ht) _ =0 (2.16)
The output of the identi ed discrete time model can be expressed as:

¥

yt)= & da(Kua(t K
k=0
¥

= A Ge(KT)ua(t KTy (2.17)
k=0
Wheregqy(k) = gc(kTs) due to the impulse invariant transformation. From (2.16) it follows
thatggy(0) will converge to zero il 2, for fs! ¥. In the rest of this work, it is assumed
thatjgq(0)j < M, whereM is a bounded value of the response andl if 2 thenfli|m¥ M= 0.

The outputy(t) can further be expanded as described by (2.18), wiii¢yes the one-step
ahead prediction of the input signat).
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¥
0= £8O%O+ ¢ & GBIt 1 (2.18)
S S =1

From (2.17) and (2.18), the error in the output signal can be written as

Ye(t) = y(t) ¥(t)
- flsgd(owe(t) (2.19)

Furthermore the power contained in the output error signal can be expressed as

2

1
PYe = T 9a(0)*PleUe
S
1 2 f 2n 1
= = gy(0?0 -= (2.20)
fs fs

This implies that the root mean squared erroydpysis upper-bounded by

1
1. fo M2
YerMS EO f—z (2.21)

(2.20) and (2.21) above describe a relationship between the cut-off frequency of the generator
Iter, the sampling frequency and the error in the output as well as the unmodelled part of
the input signal respectively. In the next section a qualitative experimental investigation has
been performed to validate this theoretical analysis.

2.4 Experimental Veri cation

In order to validate the theoretical results qualitatively, real-world experimental investigations
were performed. In the sections below, rstthe measurement set-up is introduced, next the
experiment design is explained, and nally the results are discussed. The ndings of the
results has been already presented in the [72].

2.4.1 Measurement Set-up

Linear System

Figure 2.13 demonstrates the schematic of the experimental set-up and the measurement
architecture for this validation study. For the sake of simpliciy aC lter is selected as
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Fig. 2.13 Experimental set-up

the continuous-time plant to be identi ed in the experiment involving the identi cation of a
linear system. Since in this case the relative degreel, it is a worst case example because
g(0) will be the dominant term in the impulse response. In general, it can be any other real
continuous-time systenx;(t) denotes the ideal reference signal from the function generator
whereasic(t) andyc(t) are the actual continuous time input and the output signal of the plant
respectively .

As shown in the measurement set-up in Figure 2.13, the signals are generated by an
arbitrary waveform generator (AWG) or function generator, the Agilent/HIB4EA, with
an internal reconstruction Iter that has a cut-off frequenc2%@kHz. The output of the
generator lteris Itered by 4" order Wavetek Dual Hi/low pass (Moddi32) lter with
a cut-off frequency 01000Hz. The input and output signals of the plant (analog RC Filter
with a cut-off frequency of 1kHz) are measured by the alias protected acquisition channels
(Agilent/HP E1430A).

The AWG and acquisition cards are clocked by the AWG clock, and hence the acquisition
is phase coherent to the AWG. Finally, buffers are added between the acquisition cards and
the input and output of the device under test (DUT) to impose impedance isolation of the
signals. The buffers are added to match3b&Vinput impedance of the Agilent/HP1IE30A
VXI modules acquisition channels to a high impedance input. The buffers are very linear (
85dBc at full scale and MHz) up to10V peak to peak, and have an input impedanc# of
MWand a 50N output impedance.
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2.4.2 Experiment Design

A normally distributed noise signal (white noise) is used as an input excitation signal for the
identi cation of the linear model. The choice of the input excitation signal is not restricted

to only this signal, rather one can also use any persistently exciting signal such as e.g. a
at spectrum random phase multisine or a uniformly distributed noise signal as an input
excitation signal. The choice of a multisine excitation signal is generally made in order to
verify the level of the nonlinear distortions during the experiment. The excitation signal has
a period of78125samples. The level of the input excitation is zero mean with a standard
deviation 099 V for the the identi cation of the linear models.

Remark 2.4.1: Model identi cation

Even though the measurement set-up shown in Figure 2.13 points towards the grrors-
in-variable (EIV) settings]29 but the level of the measurement noise on the inppt
was found to be signi cantly lower therefore it can be neglected and we identify the
models in an output-error (OE) framework [16].

1. The one-step ahead prediction of the generator/actuator sidphal

For the one-step ahead prediction the data is acquired for ONE period at different
bandwidths of the generator Iter/actuator while keeping the sampling frequiancy
constant a?8:125kHz. For the sake of brevity an Auto-regressive with an exogenous
input (ARX) model structurell6] was chosen for the one-step ahead prediction and
the model orders ranging frofinto 1024were tested by doubling the model order at
every iteration. The one-step-ahead prediction is performed at different bandwidths of
the generator Iter for each model order.

2. ldenti cation of a discrete-time model based on the sampi¢t) andy(t):

Two periods of data are acquired at a sampling frequdpoy 156.25 kHz for the
model identi cation experiment at a constant generator Iter/actuator bandwidth. The
data is down-sampled virtually for identifying discrete-time models at the different
sampling frequencies. For the identi cation of the discrete-time model, the OE model
structurey(ts) = %u(tS ny) + €(ts) is chosen, hergts) is the output of the model,

u(ts) is the input to the model arg{ts) is the error term at the sampled time indgx

The termny, is the order of thd3 polynomial+ 1, n¢ is the order of thé polynomial

andny is the input delay, which is expressed as the number of samples which appears

as leading zeros of th#& polynomial.
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During the identi cation of the model witBy = 0O, the complexity (order) of the model

was slightly increased (numeratay = 2, denominatons = 5 from numeraton, = 2,
denominaton; = 2 with By term intact) to account for the extra dynamics which needs

to be accommodated due to the periodic repetition caused by the sampling process,
sampling zerogif any?) and not perfectly bandlimited nature of the measurements.

2.4.3 Results

Figure 2.14 shows the evolution of the Root Mean Square Error (RMSE) in the one step ahead
prediction of an actual bandlimited signal for different model orders against the bandwidth of
the generator Iter/actuator. It can be clearly observed that the RMSE of the one-step ahead
prediction varies as a function of the generator Iter bandwidth and ultimately converges to
a constant (maximum) value. This result qualitatively supports the arguments made in the
section 2.3.2 (see equations (2.12) and (2.15).

Linear system
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Fig. 2.14 The one-step ahead prediction error of the ARX model structure at different
bandwidths of the generator Iter and at a xed sampling frequergy 78:125 kHz.
Different dashed colour lines represent different model orders and the head of the arrow point
towards the higher model order.

Figure 2.15 provides an explanation to the slight dip observed in the RMSE of the one-
step ahead prediction for low model orders at arolikéiz bandwidth of the generator lter.



2.4 Experimental Veri cation 39

It shows the spectral analysis performed using the Hanning window on the signals acquired
at different bandwidths of the generator lter. It clearly shows that at the lower bandwidths of
the generator lter, the signal-to-noise (SNR) is much lower than at the higher bandwidths.

Signal to noise ratio at di, erent cut-o, frequencies
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Fig. 2.15 The power spectrum of the measuwigdt the different bandwidths of the generator
lter for a xed sampling frequencyfs = 78125kHz. It is evident from the gure that the
signal around the cut-off frequencikHz) of RC lIter is not persistently exciting (due to
poor SNR) for the identi cation of the linear model

Figure 2.16 shows the frequency spectrum of the input and output signals of the linear
system and the results obtained from the identi cation of the discrete time model for the
continuous time rst order linear dynamical system with and without forcing the direct term
0q(0) = Oare shown in Figure 2.17. Itis clearly observed that the in uence of explicitly forc-
ing the direct-terngq(0) = 0 diminishes very quickly, if the data are acquired at suf ciently
high sampling frequencies.

It is clearly seen that the slope of the error curve vBgh= 0 is approximately

75dB/decade. The theoretical prediction made in Section 2.3.3, corresponds20
dB/decade because th& order linear system was excited by the white Gaussian noise
ltered with a 41" order low-pass lter. The observed drop in error is slightly less than as
per the theoretical prediction. The reason behind this can easily be understood by carefully
looking at Figure 2.16, which clearly shows that the input excitation rolls off very slowly
abovel kHz. This is a violation of the low-pass assumption that is made in the developed
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Fig. 2.16 Spectrum of the input and output signals of the linear system

Fig. 2.17 Output error of the linear model with and without direct term. It can be seen that
eventually at a higher sampling frequency the model without the direct term approaches the
error bound of the model with the direct term.

theory, hence along with the presence of the measurement noise, it hinders the achievement
of the error bound predicted by the theory exactly.
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The RMSE of the discrete time model with forced delay term reduces very quickly with
respect to the sampling frequency and ultimately converges to the same minimum value
(lower bound) which is observed while keeping the direct term intact during the identi cation
of discrete time model of a particular pre-speci ed model order as well as model structure.

2.5 Conclusion

For developing more realistic discrete time models, often one has to work under bandlimited
assumptions as the ZoH assumptions do not hold at the output of the actuator that is driving
the system. In this chapter, a measurement approach for developing discrete time simulation
models with direct-terngy(0) equal to zero under the bandlimited measurement assumptions
is proposed. A theoretical expression involving the factors affecting the error bounds
associated with these kinds of linear models was also derived.

Results obtained from the experiments qualitatively support the theoretical reasoning
provided in the Section 2.3 which in-turn further extends our knowledge of the errors
associated with the discrete time models with forced delay under bandlimited assumptions.
It has been shown that how one can exploit the experimental conditions to come up with
such discrete time models with bounded output errors. The theoretical analysis and the
experimental investigation reveal that, to develop good discrete time models with quanti ed
error bounds, it is important to choose a good generator Iter and explicitly introduce it
before the continuous time system to be identi ed (as shown in Figure 2.5). The sampling
rates should be chosen adequately fast.

A suf ciently accurate model can also be obtained by up-sampling the data virtually, even
if the data acquisition set up does not allow for very high sampling rates (please keep in mind,
this will not reduce the error due to aliasing, for deeper insights refer to 3). Furthermore,
the order of the identi ed discrete time model can be increased to compensate for the error
introduced by explicitly forcing thgy(0) equal to zero to eliminate the need to solve the
algebraic loops explicitly at each time step. This measurement approach, as well as the
theoretical reasoning, is quite generic and can easily be applied or extended to a wide class
of dynamical systems including nonlinear systems (see Chapter 3 for further details).

Finally, the main advantage by following the proposed measurement methodology to
develop the discrete time models, the user will get an indication, how fast the error of such
models drops as a function of the sampling frequency.






Chapter 3

Approximating continuous time
nonlinear state-space models

All models are approximations. Essentially, all models are wrong, but some are
useful. However, the approximate nature of the model must always be borne in
mind.

George E.P. Box

In this chapter, the problem of approximating a continuous time nonlinear state space
model with an explicit discrete time state space model is discussed. In order to achieve this,
a two steps procedure is adapted. First the classical ZoH excitation signal assumption is
replaced by a more generic concept of low pass (LP) signals. It is shown that as opposed
to the ZoH property, the LP-property is maintained for a wide class of (non)linear systems,
including cascaded and closed loop systems. The second step builds on the results obtained
in Section 2.3 of Chapter 2, about the one step ahead prediction of bandlimited (BL) signals.
This result is generalised to the discrete time integration of LP-signals by introducing an
error bound that can be made arbitrarily small by increasing the sampling frequency.

Finally, both ideas are then combined to bound the approximation errors of an explicit
discrete time nonlinear state space representation for a continuous time nonlinear state
space model. The order of the decay of the approximation error as a function of the
sampling frequency is given. The results obtained are directly applicable to nonlinear system
identi cation. The proposed theories are experimentally veri ed on the identi cation of a
closed loop nonlinear system using a discrete time nonlinear state space model.
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3.1 Introduction

As stated in Section 2.3 of Chapter 2, the approximation errors related to the sampled data
modelling problem is studied exhaustively 9], and references therein. The authors
looked for an approximate discrete time representation of the continuous time systems, while
still operating in a ZoH-framework. Using thrincated Taylor series approximate model
they showed that the global xed-time truncation error (the error when integrating over a
xed time interval) drops to zero, at a decay rate proportional to the inverse of the sampling
frequencyfs [130].

This result lays a strong theoretical foundation for the popularly prevalent and successful
practice to identify explicit discrete time models for continuous time nonlinear systems using
a wide variety of methods like nonlinear state space mod&d]sionlinear autoregressive
exogenous model (NARX) and nonlinear autoregressive moving average with exogenous
input (NARMAX) models PQ], block-oriented identi cation 89, 31]. However, the theoretic
results in [130] indicate that the discretisation error drops only at very slovDltefs).

Building on the understanding and the results obtained in Section 2.3 of Chapter 2, it is
shown here, that tighter error bounds can be obtained. To do so, the more general low-pass
(LP) assumption is proposed. ZoH-assumption is a special case under this assumption. The
LP-assumption guarantees that the high frequent signal power rolls off with frequency at a
given rate.

Proposition 3.1.1

In this chapter, it is shown that the LP-behaviour will be maintained under nfild
conditions for a wide class of nonlinear systems. It will be shown that under these
low-pass conditions, a continuous time nonlinear state space can be approximated
by an explicit discrete time nonlinear state space model with a discretisation grror
that drops as a®(1=fg %®), whered will depend on the nonlinear system or th¢
excitation LP characteristics.

Hence, the main goal of this chapter is to formalise these results, leading to the following
main contributions:
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* the introduction of the LP-signal assumption and studying its invariance [for
static nonlinearities,

» showing that a continuous time nonlinear state space model can be approximated
arbitrary well by an explicit discrete time nonlinear state space model,

D
o

* illustrating the results on the identi cation of a continuous time nonlinear clos
loop system.

3.2 Low-pass signals

As explained before, in this chapter, the class of ZoH-excitation signals is replaced by the
more general class of LP-excitation signals. First, a formal de nition of these signals is given
below, thereafter it is shown that LP signals can be predicted one step ahead with an arbitrary
small error. Finally, the discretisation error of a continuous time (CT) integrator is studied as
this is the basic dynamic component in a CT nonlinear state space (CTNLSS) model.

3.2.1 Low-pass signal assumption

The power spectrum of the bandlimited signals (BL) above a given frequency is zero:
Sw(j Tj> fmaxy = 0([85, 11], see Section 2.3.1 for details). As shown in Section 2.3 of
Chapter 2, this turns out to be a very practical concept for system identi cation and in signal
processing in general. For the purpose of nonlinear system identi cation in general, this is
too restrictive. This strong BL requirement is relaxed here by using the concept of low-pass
excitation signals that is formalised in the following assumption.

Assumption 3.2.1: Lowpass signal (LP)

u_p(t) is a lowpass excitation of relative degreand bandwidttwe, if the amplitude
spectrumA,(w) (square root of the power spectrum) is@fl=w%) forw  wg, with

wc the upper frequency of the passband of the excitation. It is a lowpass excitatign of
strict relative degred, if O(1=w%*€) < A,(w) O(1=w%), 8e > 0.
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Remark 3.2.1

In support of the above stated assumption following statements are made:

* A ZoH signaluzen is an LP-signal with a strict relative degrdg, ., = 1. This
follows directly from the fact that the frequency domain representation of a
ZoH results in a multiplication of the repeated spectrum with a sinc functipn:
sin(2p f=fs)=(f=fs) = O(fs 1): (see Section 2.3.2 for details)

» The sum of two signals;; u, with a strict relative degred, has a relative degree
dy. A simple example isl, = up + Uy, with uy a signal with relative degree

dg > dy. Inthat casen + u = uy > dy. This increase of relative degree can nd
appeatr, if both signals have a different strict relative degree.

—+

« The sum of two signalsi; u, with a strict relative degred,; anddy,, with
du1 < dy2 has a strict relative degrely; .

The major advantage of this assumption is that, it will be maintained in many nonlinear
systems as explained later in this chapter (see Section 3.5 and Section 3.6 for details).

3.2.2 Error bound on the one-step-ahead prediction of a low-pass sig-
nal

As discussed in details in Section 2.3.2, the basic idea to bound the one-step ahead prediction
of an LP signal starts from the well known result that a BL-sign(&) can be perfectly
predicted from its past valueg 1 [117] using a linear predictdr: u(k) = L(uk 1).

It is shown, that in practice, most signals are not perfectly BL, but the power spectrum at
the output drops to zero at a given rate ffdrj> f,axand the excess pow&;(j f j> fs=2)
creates an approximation error due to the aliasing effect, that can be made arbitrarily small by
choosing the sample frequentysigni cantly higher thanfyayx It is proven in Section 2.3.3,
that for low pass Itered white noise (low pass Iter with relative degrgethe RMS-error
of the aliasing error is a@((;—Z)“ 05), This results eventually in the following theorem.
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Theorem 3.2.1: One-step-ahead prediction of a low-pass signal

Consider a LP-signal(t), with relative degred, 1, and a bandwidtH, is sampled
such that the discrete time signal(k) = u(fﬁs) or ug(k) = u(kTs) whereTs = % Is the
sampling period. It is possible to make a one-step-ahead predictigyilof using
a linear prediction lIterL that depends only on the past sampled valuagpf.e.
0a(k) = L(ug, ,), such that the RMS-error Ef (u(k) Gqg(k))?gis anO((fc—z)du i)

Proof: Follows directly from the calculation of the excess power of the LP signal as
shown in Section 2.3.3 and [62].

Remark 3.2.2

* It should be clearly understood that, this theorem guarantees that the relftive
error on the signal spectrum in any nite frequency band drops to zero fgr a
growing sampling frequency. This is because the error in the approximati(l IS
due to the signal power above half the sampling frequency.

» The error bound is tight, because it is completely due to the aliased pait of
the signal. Without any additional prior information, it is almost impossible fo
describe that part of the signal, and hence it is impossible to predict its behavjour.

3.2.3 Sampled data integration of LP signals

The major problem to convert a nonlinear continuous time state space model into a discrete
time model, is the discrete time approximation of the continuous time integration. Authors
in [131] designed IIR- Iters that approximate a continuous time integrator arbitrary well in
a user de ned bandwidth. The errors of this approximation can be tuned with an arbitrary
frequency weighting function that is adapted to the LP signal characteristic. The overall
integration error, for a given complexity of the digital Iter, is made arbitrary small by
increasing the sampling frequency.

This approach can be used in the following ways to obtain an explicit discrete time
nonlinear state space model:
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» Design an integrating discrete time Iter that meets the user speci cati(]ns
(bandwidth, error). Next the direct term in this model is forced to zero py
replacingu(k) by its one-step-ahead predictiog(K) = L(ug, ,)-

* An alternative one step procedure imposes directly during the Iter design step
that the direct term should be equal to zero. Such a procedure combines irj one
step the design of the linear prediction Iter and the integration lIter, resultirjg
in a lower complexity.

The lower error limit that can be achieved by using this procedure is again set by the

aliased power of the LP signal. This will lead to the RMS-error as speci ed in Theorem
3.2.1. This discussion can eventually be formalised in the following theorem.

Theorem 3.2.2: Discrete time integration

Consider an LP-signal with relative degreel,, that is sa&mpled with a sample fre
Ts .

quencyfs, e.g. ug(k) = u(kTs): The CT integraly (k) = u(t)dt, wheret is the

initial sample time an#Tsis nal sample time; can be replaced by a causal DT Itef

dy 05
without direct term within an RMS output error that is@n fls ;
1 dy 05
w( = Li(ug )+ O ¢ (3.1)
S

Proof: The proof consists of two steps.

* Replacing the integral by a discrete time approximati®he authors in131] showed

that a CT integrator, excited by a bandpass (BP) signal with a user de ned bandwidth
can be approximated by a DT Iter arbitrary well . This result can be extended to a LP

05
signal, but with an additional alias error added, that |§)a|'§l . It should be
noted that the direct term of this lter is different from zero.

Forcing the direct term equal to zeran [62], Section Il d, it is shown that for a

CT system with relative degrek 1, the additional RMS error that is created by
forcing the direct term of the digital approximation equal to zero is bounded by
%SO fi G 05 , Whered, is the relative of the low-pass Itered signal lIter. This
shows that the additional error is an order of magnitude smaller than the aliasing error

of the rst part which shows the theorem.
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Remark 3.2.3

» The error bound in Theorem 3.2.2 is again a tight bound, because the errpr is
bounded by the aliasing effect.

* In practice, the user might be satis ed by a suf ciently small error. In that cage,
an increase in the sample frequency can be balanced against the comprlfxity
of the discrete time Iter. The higher the sampling frequency, the simpler the
integrating IterL,(ux 1) can be chosen.

3.3 Discrete time approximation of continuous time non-
linear state space models

Building on the results of the previous sections, in this section, an approximation is made
for a continuous time nonlinear state space model (CTNLSS) by an explicit discrete time
nonlinear state space model (DTNLSS). Consider the CTNLSS shown in Figure 3.1 and
denedasin (3.2)

Fig. 3.1 Continuous time nonlinear state space: CTNLSS

A0 _ o
— = Feqiu)
V(D)= G((); u(t) (3.2)

wherex; u have appropriate dimensions. It should be noted Bfatu) is a multivariate
static nonlinear function. Before continuing, the following assumption is made on the output
equation.

Assumption 3.3.1: Output continuity

The output equatiog= G(x;u) is locally Lipschitz continuous of order 1.
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Remark 3.3.1

This assumption is made in order to avoid large variation of the output for in nitgly
small variations of the state variables.

Assumption 3.3.2: Stability

The CTNLSS is input to output, and input to state stable.

Remark 3.3.2

Due to the discretisation process, (small) errors will be introduced on the input gand
states. These should not result in large deviations of the internal or external signals in
the system.

Next, the following assumption on the nonlinear functiogx(t); u(t)) is made.

Assumption 3.3.3: LP behaviour of the static nonlinear function F(x,u)

u(t) is LP of degreeal,, andx(t) is LP with degreal,. ThenF(x;u) is LP of degree
min(dy; dy; dr), wheredk is the relative degree de ned by the system characteristig.

As it will be shown in Section 3.5, this assumption is valid for a wide class of nonlinear
systems. The degrek is a system characteristic. For example, sigm@sd- = 1if d, 1,
and abs() hasdr = 2if dy, 2 (see Section 3.5 for a more systematic explanation).

Theorem 3.3.1: Discrete time nonlinear state space model

Consider the CTNLSS (3.2) that meets Assumptions 3.3.1, 3.3.2, and 3.3.3, ahd is
excited by an LP excitation(t) of degreed,,. Thenx(t) is a LP signal of degreeéy =
min(dy; dr) + 1. Considering the sampled signailg k) = u(kTs) andxg(k) = x(kTs),
the CTNLSS (3.2) can be approximated by a DTNLSS.

Xd(k+ 1) = Fy(xa(K); ug(K))
Ya(K) = Ga(xq(K); ug(t)) (3.3)

such thatg(k) = x(kTe)+ O(1=f& )+ g, andyy(K) = y(kTe)+ O(1=f& 1°)+ g,
WhereFy andGy are discrete-time static nonlinear functions, The amplitude of the
errorg due to discrete time integration is a user choice.
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Proof: The proof is as follows

e dy= min(dy;dr)+ 1:

If p(t) = dx=dt is an LP signal of degred, = min(dy; dx;dr), then we have that
X(t) is LP with degreal, + 1 (due to the integration, see Figure 3.1). Then it follows
immediately that, = min(dy; dx; de)+ 1= min(dy;dg)+ 1; becausely = min(dy)+ 1

is not possible.

» Bounding the error oRy; Yq:

From the results in the rst part of this proof it assumed th@ is an LP signal. Then
it follows immediately from Theorem 3.2.2 that the CT integrator can be replaced by
an explicit discrete time expression, such that

xa(K) = %(KT)+ 0(1=Fs® *7) = x(kT)+ 0(1=H* ). (34)

Due to the CTNLSS stability 3.3.2, the small errors (3.4) will not grow very large. The
error on the outpuyy will then also be arti)(lzfsfOIX 1:5)), with dy = min(dy;dg) + 1

for the same reasons.

As mentioned before, a lower degree discrete time approximation of the integratoat a
cost of an additional errag can be used, if desired.

3.4 Experimental illustration

Here, the result of the experimental investigations are discussed.

Nonlinear system

In the case of a nonlinear system, the plant shown in Figure 2.13 is replaced by the Silverbox
[11] (see below for the description of the system) while keeping the other experimental
set-up/measurement methodology the same.
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A nonlinear feedback system: the Silverbox

The Silverbox is an electrical circuit, simulating a mass-spring-damper system. It is an
example of a nonlinear dynamic system with feedback as shown in Figure 3.2, where the
linear contributions are dominant for the small excitation levels of the input signal [132].

Fig. 3.2 The block structure representing the Silverbox dynamics
The system's behaviour can be approximately described by the following equation:

my(t) + dy(t) + key(t) + kay>(t) = u(t) (3.5)

whereu(t) represents the input force applied to the nrasand the outpuy(t) is the mass
displacement. Parametéesandks describe the (nonlinear) behaviour of the spring, drisl
the damping of the system]]. Although the behaviour of the Silverbox is described by a
differential equatior{3.5), it will be modelled in discrete-time using the PNLSS mode] [
(see Chapter 7 for more details on the PNLSS model) in this thesis.

3.4.1 Experiment design

During the experiment design, two experiments at different settings of signal bandwidth were
performed. The details of which are provided below:

* Experiment 1 :

A full odd-random phase multisine signdl]] is used to excite the Silverbox in the
frequency band of] 100Hz] (please see the de nition 3.4.1 below and refer to the
setup in Figure 2.13 in Chapter 2. For a more detailed de nition of the multisine signal,
the reader is referred to section 5.3.1 of Chapter 4).
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De nition 3.4.1: Multisine signal

A multisine signal is mathematically de ned as follows [133, 11]:

1 o ~ .
Undt) = P= a A(K cogwgt+j ) (3.6)
P Nejorye

wherek is an integer index drawn from the discrete Kekc ([1; T—fs]\ N)
of the excited frequency bingy = J%‘ is the discretised angular frequengy,
represents both the length of the measured time record and the period of the
multisine signalN set of natural numbers anfd is the sampling frequency.
A(K) determines the amplitudes of the individual sines.

In a full odd-random phase multisine signal, only the odd frequency lines are excited
with the user-de ned amplitude levels. The amplitude of the full odd random phase
multisine is zero mean with a standard deviatiod®7 mV during the identi cation

of the model.

Two periods of data fot O different realisations of the odd random phase multisine
input excitation are acquired at a sampling frequehayf 78:125kHz for the model

identi cation experiment at a constant generator Iter/actuator bandwidth. Nine re-
alisations are used for the training purpose whelaaalisation is kept aside to test

the model performance on an unseen validation data. For the analysis purpose, the
sampled data was virtually down-sampled at different sampling rates by explicitly
omitting the samples.

Figure 3.3 shows the input and output spectrum of the silverbox dynamics excited by

a full odd random phase multisine input signal. From the output spectrum, it can be

observed that the rst resonance peak of the system lies at aroui®Hz. In order

to completely capture the information about this resonance peak inside the PNLSS

discrete-time model structure, one must at least sample the input and output signals at
210 Hz or at a greater sampling frequency.

Observations: Experiment 1

The results obtained from the identi cation of the DT nonlinear polynomial state space
model (PNLSS) modeH4] is shown in Figure 3.4. This particular discrete time model
structure implicitly embeds the forced delay term. Figure 3.4, shows two metrics
namelyyrms andyelative for the output error of the PNLSS model, which are de ned



54 Approximating continuous time nonlinear state-space models

Fig. 3.3 The input and output spectrum of the nonlinear silverbox system

Fig. 3.4 RMS output error (training set) of the PNLSS model as a function of the sampling
frequency.

below. The mean value of all the signals is removed in order to eliminate the effect of
the offset error, that might be present in the measurement setup.
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Fig. 3.5 Spectrum of the PNLSS model error

V
0N - 2
P t?-l(YVal(t) Ymod(t))
Yrms(t) = — N (3.7)
s s
Ns . 2
a (Yva(t)  Ymod(t))
t=1 <
Yrelative(t) = S NS—S ; (3.8)
& (Jual(t))?
t=1
Ns

whereYya = Yval Ml Ymod= Ymod Mhod: Ns IS the number of data samplesjs
the meany, 4 is the measured output aggloq is the model output respectively.

From the Figure 3.4, it is clearly observed that, the RMSE of discrete time PNLSS
model structure for a sampling frequency2ffOHz is 25dB which can be further
reduced to a level of 44 dB just by doubling the sampling frequency. It can also be
seen that the error diminishes very quickly with respect to the sampling frequency for

both the training data set. Figure 3.5 shows the variation of the spectrum of the model
error for different sampling frequencies.
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» Experiment 2 :

An odd random phase multisine excitation signal witlipee 1 Hz is used as the
excitation signal in the frequency bar@439062Hz]. The level of the input excitation
is zero mean with a standard deviatiogfO mV (before the Wavetek lIter) for the
identi cation of the model. The signak has a at amplitude spectrum up 2B0Hz

as compared to the bandwidth of the second order system that is below 100 Hz.

A discrete time nonlinear state space model is identi ed on the measuremékitsyy (k)

using the PNLSS model, with the methods describe&4#p §nd detailed in Chapter 7.

The model hag states, and the degree of the internal multivariate polynoma(its
depends on both the states and the input). Higher orders and degrees were tested, but
this did not signi cantly improve the results. The measured signals were sub-sampled
at different rates to obtain data records at different sample frequencies.

Observation: Experiment 2

In Figure 3.6, the amplitude spectrum of the output is plotted, together with the error
of the best linear approximatioi ], and the error of the best nonlinear model. The
linear model has errors in the order %, while that of the nonlinear models is
well below thel% level ( 50dB). Because there might be small offset errors in the
measurements, we did not include the DC-errors in the error plots (and also not in the
cost function during the identi cation).

In Figure 3.7, the nonlinear error on the estimation set and a validation set is plotted as
a function of the sample frequency. It is also compared to the relative alias error of the
input and output. The model errors are close to but below the relative aliasing error of
the input. This can be understood, the aliasing at the input is dominant at the highest
frequencies, but these are attenuated by the system. The alias error drops with about
70 dB/decade, which is in perfect agreement with the presence of'therdier Iter

in the generator path. From Figure 3.7, it is also seen that the error on the modelled
output follows the slope of the aliased power of the input and output, as was expected
from the theory. At lower error levels, the model errors dominate. These could not be
further reduced by increasing the complexity of the model.

In this section below, it is illustrated brie y that many static nonlinearities maintain
the LP-characteristics of a signal. A detailed and in-depth information is available in
the references given below, and in the technical report [134].
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Fig. 3.6 Validation of the nonlinear state space model on the Silverbox measurements. Blue
dots: measured and modeled output; Green dots: error of the best linear approximation; Red
dots: error of the nonlinear mod&= 78125 Hz

Fig. 3.7 Evolution of the relative rms error of the nonlinear model as a function of the sample
frequency
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3.5 Impact of a static nonlinearity on the roll-off and the
bandwidth of a low-pass signal

In this section, the focus is on ltered white Gaussian noise, but at the end these results are
also extended to non-Gaussian distributions.

Assumption 3.5.1: Class of Itered Gaussian low pass signalss

Z(t) is a Itered Gaussian low pass signe?2 S of strict relative degred, if itis a
white Gaussian noise signalvith unit varianceu N(0; 1) thatis ltered by a linear
Iter G with a relative degred.

J

Remark 3.5.1

The amplitude of the ltered noise is scaled by the lIter gain. The latter is assumeq to
be nite.

In this section, the following examples will be discussed.

» The variation of the relative degree and the bandwidth of a sg2&s under a static
nonlinear operation of the forjn= Z", n being a natural number.

* y= f(X) with f a static nonlinear function, including some general transformation
rules.

* Generalisation to non-Gaussian noise.

To proceed, rstthe autocorrelation and power spectrumanrte calculated as detailed
below.

3.5.1 Calculation of the autocorrelation and power spectrum ofy = 2"

The linear dynamics are given by the impulse respagfigeor transfer functiorG(w). The
following relations hold:

2(t) = ¥g(t)u(t t)dt (3.9)
¥

and
y(t) = z(t)™ (3.10)
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From here on, the integration limits are dropped to simplify the notation and avoid overloading
of the operators. The output can then be written as

y(t) = g(t):ig(tpu(t te):::u(t tp)dty:::dtp: (3.11)

The autocorrelation functioRyy(t) = Efy(t)y(t+ t)gis given by:

Ryy(t) =
g(t1) :::9(tn)9(tn+ 1) 11:9(tnen)
Efu(t tg):::u(t tpu(t tpept+t):iiu(t theptt)g
dtq::dtpdtpeq:iidtpen: (3.12)

Sinceu(t) is Gaussian noise, the higher order momdsfta(t  tq):::u(t tpy)u(t
ther+ t)liu(t  toen+ t)g can be calculated by taking the sudm, over all alloca-

Efu(t tg):::u(t tpu(t tpept+t):iu(t theptt)g=

& Ef u(py)u(p2)g: - Ef u(pzn 1)U(P2n)g
An
The expected value will be equal to zero, if notin all pggs 1 = pyi, the time variables
are equal, becauses white noise. For the remaining non-zero terms in the sum (consider
for example the rst pair), the following result holds [134].

Consider, without loss of generality that the rst condition is met. Then, assigning without
loss of generality;;tj to pi; p2, we get that

g(ti)a(t;)Efu(t tju(t tj)gdtidt; g(ti)g(t;)d(t;i t;)dtidt;

g(ti)?dt;:
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The rst equality holds becausagt) is unit variance white noise. Hence, terms of this type
result in a constant contribution to the multi-dimensional integral (3.12).

Assigning without loss of generality;t; t to ps; p2, we get that

g(ti)g(tj)Efu(t tju(t t;+t)gdt;dt; g(tig(tj)d(ti tj+t)dt;dt;

g(tig(t; t)dti=g o

This shows that this type of contributions result in a convolution of the impulse response of
the dynamic system. Observe that foeven, the number of Type 2 contributions will be
also even, while fon being odd, this number will be also odd.

Combining all type 1 and type 2 contributions in the sum

Depending upon the combinations, each of the pairs result either in & tyE&contribution.
Hence, the expression for the auto-correlation (3.12) will be of the following form:

Ry(t)= C1+Ca(g 9)+ Ca(g g)°+:::Ca(g O™ (3.13)

where the convolutiong g are evaluated ih. For odd nonlinearities(is odd), only the
odd powers will be present, while for even nonlinearitiegs(even), only the even powers
appear in (3.13). The power spectrunmydiecomes:

Sy(w) = C1+ CoiG(w)j2 + CgiG(w)j? j G(w)j?+ :::
CriG(W)j? j G(W)j? | G(w)j%; (3.14)

where the lasttermis gm 1) fold convolution.

To obtain this result, a speci ¢ behaviour on the linear sys@&is not imposed. The
only strict requirement is that all the integrals should exist.
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3.5.2 Impact of a static nonlinearity on the roll-off of a low-pass signal

In this section, the power spectrugy,, obtained in the previous section, is evaluated for low
pass signaly= z"; andz2 Ss forw ! ¥. Consider the Itered white noise signgd.9), and
assume, without loss of generality that

JGW)] = p——s (3.15)
1+ w
This is a simpli ed representation for a system with a bandwidtiwef 1, and a relative
degreek, resulting in an asymptotic roll-off df=wX. The signalz(t) = Gu(t), with u(t) white
noise, has a relative degrdg= k. By scalingw = Wﬂc it is possible to adapt the bandwidth
to an arbitrary value. Consider

jG(w)j? = (3.16)

1+ W’
Observe that this spectrum rolls-off I=w?¢. Next we considejG(w)j2 j G(w)j? and
evaluate itfow 1. The following approximations are made [134—136]:

1 .

jG(wj < Dj*  LjG(wj 1) x

(3.17)
Moreover, it is observed that the dominant contributions in the convolution expressions below
come fromW < 1, orjw W < 1. This leads to the following approximating expression
for the convolution [134-136]:

¥ 1 1
JG(W)j< | G(w)j* = L T+ WK1+ (w V\02'<dW
S| 1
+
11+ WK1+ (w W)deW
w+1
1 1
dw
w1 1+V\’2k1+(w V\OZK
1 w+1
1 1
—-dW+ —dW
LW w1 W
4

w2k
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This result can be also generalised to the multiple convolutions

jGW)j? j Gw)j?  j G(w)j?=
¥ ¥
¥jG(Wn Wh 1)

JGOWL WO)i%iG(w  WA)j%dWy  dWh 1

¥

Making the same observations as before, it follows that also in this case [134-136]
JGW)I* G~ G(w)j” = O( )

Hence, it can be concluded that the roll-off of a low-pass signal is not changed by a
static nonlinear operatiox’. Since a wide class of static nonlinear functions (including
discontinuous functions) can be approximated by a polynomial in least square 58nse |
This result suggests that a static nonlinear operation does not change the roll-off of a low-pass
signal. However, as discussed before, some restrictions need to be put on the convergence
rate of the polynomial approximation for this result to hold true.

3.5.3 Impact of a static nonlinearity on the bandwidth of a low-pass
signal

A static nonlinearity will widen the bandwidth of a low-pass signal, due to the presence of
the repeated convolutions (3.14).

De nition 3.5.1: Class of nonlinear systemsSsy

The static nonlinear systeffi{x) excited by excitation signabs2 S, belongs to the
classSsni(Sg) if: Exf f(X)2) exist (with Ey the expected value taken o\&t),

Assumption 3.5.2: Class of nonlinear systemSsy

There exists a polynomial static nonlinear systi{x) = é’lgzobnx“ such that:

8e;9Ne S.1.8N > Ne: Exf (f(x) fn.(X)%0< e

In order to get a better understanding and for simplicity a Brickwall shaped syatam
considered here:
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Assumption 3.5.3: Brickwall systemGg

A systemGg(w) is a Brickwall system ilGg(w) = 1 for jwj < Wpayx andGg(w) = 0
for jwj > Wmax

The convolution of two rectangles results in a triangle, the convolution of two triangles
leads to &' degree waveform. Repeating this process leads eventually to a Gaussian wave
form (similar to the central limit theorem applied to a uniform distribution).

Consider for example uniformly independently distributed variabes = 1;:::;non

n
w= g w N (0;ns?); (3.18)

with s 2= 1=3. So it is easy to understand that for {me 1) fold convolution of an
LP-signal the following result is found [134, 135]:

Theorem 3.5.1: Bandwidth extension under a static nonlinear operation”

Consider an LP-signa2 S, with a3 dB bandwidthf;: The bandwidth of" =
O(p nfc) for nlarge.

Proof: Consider that the signa= Gu, with u a white noise excitation signal, s.t.
E.fu’"g< M < ¥: Bound the systern® (after proper scaling) by a Brickwall systeGg,
s.t. the bandwidth o6g is Iar%er than that o&. Using the resul(3.18), it follows that the
bandwidth ofz will grow with * n, because

3w?

jGa(W)j? j Ge(w)j? j Gg(w)j> ae 2whax: (3.19)

q
Wherea = 1= 2p “WT'%W: This result can be further generalizedft@ Sy xwithin an

arbitrary small erroe [134].

Theorem 3.5.2: Approximation error due to bandwidth extension

A static nonlinear systerh 2 Sgyxextends the bandwidth of a lowpass signal Sg;
within an arbitrary small rms errag, with = Ne.
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3.5.4 A simulation example

The previous results on the growth of the bandwidth and the invariance of the roll-off
are veri ed in a simulation on a discrete time Wiener system. The linear systerflls a
order Butterworth Iter with a cut-off frequency di:5 10 3, the sampling frequency is
normalised tdl. The static nonlinear system is chosen toye: p"; n= 1;2;3;7;8. The
mean value of all these output signals is removed, and next the power is normalizied to
order to facilitate the graphical representation of the results.

Fig. 3.8 Normalized amplitude spectrum of the output of a Wiener system, with a static
nonlinear systemy = p"; n= 1;2;3;7;8. All the signals have the same relative degree,
independent oh.

In Figure 3.8 it can be seen that the roll-off of all these signals is indeed the same, while
the bandwidth is increasing. In Figure 3.9 the Gaussian approximation is illustrated for
y= p",n= 2 (red), anch= 16 (blue).

A good match is obtained, the slight difference between the Gaussian approximation
and the actual power spectra is due to the fact that the Butterworth Iter has a smooth
characteristic, opposed to the Brickwall shape of the idealised bandlimited characteristic that
was used in the analysi$34, 135. This results in a slightly lower bandwidth of the actual
signal such that the Gaussian approximation results in an upper bound of the bandwidth
extension.
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Fig. 3.9 Normalized amplitude spectrum of the output of a Wiener system, with a static non-
linear systemy = p", n= 2 (red), andh = 16 (blue). Thin line: the observed approximation;
dots: Gaussian approximation.

3.6 Study of the LP-properties ofy = f(X)

3.6.1 Properties of polynomial approximations

Theorem 3.6.1: Relative degree of a lowpass signal

The relative degree of a lowpass sigral Sg; can becomel; for a static nonlinear
systemf 2 Ssni(Se) within an arbitrary small RMS errce.

The result follows immediately from assumption 3.5.2 and the observation in Section
3.5.2 thatf (x) = x" does not change the relative degree of an LP-signal. The LP-behaviour
of a static nonlinear systeri2 Sgn{Ss) excited by a low-pass signalk s; is a balance
between two opposing effects: on the one hand the coef cigntop to zero so that the
high power contributions get less important, but on the other hand the bandwidth of these
contributions grows wittﬁ) n; such that a wider frequency range is affected. This lead to two
possible behaviours [135]:
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* If the series converges fast enough bg! Oasn! ¥, the bandwidth of the
output will be set by the bandwidth of the excitation signal, and the output has
the same relative degree as the input.

* If the series converges slow, the relative degree of the output will be set by|the
convergence rate of the polynomial coef cients. In that case, the output will
still be an LP signal, but the relative degree will become a characteristic of the
system, calleds in this study.

Remark 3.6.1

Here, the terms "fast enough" and "slow" are not speci ed.

» The precise balance will depend on the nature of the system and the relgtive
degree of the excitation. In practice, for a given functf@r), and LP-excitation
signal with relative degred,, the reader can always check by a numericgl
simulation which of both effects dominates.

* In order to prove these results, polynomial representations that are orthogpnal
for the given distribution should be used. For example, for Gaussian signals, Her-
mite polynomials should be usetld4]. This will make sure that the individual
terms of the approximation are uncorrelated with each other.

3.6.2 Special cases of static nonlinear functions

In the literature, the impact of a static nonlinear function is studied for a series of special
cases. Moreover, also some transformation rules are obtained. The reader is refer8tl to [
for further details. Here, only a very brief summary of some of the results is given.

Transformation rules

Consider a signall with autocorrelation functiofRyy(t). Consider the static nonlinear
functiony = f(u), with correlation functiorR,(t). Then the correlation function gP=
dy=du is given bydR(t)=dRy(t). A similar result is available for an integratign =
f(u)du:. In that case the autocorrelation function is obtained by an integratiBg(bj.
These results give a lot of insight into nature of these signals. For exaopgien be
considered as the integrationggn(u). So, the autocorrelation ¢fj will be smoothed with
respect to that asign(u), and it will have a higher relative degree. Using the table4d 8],
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it can be concluded that the relative degree increasesiWidheach integration step, till it is
equal or larger than the relative degree of the input. From then on it is equal to the relative
degree of the input.

Tables

Fig. 3.10 Normalized amplitude spectrumwfand the output oign(u)u”, forn= 1;2;3
The relative degree afis d, = 5.

Using the tables in137], the following results are obtained. Consider a static nonlin-
earityy = f(u), with u a LP-signal with relative degres,. Baum tables137] state the
results for the following series of integrated functiosign(u); abgu), sign(u)u?, abgu®);

;sign(u)u”. The smoothness of these functions is growisign(u) is discontinuous,
abqu) has a discontinuous rst derivative, etc. This results in an increasing relative degree:
dsignu) = 1;danqy) = 2;  From this example, it is easily observed that even discontinuous
functions and functions with sharp edges still result in a fast roll off of the output. This is
also visible in Figure 3.10. It can be seen that the relative degree increases till it reaches that
of the input signal.

Generalisation to non-Gaussian noise

All the results discussed in the above section were obtained under the Gaussian excitation
assumption. It is possible to generalise these results to signals that have another distribution,
provided that their power spectrum and the expected value of the absolute value of their nite
Fourier transform exist. Under these conditions, it is possible to show that for a product
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of stationary signalg(t) = u(t)v(t) the following inequality holds for their power spectra
[134, 135]:

S/(w) g(p LW | Swy)? (3.20)

Using this results, the previous properties can be generalised to a much wider class of random
signals.

3.7 Conclusions

In this chapter, the problem of modelling continuous time nonlinear systems using a discrete
time nonlinear model is discussed. Two new ideas are proposed to do so. The rstidea is to
unify the classical ZoH and BL signal assumptions in the more general concept of LP signal
with a relative degred.

It is shown that this concept of LP-signal is an invariant for a wide class of nonlinear
systems, including stable closed loop systems. The second idea uses a classical result from
signal processing that states that a BL-signal can be perfectly predicted by a causal linear

Iter from its past samples.

This resultis generalised to LP-signals by introducing an error bound thaﬂstg,rfd O:5)).

Both ideas are then combined to give error bounds on recursive discrete time models for
continuous time systems. These error bounds are tight since the dominating error is set by that
part of the signal that is not sampled fast enough (aliasing). The results are experimentally
veri ed on a laboratory scale closed loop nonlinear system (the Silverbox).
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Nonlinear modelling of the Lithium-ion
battery cells






Chapter 4

Battery technology and battery based
systems

In the Part-I of the thesis, it is demonstrated that discrete-time nonlinear state-space models
with de ned error bounds under bandlimited measurement set-up assumptions can be identi-
ed easily. The focus of the second part of this thesis is to demonstrate how such discrete

time models can be identi ed from battery's input-output data for modelling (simulating) the
short-term electrical response of the battery. Therefore, in this chapter, a brief introduction to
the battery technology and battery based systems are provided. A short overview of the recent
development in the battery sector, the state of the art technologies and the basic terminologies
associated lithium ion battery operation are introduced. Thereafter the challenges associated
with battery modelling are discussed. Finally, the research objectives, and the contributions
of this part of the thesis are clearly stated.

4.1 Introduction

Modern battery based systems are one of the most promising enabling technologies as
we leap towards the more electri ed future that ranges from smart phones, tablets, smart
computing hardware to more electri ed transportation. There are aréitallion active
mobile subscriptions around the globe presently and as per the recent survey carried out, the
mobile subscriptions are growing at a rate around 3% - 4% annually globally [138].

Although there is a signi cant advancement, which has happened in state of battery
technologies in the last few years, but with the ever growing demand of the society, an
advancement is needed in the battery based systems and the infrastructure supporting these
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Fig. 4.1 Japan airlines B-787 event battery, Jan 7, 2013 [1]

Fig. 4.2 Samsung S7 Galaxy Note after explosion [2]
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systems. With an advancement of the battery technologies, in order to ensure safety, advanced
control strategies are needed.

Figures 4.1 and 4.2, show lithium-ion batteries that exploded recently, in a commercial
Japan airlines Boeing87airplane [L] and in a Samsung/smartphonel], respectively. Itis
quite apparent from the pictures, that the damage which can be caused by the uninformed use
or misuse of these batteries. Therefore, the safety of the battery and battery based systems is
extremely important. Therefore it should always be on the prime agenda for the proliferation
of battery based systems and related technologies in day to day life.

To accomplish this foreseen goal, one of the possible ways is, to manufacture better batter-
ies through the development of new and better materials for the battery's active components
or the other possible way is by developing more ef cient battery management technologies
to extract higher performance from existing (or new) batteries through the use of advanced
modelling, control, and estimation techniques.

This work focuses on the latter to enhance the understanding of the short-term electrical
dynamics (see below for explanation) of lithium-ion batteries by proposing better characteri-
sation techniques and identi cation methodologies for modelling battery's electrical response
at various operating conditions. The model-free black-box techniques discussed in this
dissertation aim to address some of the challenges that arise when achieving the highest
performance physically possible from lithium-ion batteries within a safe operating window.

4.2 Battery Technology

There are various types and con gurations of battery technologies which have been com-
mercialised for about more than two decades. But the lithium-ion (Li-ion) batteries due to
their numerous bene cial properties such as rechargeable usage, higher energy and power
density are considered mature as compared to other battery technologies in the consumer
electronics market such as cell phones and laptop computers. In addition, long cycle and
shelf life, low self-discharge, and fairly wide operating temperature range makes them one of
the most attractive elements in energy grids to store energy generated from renewable energy
sources such as windmills, solar panels etc. for cleaner energy today.

Figure 4.3 shows the relationship between speci ¢ and volumetric energy density for
rechargeable battery technologies. The general research goal for the battery development
community is to increase energy and power densities, while minimizing the volumetric and
mass constraints (which means moving to the upper right hand corner of Figurg|®.3, |
The market of Li-ion battery based system continues to nd new applications (see Fig. 4.4).



74 Battery technology and battery based systems

Fig. 4.3 Comparison of the rechargeable battery technologies as a function of volumetric and
speci ¢ energy densities. lllustration courtesy [3]

Fig. 4.4 Various new growth sectors of Li-ion battery. Illustration courtesy [3]
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4.2.1 Consumer electronics and renewable energy

For example with the recent introduction of the modern products based on the exible
electronics, exible lithium-ion batteries have been able to attract great interest as one of the
most reliable sources of power in these products. Flexible Li-ion batteries have already found
its use in the continuously growing elds of exible and wearable electronic devices. The
range of these devices is quite extensive ranging from the roll-up displays, radio frequency
identi cation tags, touch screens, wearable sensors and bio-implantable medical devices
[139].

Products like e.g. cellular phones, laptops, etc. from portable consumer electronics
industry, are an excellent example where consumer demand imposes both smaller and lighter
batteries. These products require minimal time to charge, but without compromising talk
time or usable (extended) battery life. Such a counter balance between the energy density
and the charging rate has propelled the lithium ion battery research to the forefront of
battery technology. Therefore, in response to these expectations, the next generation of
Li-ion batteries will need to achieve higher speci c capacities, faster C-rates (time for cell
discharge in reciprocal hours, see Section 4.8 for battery terminologies), increased safety,
and appropriate cyclability.

Similarly continuous emphasis on the reduction of greenhouse gases and introduction of
Smart grids has triggered the use of renewable energy resources in many sectors. Furthermore,
miniaturisation, requirements on the extended range of vehicles and the need of high-power
electronic devices is also contributing signi cantly to the exponential growth of Li-ion battery
based systems.

4.2.2 Transportation sector

By the year202Q a multi-government initiative called "The Electric Vehicles Initiative
(EVI)", is aimed at accelerating the adoption of electric vehicles (EVs) worldwid20by
million EVs including plug in electric vehicles (PHEVS) and fuel cell based electric vehicles
(FCVs) [140. Just in the transportation sector, based on the cost and the energy targets,
which have to be achieved in the near future, it is quite apparent that there is a pressing need
of modern battery technologies as well as advanced battery based systems [140].

In general, based on how the powertrain is con gured or arranged, the EVs can be divided
into four main categories: a) battery electric vehicle (BEV), b) plug-in hybrid electric vehicle
(PHEV) or extended-range electric vehicle (EREV), c) hybrid electric vehicle (HEV), d) and
the fuel cell electric vehicle (FCEV). As it is clearly shown in Fig. 4.5, the battery is the
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major part of the powertrain arrangement in all types of EVs. In EV applications, there are
mainly two categories in which the function of the battery can be divided:

r

» To act as the main source of the electric energy to drive vehicles,

» and/or act as a storage element of recycled regenerative energy from vehicle
braking

Fig. 4.5 Comparison of various electric vehicles with integrated battery functionalities with
their representative vehicles. Illustration courtesy [4]

For example in HEVS, the internal combustion engine (ICE) is used as the main source of
energy, and to improve vehicle fuel ef ciency, an electric motor is used for assisting the ICE
in different driving modes in different terrains. Mostly, the batteries in HEVs are used as an
energy storage element (buffer). These are then typically charged from the internal power
distribution [141].

PHEVS/EREVs are developed on the basis of HEM&]. They are usually equipped
with high power heavy duty electric motors, which are capable of driving the vehicle alone,
and a high capacity battery which can be charged from external power sources, such as a
household AC source or a high-power DC charging station [143-145].

FCEVs use hydrogen as the main fuel for the generation of the electric energy needed for
the electric motors]46, 147]. The function of the battery equipped in FCEVs is equivalent to
HEVs [14§. In the case of BEVs and PHEVs, on-board batteries or battery packs should be
able to store a signi cant amount of energy, so that the mileage requirement for the extended
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range of EVS/PHEVs can be satis ed. This increasing demand in the long range electric
vehicles requires further improvements in the existing Li-ion batteries based energy storage
system in vehicles [149].

4.3 Battery's short term versus long term dynamics

The pursuit for battery models with high accuracy and computational ef ciency still remains

a challenge for the engineering community. Generating a mathematical model of a Li-ion
battery, e.g. needed by BMS, that can describe the input current-to-output voltage dynamics
of a battery is a challenging problem. A primary reason for this is that battery dynamics vary
signi cantly with operating conditions. Depending on the nal purpose of the developed
model, one can divide battery models into two major classes i.e the models which describe
the short term response and the other which describe the long term behaviour of the cells
(see Fig. 4.6).

4.3.1 Short term dynamics

The short term dynamics of the battery primarily deal with modelling responses of a cell that
can be observed over a short time scale. It includes phenomena such as the electromotive
force (EMF) or thermal dynamics of the cell at various operating conditions. The internal
states of a cell can not be observed directly. These states need to be deduced from the
measured data. The state of charge (SoC) is such an example of the internal state. The
estimation of such states from the mathematical model either derived through physical
principles or identi ed using the measured data is also classed as a short-term phenomenon.
The SoC in battery systems is an indicator of the operating conditions of a battery system
(see Section 4.8 for a formal de nitions). It is used to regulate charge/discharge decisions of
the battery as well as to ensure its safety and longevity. However, it is a well known fact that
the estimation of SoC level is a substantial challenge, mainly due to the high sensitivity of
the voltage inverse mapping, uncertainties in models, nonlinearity, variations in the battery
characteristics from one cycle to another cycle, and measurement errors [150].

4.3.2 Long term dynamics

The long-term dynamics deals in understanding ageing, fatigue and deterioration mechanisms
both on an electrodes/electrolyte level as well as on a cell level respectively. Factors such as
the solid electrolyte interface, thermo-mechanical fatigue and capacity fade from cycle life
loading , Lifetime models, state of health estimation etc. fall also into this category [151].
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Fig. 4.6 Categorisation of the short-term and the long-term behaviour of the battery, Illustra-
tion courtesy [5]
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4.4 Challenges in modelling the battery

Despite various advantages, the main factors which affect the performance of Li-ion batteries
are relatively high material cost, need of a protection circuit to avoid overcharge, over
discharge, and excessive temperature rise. The cycle life (as well as the calender life) and
capacity, which normally reduces, if the battery is overcharged or sometimes over discharged
than the prescribed limits provided by the battery manufactui&d.[Hence, there is an

evident need for better understanding of these characteristics and the processes associated
with the battery dynamical operation.

Fig. 4.7 Challenges in modelling of the battery

There are many challenges associated with the modelling of the lithium-ion battery's
electrical response. There are many factors such as statistical variation of material parameters
of a cell dependent on the manufacturing imperfections, different chemistries, thermal
management etc. (see Fig. 4.7), which directly effect the response and the performance of a
battery cell. Some of the most important factors are listed below:
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 Battery response change due to material characteristics, e.g. a NMC cell be-
haviour at same operating conditions will be different from a LFP cell (see
Section 4.7 for details on different Li-ion chemistries).

» Manufacturing variations affect the cell response.

» Operational conditions such different loading requirements, varying temperafure,
different SoC and state of health (SoH) affect the cell behaviour.

» Ageing mechanisms, cycle life as well as calender life give rise to different
dynamical responses.

» Thermal management of the battery also decides, how a cell is going to respond
to a particular load pro le at different operating conditions.

Due to the large format of automotive Li-ion batteries, a unique set of challenges are
associated with the use of Li-ion batteries in the automotive domain as compared to batteries
used in the consumer electronics products such as the cell phones, laptops, and other consumer
goods. In high power automotive applications, the temperature distributions on the cell and
throughout the packs very widely due to high rates of charge and discharge in combination
with the large surface area of the cell.

This non-uniformity of the temperature distribution across the cell, the module and the
battery pack causes a number of serious issues, such as poor battery performance, rapid
degradation, and potential safety concerns. These problems in turn inhibit, the full utilisation
of the active material inside the battery.

Synthesising actual cells and packs with new materials to deal with above mentioned issue
is a time consuming and an extremely expensive task, which makes an ef cient, high delity
simulation tool very desirable. However, due to strongly coupled nature of electrochemical
and thermal physics, the relevant scales of a battery cell or pack (ranging from sub-microns to
meters depending on the application), and the need for a comprehensive materials database,
the development of a Li-ion battery model a unique and challenging task.

4.5 Commercial Li-ion battery

Commercial lithium-ion battery cells are mainly packaged in two shapes/forms namely
cylindrical cells and prismatic cells (as shown in Fig. 4.8). The operating voltage of a single
cell typically lies betweer2 —4 volts for various kinds Li-ion battery chemistries. The battery
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Fig. 4.8 Left: Button cell, Middle: Cylindrical cell, Right: Prismatic or Pouch cell. Illustration
adapted from [6]

cells are usually connected either in series and/or parallel con guration to form a battery
pack for applications requiring higher voltages and energy/power.

Fig. 4.9 Typical battery packs used in commercial vehicles. Illustration adapted from [7]

A battery pack composed of multiple cells for an HEV is shown Fig. 4.9. A typical battery
pack is also equipped with various kind of sensors (current, voltage, and temperature), which
are further connected to a battery management system (BMS) for controlling or managing its
operation (e.g. charging, discharging, etc.).

In this next section, some of the basics principles behind the working of a Li-ion battery
are reviewed and a brief introduction to different kind of Li-ion chemistries is provided.
Thereafter a literature survey about different kinds of modelling methodologies is given and

nally the scope as well as the contributions of this part of the thesis are detailed.
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4.6 Lithium-ion battery fundamentals

Fig. 4.10 Schematic of a Li-ion battery. Illustration courtesy [8]

A battery is made of two different types of electrodes, namely the anode (negative elec-
trode) and the cathode (positive electrode), which are separated by an electrolyte solution
as shown in Fig. 4.10. The electrodes are connected to an external circuit by an electrical
conductor. In a typical lithium cell, the anode generally contains a carbon-lithium intercala-
tion compound, hence it is usually referred as the graphite electrode. The cathode includes
metaloxide materials, to which positive ions migrate inside the cell during a chemical reaction
and the generated electrons migrate through the external electrical circuit. The electrolyte
solution facilitates the ow of positive ions (lithium ions), from one electrode to another
electrode.

The composition of the material at the cathode normally determines the cell's capacity.
The electrolyte is most commonly a liquid solution containing, a salt dissolved in a solvent.
The electrolyte material can also be either a polymer or a solid material, which must be
stable in the presence of both electrodes. In case, it a polymer or a solid electrolyte, then it
will also act as a separator. The porosity of the separator helps in preventing the cell from
short-circuiting as well as thermal runaway and enables the transport of lithium ions.

Fig. 4.11 (a) and (b) show the schematic of a pouch-type lithium-ion battery in a folded
and unfolded form respectively. The chemical reactions taking place in a Li-ion battery cell
can in general form be represented as:
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Fig. 4.11 (a) Folded core with battery tabs for external circuit connection (electrode-separator
stack) of a pouch-type lithium-ion battery (b) The battery core is constructed by repeating
different layers of the cell. The transport of Li-ions from the negative electrode (anode)
to the positive electrode (cathode) during a discharge process is depicted by the arrows in
z-direction, which correspond to the transfer current. Current streamlines on electrodes are
represented by the arrowsxry plane. lllustration courtesy [9]

6C+LiM,0,) * Li, Cg+Li; M, O, (4.1)

where0 x 1, Mis the representative metal (nickel, cobalt, manganese, or their combina-
tion depending on the chemistry used) in the positive electrode, y, z are the concentration of
the ions and O is oxygen. The reactions proceed from the left direction to the right direction,
and right to left for the charge and discharge process respectively. The respective charge and
discharge reactions in the electrodes are as follows:

6C+ xLi* +xe ) * Li,Cq (for positive electrode 4.2)
LiMy O,) * Lijg xMy O,xLi" + xe (for negative electrode 4.3)

4.7 Lithium-ion chemistries

There are various kinds of Li-ion chemistries, which are under development and are suited
for the use in various industries. Each kind of chemistry offers a unique mix of cost, life span,

durability, performance, and safety as shown in Fig 4.12. The different kinds of chemistries

are discussed below.
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Fig. 4.12 Comparison of various factors related to different Li-ion chemistries for the use
in EV, in terms of speci ¢ energy or capacity; speci ¢c power or the ability to deliver high
current; safety; performance at high and low temperatures; life span or cycle life; and cost.
lllustration courtesy [8]
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Lithium cobalt oxide (LCO)

The most common type of Li-ion batteries, which are used in small consumer electronics due
to its high speci c energy is LiCo&@ The battery consists of a cobalt oxide cathode and a
graphite carbon anode. LCO has a relatively short life span as well as a low thermal stability
and it is limited in its load capabilities (speci ¢ power) as shown in Fig. 4.12.

Lithium manganese oxide (LMO)

LiMn20y4, has a low internal resistance, relatively high thermal stability and enhanced safety
due to the three-dimensional spinal structure of the cathode in lithium manganese oxide
(LMO), [9]. On the downside its cycle and calendar life is rather limited (see Fig. 4.12).

Lithium nickel manganese cobalt oxide (NMC)

The unique blend of materials of nickel, manganese, and cobalt in the cathode of an NMC
cell (LINIMnCoOy) improves the speci ¢ energy, prolongs the cell's lifespan, and lowers the
raw material and manufacturing cost due to reduced used of cobalt. As it is shown is Fig.
4.12, the overall performance of the NMC cell is satisfactory w.r.t different factors. Due to its
high speci c energy, it is one of the preferred choices for the electric powertras 154.

Lithium iron phosphate (LFP)

An acceptable electrochemical performance with low internal resistance can be extracted from
the use of LiIFeP@ as the cathode material for the Lithium based batteries. Li-phosphate
battery is relatively better suited than other chemistries for full charge conditions or for
prolonged usage at high voltage. It offers a moderate level of speci ¢ energy, relatively low
operating voltage, and high self-discharge rate as compared to other Li-ion based batteries.
The advantage in comparison to other chemistries is the better safety and a longer lifespan.

Lithium nickel cobalt aluminum oxide (NCA)

NCA (LiNiCoAIO ) battery shares quite a few similarity with NMC especially w.r.t. the
high speci c energy, a long life span and a reasonable speci c power. All these properties
also makes NCA batteries, a suitable candidate for the use in electric vehicles. However, due
to relatively higher cost and marginal safety, there use is not wide spread (see Fig. 4.12).
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Lithium titanate (LTO)

For the high rate capability and longer cycle life, graphite is replaced by Li4H%3® the

anode material. These types of batteries can be charged very fast and also deliver a high
discharge current due to their low nominal cell voltage. The low temperature performance of
LTO based batteries is better compared to graphite-based battsgs)yhich makes them

safer. Nonetheless, as it is shown in Fig. 4.12, there is still a room for improvement in the
LTO based batteries in terms of the energy density and the cost.

Generally, the most of the batteries discussed above can be divided in two main categories,
i.e. the batteries with high power density or the batteries high energy density. A battery with
high energy density is useful in applications, where one has to drive longer distance e.g. in
EVs and PHEVs, which are intended to be driven on electric mode mainly for long distances.
In contrast, a high power density battery is generally useful in applications, where a short
but strong power pulse is needed; e.g. in HEVs, where the function of the electric motor
is normally to assist the internal combustion engine during speci ¢ driving conditions or
driving modes for short periods [156].

4.8 Battery speci cations

In order to model the battery dynamical response, it is important to understand the under-
lying working operation of the battery, environmental conditions in which it operates, the
characteristic nature and factors in uencing the response of the battery. It makes it easier to
relate to the terms used in the state of the art models and further the operation of the battery.
Here, we de ne the most common speci cations related to battery which are used through of
the second part of this dissertation.

Cell, module and packs

As discussed above, EVs and HEVs usually have a high voltage requirement, thus require
a battery pack that consists of individual modules and cells organised either in series and
or parallel. A cell is the smallest, packaged form a battery can take. The voltage output is

generally one to six volts. A module consists of several cells connected in either series or
parallel. A battery pack for the EVs is then assembled by connecting different modules again

either in series or parallel con guration.
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State of charge (SoC)

It is de ned as the ratio of actual charge in a battery (expressed in either Ah or C) dt time
and the initial charge at the begin of life at a reference temperature and reference discharge
pro le. It is generally expressed as percentage of maximum capacity [4].

1 t

SoQt) = SoG
where So@) is state of charge at time instanSoG is initial or full charge SoC (depending
on the charge or discharge cycle)ofis the nominal capacitance of the battery, &(tl is
the instantaneous currem(t) is usually positive for discharging and negative for charging.
h is the Coulomb ef ciency of battery de ned as the ratio of charge extractggdpring
the discharge phase to the charge supplied or pumped into the bati¢ne @quation for
the same can be seen below in (4.5).

QO ut

h =
Qin

(4.5)

C-rate

The charge and discharge current of a battery is measured in C-rate. Most portable batteries
are rated al C. This means that20 Ah battery would provid0 A for 1 hour, if discharged

at1 C rate. The same battery discharge@:&tC (1=2 C) would providelOA (20 0:5= 10)

for 2 hours.1 C is often referred to ashhour discharge; 8:5 C would be2 hour and0:1 C

a 10 hour discharge.

Terminal voltage

The voltage between the battery terminals with load applied. Terminal voltage varies with
SoC and discharge/charge current.

Cut-off voltage

The minimum allowable voltage. It is this voltage that generally de nes the empty state of
the battery.
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Open circuit voltage

It is de ned as the voltage across the terminals of the battery/cell under the no-load condition.
This voltage is also related to the difference of the electrochemical potential of the electrodes,
often abbreviated as OCV. OCV alone can provide essential information about the system
under test. For Lithium lon Batteries, the OCV is the key quantity to determine the SoC of
the cell, given it is in steady state.

Nominal capacity

The total Amp-hours available when the battery is discharged at a certain discharge current
(speci ed by C-rate) fromL0® SoC to the cut-off voltage. Capacity is the product of
discharge current(in Amperes) and time taken to discharge (in hours)

State of health: SoH

Battery health condition at a reference temperature and reference discharge pro le. The
battery100% SoH matches the manufacturer's speci cation anddtematches with the
End-of-Life (EoL) of the battery. SoH is the measure of the general condition of the battery
at a certain point in its lifespan. It re ects its ability to deliver the speci ed performance in
comparison to the fresh battery.

Nominal voltage

It is de ned as the voltage of a fully charged battery or cell when delivering electric power at
a speci c discharge rate.

Internal resistance

The internal resistance of the cell is sometimes considered as the ohmic resistance of the
cell, which is the direct voltage change after application of a current step on a cell in an
equilibrium or relaxed state. Another de nition for the internal resistance available in the
literature, is the sum of the ohmic, activation and diffusion polarisation resistances, which is
the largest possible voltage drop in the cell.

The internal resistance of a battery is dependent on various factors such as the temperature,
the C-rate and the SoC. Different values for the internal resistance can be found depending on
the measurement method, which is utilised to calculate the internal resistance. This is caused
by the time constants associated with the activation and diffusion polarisation resistances; i.e.
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whether the battery electrodes are in equilibrium (relaxed) state or not is also important in
determining the value of the internal resistance [157, 158].

4.9 Battery models

A battery is a complex electrochemical system, the dynamical response of which is hard
to describe and predict using a simple linear model. Take, for example, the evolution of
the SoC, it is dependent on the charge or the discharge pro le (which in turn is dependent
on the driving mission and environment) and ambient temperature, the remaining capacity
(in Ah) of the battery. A huge number of battery models have already been developed by
scientists in the various domain of science and engineering e.g. by electro-chemists, electrical
engineers and applied mathematicians. Fig. 4.13 gives an overview of the complexity of
different modelling methodologies adapted by different scienti c communities for modelling
the battery short-term dynamics.

The availability of these model-based evaluation tools is essential to answer a number of
guestions faced not only by battery users but also by manufacturers, maintenance personnel
in many industries, eet operators and several types of mobility operators who are emerging
in the new business models of electric mobility. Reliable models allow one to unveil the
arcane of the battery system and to make a more ef cient use of it. In the eld of battery
modelling many different battery models exi$6P-161]. These models can be classi ed in
the following categories:

Electro-chemical models,

Analytical and stochastic models of a cell,

Impedance based models,

Equivalent circuit models,

Empirical and semi-empirical models.

A short review of the different models is given below.

49.1 Electrochemical models

Electrochemical models explicitly model the chemical reactions, the ion transfer between
electrodes as well as mass transfer phenomena in a battery. Some of these models also take
into account the side reactions leading to degradation. Most of these models are based on
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Fig. 4.13 Overview of different class of battery models available in different engineering do-
mains. The blue arrows point towards the modelling methodology with lesser computational
complexity and the domain knowledge requirements. Illustration extended from [10].

balance equations. These models are generally solved with the Finite Element Methods
(FEM), hence electrochemical models are rather computationally and resource expensive.
On the other side, these models provide a deeper insight into the working mechanism of the
battery. Such models make sense at the cell level and can be used to provide data for other
types of models such as more elaborate electrical models, empirical models and for module
or pack models.

4.9.2 Equivalent circuit models

Electrical or equivalent circuit models describe the battery's behaviour, with electrical
networks made by using basic electrical circuit building blocks such as resistances, capacitors,
resistors, and diodes to represent the input current to output voltage characteristics of the
battery. Due to their structural simplicity and relatively few parameters, they can thus easily
be coupled with any electrical system in the vehicle such as BMS [162-164].

4.9.3 Thermo-electrochemical and electro-thermal models

The heat generation within lithium ion battery can be classi ed into different categories as
explained in 1695. Using the thermo-electrochemical models, the temperature distributions
throughout individual cells can be studied. In these models, the thermal effects are mainly
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modelled at the macro scale, regarding stacks and battery packs. Most of these thermal
modelling is often performed using computational uid dynamic (CFD) methodologies.
In order to do so, the battery geometry is discretised and mass transfer through different
transport modes is implemented to predict the heat distribution and dissipation during
operations [166, 167].

Electro-thermal models make use of mainly two methodologies: a) equivalent circuit
models L68 and b) regression model$69 . In these models, generally the terminal voltage
is captured by the equivalent circuit model, and the regression function representing the
thermal model is adopted to estimate the core and/or surface temperatures. Further details
about the various kinds of the thermal models can be found in the extensive literature survey
section below.

4.9.4 Empirical models

Semi-empirical as well as the full empirical models use experimental data to model and
investigate the behaviour of Li-ion batteries. In comparison to ECM and electro-chemical
models, empirical methods do not explicitly rely on dedicated hardware/software and physics-
based models of battery dynamics. If comparable and adequate training data are available
under different operating conditions, data-driven methods are signi cantly more ef cient than
model-based methods in terms of computation, execution time, and memory requirements.

Some electro-thermal and thermal models discussed above can be categorised among the
semi-empirical modelsl{7(. Semi-empirical models are also referred as reduced models. In
reduced models, some physical processes are neglected, and the parameters of these empirical
based models are directly inferred from the experimental data. These kind of models do
not require a detailed knowledge of the battery electro-chemistry and its internal dynamics,
hence can be used in many real-time applications [171].

4.10 Literature review

As discussed before, from a systems perspective, batteries are essentially single input-single
output (SISO) systems with the input being the loading current and the output being the
terminal voltage. But, it can be extended to multi input- multi output (MIMO) systems by
considering the effect of the ambient temperature, state of charge and the battery temperature
etc. (see Chapter 7 for a case study). As discussed in Section 4.9 above, depending on the
application and speci cations, a choice between different class of models can be made. In
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the section below, from the vast literature on modelling Li-ion battery electrical response,
some of the most relevant recent approaches are discussed.

Equivalent circuit and state observer based modelling

ECMs are widely used for impedance analydigg, SoC estimation]73, and charging
control [174] due to their structural simplicity and computational ef ciency. Performances
of several commonly used ECMs is compared in [175].

Based on an ECM and an adaptive Kalman Iter (KF), an algorithm to estimate the
SoC of a lithium-ion battery for application in EVs is developedliig. A model-based
SoC estimation method combining an indirect nonlinear adaptive observer and KF for state
observation and parameter identi cation respectively is discussed’in).[The application of
an extended Kalman Iter (EKF) combined with a per-unit (p.u.) system to the identi cation
of suitable battery model parameters for the high-accuracy SoC estimation and state-of-health
(SOH) prediction of a Li-lon degraded battery is described in [178].

An EKF based technique involving rst and second order Thévenin ECM for SoC is
proposed in179. To further improve the results using the EKF based SoC estimation, an
improved OCV model accounting for hysteresis in combination with rst order Thévenin
battery model for NMC battery is proposed in [180].

[18]] proposed a nonlinear model for the electrode voltage—current relationship employ-
ing a more accurate model of the battery electrode nonlinear steady-state voltage drop based
on the Butler—Volmer (BV) equation and KF. I1ag0 an adaptive nonlinear observer is
designed that compensates nonlinearity and achieves better estimation accuracy.

[182 used an EKF for the SoC determination and a multi-physics battery pack model,
along with a procedure to identify its parameteds83 proposed a SoC estimation method
based on the proportional-integral (PI) observer to estimate the SoC of lithium-ion batteries
in electric drive vehicles (EDV).

In [184] authors introduced a methodology that utilizes existing cell-balancing circuits to
estimate an individual cell's voltage and current from battery string terminal voltage/current
measurements. A two-time-scale signal processing method is employed to attenuate the
effects of measurement noises on SoC estimates. The results are further expanded to derive
an integrated algorithm to identify model parameters and initial SoC jointly.

Electrochemical modelling

Electrochemical model described i85 used coupled nonlinear partial differential equa-
tions (PDESs) to describe ion transport phenomena and electrochemical reactions to achieve
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high accuracy, but incurring heavy computation load. In general electrochemical models such
as pseudo two dimensional model8§, single particle modelsliB7, 188, and extended
single particle models [189] are more accurate than ECMs.

Authors in [L9( utilised electrochemical battery models to optimise the power manage-
ment in Plug-in HEVs, wheread 91] presented a state estimation strategy for a detailed
electrochemical model of a lithium-ion batteryl9p] proposed an adaptive unscented
Kalman Itering (UKF) method for online estimation of model parameters and SoC of Li-ion
batteries for autonomous mobile robots.

[193 used a simpli ed version single particle model (SPM) in combination with a non-
linear geometric observer approach to design adaptive observers for the SoC and parameter
estimation. A two time-scaled electrochemical battery model (where the slower and faster
battery dynamics are identi ed separately) based parameter identi cation method is proposed
by [194].

Usually ECMs are easier to implement, but have worse accuracy than electrochemi-
cal models 199, indicating that ECMs are unable to characterise the battery impedance
accurately due to their structural simplicity. Drawback of electrochemical models is that
they require a large number of battery internal immeasurable parameters such as diffusion
coef cients, concentration of species in electrolytes, electrode geometry and porosity, transfer
coef cients, and the reaction constant etc. to be estimated which leads to over- tting in a
parametric identi cation. Hence, this approach is complex and dif cult to use in practice.

Usually the Kalman Iter based approach to SoC estimation requires an estimation of the
voltage of the battery. For an accurate estimation of the battery voltage at very low SoC levels
as well as low temperatures linear models proposed in the literature might not be suf cient.
Hence, nonlinear dynamical models might be needed to understand, simulate and predict the
voltage response of the battery.

Analytical and reduced order modelling approach

In analytical models, the major properties of batteries are modelled using few explicit
equations to compute the battery states. However, such equations are not easy to solve.
Peukert's law 196 is an example of such models. It captures the nonlinear relationship
between battery lifetime and its rate of discharge, but without modelling the recovery effect.
For instance, a pseudo two dimensional (P2D) model, developetidty; s one of the

most popular variants and can take seconds to minutes to simu$de fFor simplicity, a

single particle model (SPM) that assumes electrodes are represented by two single spherical
particles is proposed ilP§g. To improve accuracy of the SPM under high C-rate, several
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extended single particle models (E-SPMs) were propo$8€ P0(, where lithium-ion
concentration and potential distribution in electrolyte are taken into account.

In [201], authors designed a KF based on a reduced order electrochemical model to
estimate internal battery potentials, concentration gradients, and state-of-charge (SoC) from
external current and voltage measurements. A reduced electrochemical model is used to
propose a nonlinear robust observers for SoC estimation of lithium-ion cells in [202].

Data driven and system Identi cation based modelling

A system identi cation-based model and KF is used for the online monitoring of batteries
for electric vehicles (EVs) inJ03. The algorithm uses a combination of battery voltage
and current measurements plus battery data sheet information to implement model-based
estimation of the stored energy, also referred to as SoC, and power capability, also referred to
as state-of-function (SoF), for deep-cycle batteries. The disadvantage is that the KF may be
adversely affected by signi cant divergence problems when the battery model inaccurately
reproduces the behaviour of the battery.

In [204 an empirical method of determining electromotive force and battery internal
resistance as time functions, which are depicted as functions of SoC is proposed. Broad-
band excitation signals were used 20§ in order to identify the electrical impedance
characteristics of the battery.

In [206] a battery management system (BMS) framework is proposed that estimates the
critical characteristics of the battery such as SoC, SoH, and Remaining Useful Life (RUL)
using a semi data-driven approach. It uses a combination of a modi ed Randles circuit
model, support vector machines (SVMs), low-current Hybrid Pulse Power characterization
(L-HPPC) test data, support vector regression, and a hidden Markov model (HMM). It is
quite good in nonlinearity mapping but it is very sensitive to the amount and quality of the
training data. A comparative analysis of different experimental and machine learning based
black-box techniques for SoH estimation of NMC cells is provide®®i7] 208 but no clear
recommendation is made w.r.t the choice of models for SoH estimation.

A Fractional system identi cation is applied to battery SoC estimatior208[210.
Fractional order systems accumulate the entire information of the system function in weighted
form using a time varying initialization function which must be known as long as the system
has been operated. Fractional dynamics require history of states or a suf cient number
of points for the initialisation function computation. Hence, it results in large memory
requirements.

Linear-parameter-varying (LPV) battery models for batteries used in HEV applications
have been presented i21]1]. Generally, LPV models suffer from serious disadvantages



4.10 Literature review 95

in terms of non-eliminatable pitfalls of interpolation, selection of adequate linearisation
points, choice as well as estimation of a scheduling parameter, and the loss of a general
representation of the nonlinear dynamics.

Modelling approaches explicitly capturing the effect of temperature

The operating temperature has a signi cant impact on the performance of electrochemical
systems such as batteries. The amount of energy stored inside depends largely on the
temperature. Generally, a drop in ambient temperature implies a signi cant rise of the
internal resistance of the cell, creating a high opposing force while operating the battery.
Thereby, it limits the amount of energy extracted and reduces cell energy, power capability
and capacityZ12. For example, at 20°C, only 50% of the battery energy is available
[213. Experimental results also show an important interaction between the electrical and
thermal phenomena (See Chapter 5).

However, some models do not consider the temperature etf@8§t214 at all, or its
effect on the internal resistance of the battery, or the range of the battery cell temperature
modelled does not t hard winter application815-217]. Hence, in order to develop an
effective thermal management and its optimal operation, it is crucial to model the thermal
dynamics along with the electrical dynamics over the entire operational range of the lithium-
ion batteries.

In the literature, some strategies exist to tackle that issue. For inst2d&e2[19 propose
warming up the cell before use with an external heating system powered either by an external
source or mostly by the battery itself. Therefore, it induces a remarkable temperature rise of
the cell, implying a decreased internal resistar®2; thereby, it restores cell performances.

Different methods are proposed in the literature for the estimation of temperature dis-
tribution on a cell 21, 222. A critical review of different types of thermal management
models and solutions of lithium-ion batteries for the development of pure electric vehicles
is given in 223. In addition to providing a comprehensive review of lithium-ion batteries
used in hybrid and electric vehicles at cold temperatures, the auth@24ejso discuss
the in uence of low temperatures on the ageing mechanisms of lithium-ion batteries. The
authors in 25 discuss the effects of in-plane non-uniform temperature on the performance
of a large-format lithium-ion pouch cell.

An online parameter estimation method based on the Lyapunov's direct method based is
proposed in226, 227], and in order to compensate the estimation inaccuracies introduced
by temperature variations, either a pre- or the post-compensation scaling methodology using
surface temperature is proposed by the same authors. The drawback of the proposed approach
is that, it is based on the assumption that the battery dynamics at operating conditions can be
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represented by a rst order ECM as well as it requires a priori knowledge about the topology
of the ECM elements. A lumped thermal model where the cell was modelled as a thermal
network is proposed in [228].

A temperature dependent SoC estimation method and online parameter updating using
a dual square root unscented KF is proposed22g[ These models suffer from the
fact that all effects originating due to thermal dynamics are lumped into a few of the
network parameters/elements, which reduces the exibility of the model to capture other
nonlinear effects unless explicit nonlinear elements are a part of the network. The authors
in [230 proposed two separate models to capture the electrical and thermal dynamics. The
disadvantage of this model is that it cannot capture the dependencies as well as the interaction
between the thermal and electrical dynamics.

A 2D-potential distribution model based on over-potential of the battery is bi-directionally
coupled with a&3D-temperature distribution model i231]. This model is then combined
with an EKF for the SoC estimation. Though accurate but one of the main disadvantages of
this model is the complexity of model for real-time SoC estimation. Even though several
methods were proposed and compared to tackle this issue but the fastest simulation time
achieved through one of the reduced models Wasnute, which is still not optimal for
real-time scenarios.

Practical challenge of data acquisition

In addition to the physical parameters e.g., a varying temperature, humidity etc. which
effect the short-term electrical dynamics of the battery, in practice there are many other
situations that can lead to a series of sub-records of data of &8#hr unequal lengths

[233 during an experiment. A rst illustration is an experiment, where some parts in the
data have extremely poor quality due to a sensor failure, component failure in the battery
tester or due to very large disturbances coming from other processes. Eliminating these bad
parts results in a series of broken sub-records of the data.

In other experiments, it might be impossible to measure for a very long time without
interruption; only a series of shorter tests can be performed e.g. due to inadequate technical
capabilities of data acquisition equipment, where performing a longer experiment was not
feasible due to the lack of on-board memory for storing the data. Finally, systems such as a
battery, vary slowly due to changing operational conditions.
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4.11 Research objectives and scope of Part-Il

From the extensive discussion above, it can be concluded that most of these existing battery
models for describing the short-term electrical behaviour are either too simple or too complex,
and they are impractical for electric vehicle system designers as they require extensive
background knowledge of electro-chemistry, electrical circuitry, partial differential equations
as well as multivariable calculus to be implemented in a real-time BMS. In addition to that,
most of the approaches described above assume that either a model is available or can be
obtained easily, which is not the case always.

Therefore, in order to describe the short-term behaviour of the battery, the empirical
and semi-empirical models are good alternatives to the highly complex electro-chemical,
electro-thermal or thermo-chemical models. Hence, a comprehensive data-driven framework
to solve these problems and develop a dynamic model must be developed and validated.
From the discussion above, it is also imperative that, the effect of temperature and SoC
change on the dynamics of battery is accurately accounted in the developed model and the
modelling methodology should be able to deal with data records available from multiple
experiments.

So, even before proceeding towards modelling the battery dynamical behaviour, it is
very important to understand and characterise the battery short term electrical response
under varying operational conditions, so that an accurate decision about the use of an
identi cation/modelling methodology at an early stage can be made. Therefore, in the
context of this part of dissertation, the main idea is to show,

* How to develop a complete range of computationally effective data-drien
modelling approaches that can be applied easily for developing a model of the
short term dynamics of any kind of battery chemistry ?

» How to develop test protocols (broadband) for battery characterisation and to
collect the data required for developing the empirical models ?

» How these specially designed excitation current signals can be used to rgveal
useful information about the battery dynamics under varying operating copdi-
tions, such as revealing an interplay between electrical and thermal behayiour
of Li-ion batteries under various current loading and temperature conditiong ?
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» Once this information is available to the battery modeller, then it is discussed,
how can it be exploited to model accurately different regimes of battery's
operation.

* How to to develop a simulation model for the battery's short-term electri¢al
dynamic response accurately using the best linear approximation (BLA) of its
short term electrical impedance?

« If the BLA is not able to explain the dynamics of the battery then how to identjfy
a nonlinear model to simulate the battery's short-term response accurately in the
deep depletion regions in terms of SoC at different temperatures.

4.12 Contributions of the Part-II

In this thesis, a data-driven black-box approach to the identi cation on the battery's short
term electrical response is proposed. The advantage of using a black-box identi cation
scheme is that, it is completely data-driven approach and it does not require the user to have
any pre-speci ed knowledge of the system. The structure and parameters of the models are
learned from the data itself. As per the research objectives and the scope of the work, the
contributions of the second part of this dissertation are listed below:

» Development of a data-driven frequency domain nonparametric analysis methodology
using specially designed multisine signals, for analysing the short term electrical
response of the battery in terms of nonlinearties and time-variations at varying operating
conditions.

» Estimation of the best linear approximation of the battery's short term electrical
response from the data acquired at various operating points in terms of SoC and
temperature.

» Data driven approach to develop a nonlinear model of the battery's short term dynamics
by utilising the polynomial nonlinear state space model (PNLSS) structure.

« Validation of the PNLSS model using the multiple input-output datasets acquired at
multiple operating conditions from a range of operating conditions in terms of SoC
and temperature.



Chapter 5

Nonparametric analysis

An experiment is a question which science poses to Nature, and a measurement
is the recording of Nature's answer.

Max Planck

The empirical or semi-empirical models, require experimental data acquired in realistic
(possibly different) operating conditions in order to determine the model parameters. Hence,
the focus of this chapter is to design an experimental methodology to collect the data required
to characterise the battery's behaviour and for the battery's short-term electrical response
model identi cation.

In this chapter, a frequency domain nonparametric battery characterisation technique is
proposed which exploits the properties of specially designed random phase multisine signals.
First the details about the chosen battery type is given, thereafter the measurement set-up
is introduced. Furthermore, a formal de nition of the multisine signal is given and a brief
introduction to the nonparametric analysis technique is provided. Finally the results of the
battery characterisation are discussed.

5.1 Li-ion battery: Short-term response

The short-term voltage response of the battery to the input current load pro le at a particular
setting of SoC and temperature can be approximately described by the following nonlinear
relationship, wherd is a nonlinear function which maps SoC, curreand temperatur@

to the terminal voltag¥ at a particular instant in time.

V() f(Sodt);1(t); T(t)) (5.1)
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The level of noise and the nonlinear distortions may vary with the change in SoC and
temperature. Fig.5.1 shows a hypothetical relationship for the short-term voltage response of
a Li-ion battery as a function of SoC and temperature at a given Root Mean Square (RMS)
value of input current. This relationship may even be more complex and non-smooth in
reality.

Fig. 5.1 Representative gure for the short-term electrical response of a Lithium-ion battery
cell. Blue squares are the operating points (SoC, Temperature) at which the data are acquired
for a current load pro le of a xed RMS value.

Remark 5.1.1

In the work, we only performed experiments and acquired data at the discrete operpting
points as represented by the blue squares in Fig.5.1. Please note that, we have hccess
only to the measured input current load pro le and output voltage response of{the
battery to that load pro le at different levels of SoC and temperatures.

5.2 Measurement Setup

5.2.1 Sample battery

For this research, a high energy density Li-ion Polymer Battery (EIG-ePQB3Q.i(NiCoMn))
Pouch-type Li-ion battery cell which is fabricated by EiG Corporation in South Korea, was
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considered as prototype battery for the data generation. This battery uses active materials like
Li[NiCoMn2]O2 at the cathode and graphite at the anode respectively. Various mechanical
and electrical speci cations of the battery are listed below in Fig. 5.2.

Fig. 5.2 Speci cations of EIG-ePLB-C020, EiG battery cell.

5.2.2 Battery data acquisition and testing

The tests are performed on a pre-conditioned battery inside a temperature controlled chamber
at different temperatures. The PEC battery tester &30 with 24 channels (see Fig.

5.3) is used for the data acquisition. The SBT is a system with a number of independent,
microprocessor controlled channels and uses water cooled power MOSKEBEA) to

obtain a very high accuracy.

An individual channel of the tester is fully programmable with its own charge-discharge
pattern. The channels of the S8350can be switched in parallel. In such case, the total
maximum current is\.,, parallel channels timesOA, which is the maximum allowed current
per channel. E.gLOQA for 2 and150A for 3 channels. The maximum current in this way is
600A, when the maximum of 12 channels are switched in parallel.

The charging and discharging pattern (pulse signals, multisine signals etc.) are generated
by an independent, microprocessor. Finally, the voltage, current, time and auxiliary inputs
and outputs are constantly monitored and stored with a programmable constant sample period.
Each channel has its individual memory for storing the acquired data. A large number of
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Fig. 5.3 Experimental setup: PEC Tester with acquisitions channels connected to the temper-
ature controlled climate chambers (not shown here)

measurements can be buffered in the onboard memory for each channel depending on the
number of auxiliary inputs for each channel.

5.2.3 Experiment Design

Three different investigations were performed at different RMS values of input current load
pro le. A 20A RMS value high current load pro le was used to scan the operating range
betweenl(0%-90% SoC of the battery's short-term electrical response for the presence of
nonlinearities. Once a signi cant level of nonlinearities were detectel#t SoC (see
Section 5.4.1 for further details), thereaftésA/RMS value low current load pro le was used

to detect nonlinear distortions at different temperatures. Finally, an input with RMS value of
10A is selected for the nal analysis. The data are acquired under the typical bandlimited
measurement setting i.e. directly at the input and output of the battery with the PEC tester's
measurement channels equipped with the anti-aliasing lters [234].

An odd-random phase multisine signal is used as an input excitation signal for the tests
(see Section 5.3.1 for the formal de nition). All the multisine signal input pro les were zero
mean with a random realisation of the phases. In ca28ARMS value high current load
pro le, data for2 different realisations witi0 periods are acquired at different levels of SoC
at at25°C. For5A RMS and10A RMS value current load pro les, data fdrrealisation with
7 periods are acquired at different levels of SoC at different temperatures.
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The band of excitation is kept betwe@riHz-5Hz. The dynamic range of interest of the
battery for HEVs and EVs applications is covered well within this band of excitation, as this
frequency bandwidth is corresponding to the bandwidth of the power demand of a vehicle
application (acceleration and decelerations), when considering the high power perturbations
[76]. The excitation signal has a period®00samples and the sample frequerigys set to
50Hz resulting in a frequency resolution & = 0:01 Hz. The range of excitation frequency
is also limited due to the system limitations of the PEC testers [234].

For the test, the battery is rst charged using a cons%lme, whereC is the rated
capacity, to the maximum charge voltagedatV using the constant current-constant voltage
method. Then, after a relaxation period3@minutes, itis discharged to the desired SoC level
Ah-based and considering the actual discharge capacy”@tuntil the end of discharge
voltage3:0V of the cell. After each discharge a rest period6fminutes is applied before
the multisine tests are performed. It is made sure that the synchronisation is maintained
between the signal generation and acquisition side.

5.3 Getting to know the battery

Like many engineering systems, battery dynamics vary with time and show nonlinear be-
haviour. But in order to develop a fast and an accurate dynamic model of the battery short
term response, it is important to know, how the battery would behave in a particular scenario
such as; at a particular setting of SoC, SoH and temperature .i.e. when the battery would start
operating in the nonlinear regime, when the time variations would become stronger etc.
Hence, in the rest of this chapter, the main emphasis will be to develop a methodology
(based on the measured input current and output voltage signals) to characterise the battery's
electrical behaviour and to detect as well as quantify the presengeMNdn-linearities
andb) Time variations, over its full regime of operation. Information extracted from the
methodology will give a new insight into the electrical behaviour of the battery and it will be
very useful for the system (battery) modellers to develop an accurate dynamic model of the
battery over its operating regime.

5.3.1 Multisine as the perturbation signal

Before proceeding to model the battery dynamics, it is very important to characterise the
battery's electrical response under varying operational conditions, in terms of the level as
well as kind of non-linearities.
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Gaussian excitations are widely used for this purpose. Broadband signals such as mul-
tisine excitation signals offer various advantages over the random Gaussian noise signals
in extracting information from dynamical systen23f, 236, 205, e.g. full control over
the amplitude spectrum and power spectral density (PSD), while maintaining noise-like
properties in the time-domai2B7]. A detailed information on the use of multisine signals
for identi cation can be found in11]. A quick look at the output spectrum of system to a
multisine excitation indicates whether the system is behaving nonlinearly or not at a certain
operating point.

The goal here, is to characterise a nonlinear system (Lithium ion battery) for the Gaussian
excitation signals, using the random phase multisine excitations. The amplitude spectrum of
the multisine excitation signal should be done such that the equivalence between the random
phase multisine excitation signal and the Gaussian random noise with respect to the nonlinear
behaviour is always guaranteed [238].

Hence, the equivalence clasg, is de ned, which contains all signals that are (asymp-
totically) Gaussian distributed, and have asymptoticallyNidr ¥, whereN is the number
of excited harmonics, the same power on each nite frequency interval. This statement is
formalised precisely in the de nition below.

De nition 5.3.1: Riemannian equivalence signal clasg&s,

Consider a piecewise continuous sigaalith a power spectrurfy, (jw), with a nite
number of discontinuities. A random signal belongs to the Riemann equivalence ¢lass
of u, if it obeys by any of the following statements:

* Itis a Gaussian noise excitation signal with power spectiyjw).

* Itis a random multisine or random phase multisine excitation [11] such thaf:

sz
1%
= a Efiu(jwyj’g= =~ Su(n)dn+ O(N 1) (5.2)
Nk:kl 2pW

k

1

wherewy = kz‘,’\lfs; k2 N;0< w, < Wy, < pfsandfsis the sample frequency.
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De nition 5.3.2: Multisine signal: Time domain representation

A multisine signal is mathematically de ned as follows [133, 11]:

)= P & A cotwit+ | ) (5.3)
P Neioke

wherek is an integer index drawn from the discrete Kef: ([1; T—fs]\ N) of the

excited frequency binsyy = J%—" is the discretised angular frequengyrepresents

both the length of the measured time record and the period of the multisine $ignl,

set of natural numbers arfdis the sampling frequency.

The multisine excitation signal consists of a sum of sines (or cosines), whose frequencies
are all multiples of the same fundamental frequewgy= %9 The user-de ned discrete
function A(k) determines the amplitudes of the individual sines. The scaling f&%er
with the constanhe the number of excited frequencies, renders the RMS value of thé signal
independent of the number of excited frequencies. If the phjgsase randomly distributed
betweerp and p such thaE[ell ] = 0 (E is the expectation operator), the signal is called
a random phase multisines.

De nition 5.3.3: Multisine signal: Frequency domain representation

The frequency domain representation of the multisine signal is the sum of the Fodirier
transforms of the individual sines. By de ning,

8 9

< A!E)ejfk =
A(k) A?Tee i, . k>0
A( k) —@T 2

the Fourier spectrum of the multisine signal is given by [239]:

. 1 '
Un{jw)= p—= a Alk)d(w wy)el« (5.4)
P Nez Koy

whered( ) is the Dirac delta function. The amplitudes of the multisine components
A(k) 0 can be chosen arbitrarily, depending on the applicatiafk) is generally set
to zero beyond a certain frequency indeyx such that the signal is bandlimited, and
aliasing is avoided when signal is sampled at fast enough sample frequency according to the
Shannon-Nyquist sampling criterja40].

In addition, in a specially designed multisine signal such as the odd-random random
phase multisine signals, only the odd frequencies in a frequency band of interest are excited
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and along with some of the odd frequencies are not excited\{lg:.exd = 0. The signal

at these unexcited frequenciaiefection linesin the output spectrum contains valuable
information about the presence of non-linearities and/or the time variations of the system
[11].

5.4 Frequency domain nonparametric characterisation

In this work, to characterise the battery's short term electrical response for different levels of
SoC at different temperatures, a nonparametric characterisation technique propdz£d by [

is used. It utilises the properties of the specially designed random phase multisine signal
described above in Section 5.3.1.

Assumption 5.4.1: Battery discharge capacity

For this particular analysis, it is assumed that the battery discharge capacity and the
corresponding SoC levels can be estimated accurately.

Remark 5.4.1

Before starting the multisine experiment at each setting of temperature, the battery
discharge capacity was estimated at the nominal temperat@&©fand SoC levels
were calculated w.r.t that discharge capacity.

Assumption 5.4.2: PISPO assumption

System classSis the class of nonlinear systems such that, when excited by a rangom
phase multisine:

¥
9C;;s.t. g MMy, Ci<¥; (5.5)

a=1

with Mgo = ma>jG"[‘t it1;to;  ;ta 1) asdenedin Section 1.3.1.

A system belongs to the class of PISPO systems, if it obeys the period preserving principle.
According to Assumption 5.4.2, for the PISPO system there exists a uniformly bounded
\olterra series whose output converges in mean square sense to the output of the nonlinear
system, which belongs to the system cl&gsee [11] for further detail).
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Fig. 5.4 Response PISPO: Total output is the sum of linear contributions (at excited lines),
even NL (at even lines), odd NL (at odd lines) and noise (at all lines, not displayed here).

Remark 5.4.2
A nonlinear system is called PISPO, if the steady state response to a periodic

nput
is also a periodic signal with the same period as the input (with preservation of| the

period length). This system claSsncludes systems with saturation and discontinuogis
nonlinearities, but it excludes systems with period multiplication, chaotic behavipur,
sub-harmonics, and hysteresis, see [237, 243—-245] for a more formal de nition.
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It is assumed that the battery can be modelled as a weakly nonlinear periodic-in-same-
period-out (PISPO) system described by a Volterra series (k42 243 for more
details).

For the characterisation, a odd-random random odd multisine excitation sd@hiith
a specially choseA(kn.exd = 0is used, see Fig.5.4 (a). A linear system would only generate
energy at the excited frequency lines, see Fig.5.4 (b) and it would only consist of the green
contributions. Whereas, a nonlinear system can also generate energy at non-excited lines:
hereinafter termed as the tHetection lines

For example, a nonlinear system with degreean generate energy at any output
frequency that is the sum af frequencied;j, that are present in the input (spectrum), where
repeated selection of the same frequency is allowed [11]. Even nonlinearities only generate
energy at evedetection linesassuming that no constant term is present in the multisine. An
even combination of odd lines is always even.

As such, the level of the even nonlinearities can be quanti ed immediately by looking
on the even lines in the output spectrum Fig.5.4 (c). Similarly, the non-excited odd lines
serve agletection linegor the odd nonlinearities. This is visualised in Fig.5.4 (d). Since
the nonlinear system (here battery) is operating in open-loop, the output Discrete Fourier
Transform (DFT) spectrum of each period of the steady state response (with known input) to
an odd random phase multisine with random harmonic grid is given by:

YIPI(k) = Yo(k)+ NIPY(K) + Yg(K) (5.6)

The total response of the system is the sum of lin¥g(k)) and stochastic nonlinear
(even & odd) contribution¥s(k), wherep = 1;2;3;:::; P, periods of the multisine arilsi\[(p] is
the noise term. This is depicted in the Fig.5.4(e) in the case of noiseless measurements. For
interested readers. a detailed description of the procedure can be found in [11, 241].

5.4.1 Observations: High current

Here, the results of the nonparametric characterisation performed u8i#gRMS current
signal at25°C are discussed. For this rst test, the operating regime of the battery between
10%S0C-90% SoC is divided intd equal operating points at eveP$% change in SoC
starting from 10% SoC.
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Input current load pro le

Both measured input and output signals are periodic in nature with the preservation of period
length, hence the PISPO assumption is validated (see Figures 5.5 to 5.10). The odd-random
phase multisine excitation current pro le signal applied to the battery at all levels of SoC's is
shown in the Fig.5.5. It can be seen that the power is only injected in the frequency band of
interest, which in this particular case lies betw@tHz-5Hz. A very small odd (red dots)
nonlinear effect is visible at 70dB. A probable cause may be the non-ideal behaviour of
the the power electronics (e.g. switching of IGBTS) in the data acquisition system.

Fig. 5.5 Current pro le in frequency domain at all SoC's

Voltage response of the battery

Using the methodology discussed above, valuable information about the nonlinear behaviour
of the battery over its complete operating range w.r.t SoC levéls°atelsius is extracted.
Figures 5.6 to 5.10 show the output voltage response of the batt@@)y@boC,70% SoC,
50% SoC,30% SoC and aL(0% SoC to the applied multisine excitation current signal for
two different realisations respectively. It can be observed that the battery behaves almost
linearly (green dots) at th@0% SoC and the level of in-band noise is higher during the rst
realisation as compared to the second realisation of multisine signal.

A similar behaviour can also observed at 86 SoC and’0% SoC levels. At th&0%
SoC, the level of nonlinear distortion start to increase and at@eSoC even (blue dots)
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@)

(b)
Fig. 5.6 Output voltage response in frequency domain at 90% SoC and 25°C.
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(@)

(b)
Fig. 5.7 Output voltage response in frequency domain at 70% SoC and 25°C.
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@)

(b)
Fig. 5.8 Output voltage response in frequency domain at 50% SoC and 25°C.
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(@)

(b)
Fig. 5.9 Output voltage response in frequency domain at 30% SoC and 25°C.
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@)

(b)
Fig. 5.10 Output voltage response in frequency domain at 10% SoC and 25°C.
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and odd (red dots) nonlinear effects become signi cant, but dominantly even behaviour can
be observed. The results obtained are in accordance with the behaviouQ@ehecircuit
voltageOCV-SoC curve of the batter47]. According to the shape of the OCV-SoC curve
betweenl0% SoC-90% SoC, the battery behaviour is almost linear in the neighbourhood of
the operating point at all temperatures, whereas at@e SoC level, the battery operating
point is at the cusp of linear and nonlinear regime of its range of operation.

5.4.2 Observations: Low current

Based on the observations of the high current pro le test, it was established that the more
tests must be performed in the nonlinear (both upper and lower) regimes of the battery. Here,
the results of the nonparametric characterisation performed uSAgRMS low current

pro le are discussed.

Fig. 5.11 Output voltage response in frequency domag8#t SoC andl0°C at5A RMS
current. It can be seen that the system behaviour is dominantly linearly.

In this test, for the SoC levels betwe@¥ —10% and90% —100%, the input and output
data were collected at eve?yo change in the SoC level and for SoC betw&é¥ —-90%,
the data were collected at eve2@® change in the SoC level at three different temperatures
i.e. at5°C, 25°C and40°C respectively. Although, below only the results of analysi88
and4% SoC at different temperatures are shown, similar observations were also made at
other settings of SoC levels between 0% —10% and 90% —100%.
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Fig. 5.12 Output voltage response in frequency domag8#t SoC and®5°C at5A RMS
current. It can be seen that the system behaviour is dominantly linearly.

Fig. 5.13 Output voltage response in frequency domasfeRMS current98% SoC and
5°C. It can be seen that, both nonlinear distortions (even and odd) increase with the drop in
temperature and become signi cant both inside and outside the frequency band of interest at

5°C
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Fig. 5.14 Output voltage response in frequency doma#¥aSoC andi0°C at5A RMS
current. It can be seen that the system behavior is dominantly linearly.

Fig. 5.15 Output voltage response in frequency doma#¥aSoC an®5°C at5A RMS
current. It can be seen that the system behaviour is dominantly linearly with slightly higher
even nonlinear distortions.
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It can easily be inferred from Figures 5.11 to 5.16, that the level of nonlinear distortions
increase with a decrease in the temperature. One of the possible causes for this phenomenon
can be attributed to fact that the internal resistance of the battery increases at lower tem-
peratures. These observations con rm experimentally the coupling between thermal and
electrical dynamics at different levels of the SoC.

Fig. 5.16 Output voltage response in frequency domabAaRMS current, 4% SoC and

5°C. It can be seen that, both nonlinear distortions (even and odd) increase with the drop in
temperature and become signi cant both inside and outside the frequency band of interest at
5°C

5.4.3 Observations: Moderate current

Based on the previous investigations, a RMS levdl@ was selected for data collection at a
range of temperatures for model identi cation and further investigation. The region between
0%SoC -10% SoC was selected, for which the models (both the best linear approximation
and the nonlinear) should be estimated. Figure 5.17 shows the operating points in terms of
SoC and temperature at which the experiments were conducted and the input-output data
were acquired. Blue balls represent the operating points, whose data were used for the
estimation and validation of the nal model whereas the red dots represent the operating
point of the test dataset.
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Fig. 5.17 Operating points for data acquisition: Blue balls = estimation dataset, red dots =
validation dataset.

For brevity, here the results obtained at a few different levels of SoC at different tem-
peratures are shown here, but the analysis was performed 8vér grid spanning a range
of SoC betweel®% 10% SoC with2% SoC step-size and temperatures operating points
ranging between 5°C and 40°C.

Fig. 5.18 Nonparametric analysis=C: Both odd and even NL have signi cant contributions
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Fig. 5.19 Nonparametric analysis M°C: Even NL have signi cant contributions with
reduced level of odd NL

Fig. 5.20 Nonparametric analysis at 25°C: Even NL have signi cant contributions

In this test, for aL0A RMS current pro le, the information about the nonlinear behaviour
of the battery over a temperature operating range betw&@mnd40°C w.r.t. different SoC
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Fig. 5.21 Nonparametric analysis4Q°C: Even NL have signi cant contributions although
the level has decreased as compared to 25°C

Fig. 5.22 Nonparametric analysis 2&°C: The contribution of both even and odd NL is
almost at the noise oor
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levels is extracted. Figures 5.18 to 5.22 show the output voltage response of the battery at

5°C, 14°C, 25°C, 35°C and40°C to the applied multisine excitation current signal at different

SoC levels respectively. It can be clearly observed from Figures 5.18 to 5.19 that, ahd

14°C both within the frequency band of intere6t]Hz 5Hz] and beyond, the contributions

of odd and even nonlinear distortions become signi cant but varies w.r.t. the level of SoC.
Simultaneously the level of in-band noise is also signi cantly higher as compared to

25°C and a40°C respectively. With an increase in the temperature, only even nonlinear

distortions are dominant (See Fig. 5.20 and Fig. 5.21). A similar pattern of evolution of the

nonlinear distortions was also observed at the other SoC levels and temperatures, but to save

space, only a few of the analysed operating points are demonstrated.

5.4.4 Conclusion

From the results of the extensive nonparametric analysis performed above, it can be safely
concluded that at around 10% SoC level or below, the effect of nonlinear distortions (both
odd and even) become signi cant therefore, a nonlinear model might be necessary to capture
accurately the battery dynamics. In addition to that, lower temperatures also have an in uence
on the levels of nonlinear distortions.

The need for differentiating between odd and even frequencies during the nonparametric
tests is an essential step in order ascertain the effect of the contributions of nonlinear
distortions on the FRF (linear) . This preliminary analysis, also gives an early indication that
both even and odd degree monomials will be required in the Polynomial nonlinear state-space
model (PNLSS) model to capture the nonlinear effects of the battery dynamics (see Chapter
7 for further details). In the next chapter, a data-driven methodology to estimate the best
linear approximation of the battery dynamics is proposed.



Chapter 6

The best linear approximation of the
battery's electrical response

A theory has only the alternative of being right or wrong. A model has a third
possibility: it may be right, but irrelevant.

Manfred Eigen

Battery short-term electrical impedance varies between linear, linearly time-varying
or nonlinear at different operating conditions. Data based electrical impedance modelling
techniques often model the battery as a linear time-invariant system at all operating conditions.
In this chapter, a local polynomial method based approach to estimate nonparametrically the
best linear approximation of the electrical impedance from input current and output voltage
data at operating conditions, where its dynamic response is effected by nonlinear distortion is
proposed. The method is validated on the data from a single and multiple experiments. The
advantage of method lies in its capability to handle the transients (leakage) errors ef ciently.
Once these nonparametric best linear approximation is estimated, a nonlinear weighted least
squares approach is used to estimate the parametric model.

6.1 Introduction

Nonparametric analysis described in the previous chapter, is the rst step in this modelling
approach in order to detect and to quantify the presenbioflinearitiese.g. in terms of

the SoC level, temperature and current rate, over its full regime of operation. Information
extracted from the nonparametric characterisation methodology is used here to develop an
accurate dynamic model of the battery's electrical response in its nonlinear operating regime.
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Electrical impedance measurements provide useful information about the characteristics
of a Li-ion battery P48 249 . Linear models based on electrical impedance measurements
are used very often to describe the battery's dynamics at different operating conditions.
The classical method of measurement consists of performing electrochemical impedance
spectroscopy (EIS). Its general concept consists in the application of an electrical stimulus to
the working electrode and monitoring the corresponding response.

Many EIS experiments are performed by a stepwise change of frequency in an applied
sinusoidal current, measuring the corresponding sinusoidal voltage and calculating at each
frequency the electro-chemical impedance. Although robust, it is considered as an expensive,
complex, and very time-consuming method.

The authors in250 251] have performed galvanic EIS and measured impedance, when
the DC current with different levels is added to the AC perturbation. In the case of testing
with high current levels, the impedance is distorted due to signi cant nonlinear distortions.
In order to avoid signi cant SoC changes during the test, the frequency range is limited
to a rather small range of high frequency components. The effect of rest duration before
measurement on impedance was investigate@8g|[ while they did not consider transient
effects on the measurement during the experiment. In addition, these techniques require
extensive and time consuming experimentation.

It has been shown in chapter 5, that the operating conditions have a signi cant impact on
the output of the batteries and there is strong interaction between the electrical and thermal
dynamics. It has been shown in Section 5.4, that the level of the nonlinear distortions increase
at lower SoC levels and colder temperatures. Hence, the estimate of the electrical impedance
based on the input-output data acquired at different operating conditions will differ.

In addition, as mentioned in Section 4.10, there are many situations in practice, that can
lead to multiple datasets of equal or unequal length during an experiment or where multiple
experiments need to be performed. For example during a long experiment, some parts in the
data may have extremely poor quality or it might be impossible to measure for a very long
time without interruption.

Additionally, the experimental set-ups required for the battery characterisation and
modelling are expensive as well as experiments are very time consuming. Therefore, to save
the experimental costs, sometimes it is advantageous to group the series of sub-records that
are collected under either similar or different operating conditions, to estimate the electrical
impedance of the battery.

So, if based on the nonparametric analysis and the experimental constraints, the decision
has been made to model battery as a linear-time invariant system. Then, there is a need to
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develop an identi cation methodology, which can handle the data from multiple experiments
and can ensure that the best linear approximations of the battery electrical dynamics is made.
In this regard, a data-driven Local polynomial method (LPM) based methodology, to
estimate nonparametrically the best linear approximation (BLA) of the battery's electrical
impedance, from the measured input multisine current excitation and output voltage signals
is proposed below. The input-output datasets can be acquired either at the same operating
condition or at varying operating conditions e.g. different SoC levels, temperatures etc. with
varying level of noise and the nonlinear distortions. The advantage of this method over
the conventional single-sine excitation methods is the reduction in the measurement time,
explicit handling of nonlinear distortions and better handling of the leakage errors [252].

6.2 Best Linear Approximation

Before, we can actually de ne the BLA, a certain assumptions about the system class and
noise need to be clearly stated. In the context of this chapter, we assume that the battery is
operating in the nonlinear regime of its operation at any given operating condition and it can
be modelled as a PISPO nonlinear system (see Section 5.4 for details).

Assumption 6.2.1: Noise framework

The output of the system is affected by an additive, coloured zero-mean noise squrce
v(t) with a nite variances 2:

y(t) = yo(t) + v(t) (6.1)

This noisev(t) is assumed to be independent of the known indtit. y(t) is the actual
output signal and a subscript 0 denotes the exact (unknown) value.

Fig. 6.1 Time domain representation of the problem [11]
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De nition 6.2.1: Best Linear Approximation

The BLA Gga(q) of a discrete time single-input-single-output (SISO) model (see Hig.
6.1) of a nonlinear system, which is excited with signals belonging to the Riemann
equivalence class of asymptotically normally distributed excitation signals (see Segtion
5.3.1 and 11]] for details), is de ned as the mod@ belonging to the set of linear
modelsG, such that

GeLa(q) = argminEy j§(t)  G(A)T(t)j? (6.2)
G(0)2G

with g ! the backward shift operatgéq x(t)= x(t 1)) andE, the expected value
with respect to the input realisation [50], whikét) andy{t) are de ned as:

G(t), u(t) Efu(t)g (6.3)
y(t), y(t) Efy(t)g (6.4)

SetUp Foranin nite length data record=  ¥;::;N  1; the input-output relationship

of a discrete-time single-input-single-output (SISO) nonlinear system (see Fig. 6.1), which is
excited with signals belonging to the Riemann equivalence class of asymptotically normally
distributed excitation signals [11] can be written as:

y(t) = Gara(9)uo(t) + ys(t) + Ho(a)e(t): (6.5)

with ys(t) the stochastic nonlinear contributiong(t) the exogenous input. The outpui(t)

is disturbed with an additive noisét), hencey(t) = yo(t) + v(t). The noisev(t) is assumed
to be Itered white noisey(t) = Ho(q)e(t), whereHp(q) represents the noise model. For a
nite length data record = 0;:::;;N 1, (6.5) must be extended with the initial conditions,
or in other words, the transient effedts ty of the dynamic system and the noise lter
respectively:

y(t) = Gara(@)uo(t) + ys(t) + Ho(a)e(t) + ta(t) + th(t): (6.6)

Using the de nition of discrete Fourier transform (DFT)

N 1 .
X(K) = plﬁ 2 x(t)e k=N, (6.7)
t=0
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an exact frequency domain formulation [253, 11] of (6.6) is obtained as:
Y (k) = Gara(wi)Uo(k) + Ys(k) + Ho(wi) E(K) + Ta(Wid) + T (Wi (6.8)

where the indexX points to the frequenci¢fs=N , with fs the sampling frequency, and
wi = el2kisN | The time-domain termiss(t);tn(t) are described by rational formsdn !
applied to a delta-input and frequency domain tefigk); Ty (k) are rational functions in
z 1, hence they are smooth functions of the frequency.

Here, the LPM is utilised to estimate the nonparametric BLA because it makes an optimal
use of the smooth behavior G A andTg to reduce the leakage erro4H signi cantly.
As compared to the classical windowing methods it provides a good estimation of the BLA
as well as its variances g, ,) [249. Other alternatives to estimate the nonparametric BLA
are the Fast method, the Robust methibt] fnd the recently developed TRansient Impulse
response Modeling Method (TRIMM)[254].

6.3 Nonparametric BLA: The local polynomial method

In this section, an introduction to the LPM method, which is used to estimate nonparamet-
rically the BLA from the input current and the output voltage data is given. A detailed
description and full analysis is also given BB5, 256], The basic idea of the LPM method is
quite simple: as stated above the transfer fundBgpa, and the transient terffi; are smooth
functions of the frequency, therefore they can be easily approximated by a complex polyno-
mial in a narrow band of frequency, around a user speci ed frequkntie parameters of
the complex polynomial are directly estimated from the measured input-output data.

Next the estimation of th&g a(k), at any central frequendy; is retrieved from this
local polynomial model as the measurement of the frequency response function (FRF) at that
frequency. This procedure is then repeated for all DFT frequencies in the band of interest by
shifting the sliding window over one DFT bin. In that way, a local estimate of the FRF is
obtained at every frequency.

The output error expression described by (6.6), and an equivalent relation for the DFT-
spectra (6.8), applied to both the pl&@#_a(q)up(t) as well as the noise teraft) = Ho(qg)e(t)
results in the following expression of output spectrum:

Y(K) = GaLa(WiUo(k) + T(wi) + Vo(k) + Ys(k) (6.9)

whereT(wy) = Te(wk) + Ty (Wk), the generalized transient term now accounts both for
the leakage of the plant and the noise dynamics. The remaining noise t&hik)is
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Ho(wi) E(K). It is shown in [L1] that the contributiond), E, Y in (6.9) are arO(N9), while
the transient term$g and Ty are anO(N 172), whereX = O(NP) means that fop < 0,

limnr ¥ % < ¥,
The smoothness of bothg; o andT can be exploited to write the following Taylor series
representation, which holds true for the frequency likes, withr = 0; 1;::; n:
R s r R+l
GeLa(Wk+r) = Gera(Wi) + @ gs(K)r°+ O N (6.10)
s1
R B r R+l
T(Wier)= T(W)+ Q ts(Kr’+ N2O — (6.11)

s=1

All parameters ofsg a(Wk), T(wWk) and the parameters of the Taylor seige);ts(k);s=
1;::;;R, for each frequency lin& can be collected into 8(R+ 1)-column vectorgy of
unknown complex coef cients de ned as

Gk, [Gera(Wi) g1(K):z:gr(K); T (i) ta(K)::tr(K)]T; (6.12)

whereas their respective coef cients are collected in a row vd€(krr). This allows (6.9)
to be rewritten (after neglecting the higher order terms) as:

Y(k+r)= K(Rk+ r)gx+ Vo(k+ r); (6.13)

whereK(R;k+ r) is a2(R+ 1) row-vector, which contains both the structural information,
I.e. the powers of in the polynomial expansions (6.11) and the information about the input
signal. Now,2n+ 1 equations (6.13) obtained for 0; 1;:::; n:are then collected into
one matrix equation by de ning th@gn+ 1)-vectors\7k;n and\7k;n

Yin, e n Yk neziiYien Yien 1 Yien]” (6.14)
Viens Wk nVk ne 155V Vi n 1Vk+n]T (6.15)
Ucns [Uk nUk ne1Uk Uken 1 Ukenl" (6.16)

This nally results in the following expression
Yien = Kien(R Uken) G+ Vign: (6.17)

where the matriXy.n(R; U_k;n) isa2(n+ 1) 2(R+ 1) matrix. The structure of this matrix
is entirely determined by the indicesandR and it contains the input signdli,  which
appear in the input vect(bfk;n de ned in (6.16). Finally, an estimate of the paramei‘.;e'rs
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then obtained by solving the following linear least-squares problem:
minfYin  Kion(R Ugn)]l" Men  Kign(R U] (6.18)
k

where for any complex vector or matmx A™ denotes its Hermitian (conjugate) transpose
[255. From (6.12), it follows that an estimate of the FRF at the frequencig obtained as
the rst component of the parameter estimé.te GaLa(Wy) = dk(l). The conditiom R+ 1

is required between the number of spectral lines in the frequency window awguaatl
the order of the polynomial approximation, to ensure a full column rank miégriXR; U_k;n)
[11].

To reduce the variance of the parameter estimate a larger number of frequencies in the
frequency window are taken. In this way, the noise will be averaged over a larger amount
of data. Similarly the leakage error decreases with incredgi@n the downside, a larger
window size results in the larger bias error (or the interpolation error). This is caused by
the fact that the transfer function varies over the interval. The smallest interpolation error is
obtained fom= R+ 1. A detailed error analysis and the bias-variance trade-off of the LPM
is presented in [255, 256].

6.4 Effect of temperature on the BLA

As observed in Section 5.4 for different RMS value of the multisine current signal, the levels
of nonlinear distortions differs at different operating condition. Similarly, the temperature
has an effect on the estimation of the BLA (see Section 6.1 for details of experimental
investigations.).

Although the BLA was estimated on the data acquired from whole range of operating
conditions (see g. 5.17) and similar observations were made at different operating conditions,
here for the sake of brevity, only the results of the estimation of BLA at different temperatures
at 6% SoC w.r.t two multisine current signal realisations of 10A RMS are demonstrated.

Figures 6.2 and 6.3 show the effect of temperature on the nonparametric BLA calculated
using two different realizations of a multisine signal. It can been clearly seen that the BLA
and variance of the BLA changes at different operating conditions only as a scaling factor.
This observation and the smooth nature of BLA is further exploited to calculate the common
BLA (Cg_a) for all the datasets acquired at different operating conditions.
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Fig. 6.2 BLA and the variance of the BLA at (6% SoC, 10A RMS, 25°C, 40°C)

Fig. 6.3 BLA and the variance of the BLA &% SoC,10A RMS, 5°C, 14°C, 35°C). It can
be clearly see that the BLA is very smooth in nature and differs only by a scaling factor at
different temperature.
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6.5 BLA from multiple datasets

Sometimes due to various experimental circumstances such as sensor failures during an
experiment, constraints in data acquisition hardware, slow dynamics of the battery and
continuously varying operating conditions, it is not possible to acquire data in one single
experiment. Hence the data from multiple experiments must be acquired. In this section, we
describe two different approaches to use the LPM method described above to estimate the
BLA from multiple datasets.

During the data acquisition process, the set of exited and non-excited frequency lines
were different from one set of temperatures i.8°d, 14°C and35°C] at to other set of
temperatures i.e2p°C and40°C]. In Figs. 6.2 and 6.3, it can be clearly observed that the
BLA obtained from each set of experiments is rather smooth in nature and differs only by
a scaling factor a6% SoC. Similar observations were made as with the other SoC levels.
Hence before calculating a common BLA for all datasets, the smooth nature of the FRFs is
exploited and the FRF obtained for each experiment is interpolated over a set of common
frequency points within the band of excitation.

6.5.1 Common BLA by averaging over individual BLAs

Once the estimate @g| 4 (using the nonparametric identi cation procedures described in
Section 6.3 above) for each experiment at a particular setting, where only one of the physical
variables (SoC, temperature or SoH) is changing or each sub-record of data acquired at a
xed operating condition is available, then the estimate of a common BLA and its variance
can be obtained as explained below.

Suppose we carry ol independent experiments either at the same operating condition
or at different settings of either SoC or temperature etc., then the common@ji.A) ©Of
the battery dynamics is estimated (by exploiting its smooth nature) from the set of individual
BLAs i.e. Ggp fori= 1,2, M, by calculating the sample mean (calculated at each
frequency linek in the set of excited frequency lines) of all the nonparametric BLAS. In a
similar way the variance d@g A can be obtained by calculating the sample variance of the
individual BLASs:

1 ¥
Caia(K) = 1 a GeLa(k) (6.19)
i=1
) 1y _2
S “can (K = 371 a GaLa(K)  Cara, (K (6.20)
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6.5.2 Common BLA from multiple operating conditions

Now supposem independent experiments at different levels of SoC aimblependent
experiments at different settings of temperature for each SoC level are performed, then
similarly the nonparametric BLA at a particular setting of SoC and temperature can be
calculated individually using the Fast, Robust or the LPM nonparametric identi cation
procedure 11, 257 as described in Section 6.2. After the linear interpolation stepCghg,

of the battery dynamics from the data acquired from multiple experiments can be calculated
from the set of individual BLAs by calculating the mean and the variance as below:

10
BLAAvg,i(k) = m a BLA((K)
r=1
1 J
BLAVari (K= —= & iBLA(K) BLAAgi(K)j2
r=1
Caua(K) = BLAAgi (K)

BLAVari(K) (6.21)

Gl Gl
QJO(_, ﬁ m0<_,
BN

i
Ay

S ZCBLAZ(k) =

6.5.3 Common BLA using Multi-Input Multi-Output LPM

Another way of estimating a common BLA of the concatenated data records is by utilizing
the multi-input multi-output (MIMO) setting of LPM [233].

Assumption 6.5.1: Nonlinear Distortions

It is assumed that the level of nonlinear distortions are the same at different tempera-
tures or levels of SoC w.r.t the same realization of the input current load pro le.

Remark 6.5.1

The nonlinear distortions are different at different operating conditions (see Sedtion
5.4). Nevertheless, the extended method without loss of generality on the concaterjation
of two records in the absence of disturbing noise and nonlinear distortions is introdyiced
here; the results apply to an arbitrary number of concatenated sub-records ip the
presence of disturbing noise and nonlinear distortions.

Here, for pedagogical reason only two data records with lerditadN, are considered,
but the extension to more datasets is straightforward. For exampk®Fot; 2, we can write



6.5 BLA from multiple datasets 133

ulkI(t) andy®1(t) with t = 0;1;:::Nw 1. Consequently, the concatenated data input and
output records are then expressedi@s [u%l]; u%z]] andyp = [y%l];ygz]] respectively. Using

(6.6) and Assumption 6.5.1, we can write that,

yo(®) = [yo 5 Y5
= Ga(@usl(t) + tHt) + GaLa(@ui )+ t2 )
= GeLa(@[U ;U] + te(t)+ ta(t  Ny)
= GaLa(@)[Uo(t)] + ta(t) + ta(t Ny (6.22)

Fort < 0, the transient terrrg‘q(t) = 0. Similar to (6.9), an equivalent relationship between
the input and the output DFT's becomes,

Yo(k) = GarLa(Wi)Uo(K)+ Ta(wi)+ Ta(wi)w, (6.23)

where noww, = el(@PkANitN2)) 1t follows from (6.22) and (6.23), that an additional transient
in the concatenation point is added to the output. Another way to write (6.22) is:

Yo(t) = Gera(@)uo(t) + Grg(q)d(t) + Grg(a)d(t  Na) (6.24)

with d(t) being a Dirac impulsed(0) = 1, andd(t) 6 Oif t 6 0. In (6.24), the transients
are modelled as the response of a linear system to a Dirac imputse thand in the
concatenation poirtt= N;. The transfer function&t, andGg A have equal denominator.
Consequently, (6.24) can be written as the output of a multiple-input system, that is excited
with the concatenated input records at one of inputs of the system and with Dirac impulses at
the beginning of each record that is concatenated@ andt = N;) at the remaining inputs.
Hence, the MIMO LPM described ir2p5 to measure the FRF using concatenated records
can be used without any change.

The major difference in this formulation with the SISO formulation is that, in this
particular formulation, the number of combined frequendes 1 in (6.17) will grow
with the number of transients. For obtaining an interpolation of oRjeéhe number of
complex parameters/transient terms which need to be estimaketl 1s Hence, at least
2n+1 (R+ 1)(1+ Nc) lines should be combined, witl,. being the number of concatenated
subrecords. If the estimation of the variance of the disturbing noise is also required then
a strict inequality2n+ 1> (R+ 1)(1+ N;) is needed to have residuals different from zero
[233].
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6.5.4 Observation: BLA multiple datasets

The comparison of the BLA estimation using two methodologies described in Section 6.5 is
presented here. Here, two different case studies for estimatir@stheare discussed:

* By using multiple datasets acquired at the same operating condition,

» and by using the multiple datasets at varying operating conditions of temperature
and/or SoC.

CpgLa at the same operating condition

Fig. 6.4 Comparison of the BLAs using LPM averaged (green curve) approach and LPM
MIMO approach (red curve) at (6% SoC, 10A RMS, 5°C)

Figure 6.4 shows a comparison between the estimate of BLA using the approaches
discussed in Sections 6.5.1 and 6.5.3 respectively, using the data acquired from multiple
experiments performed at a xed operating conditior6® SoC,10A RMS, 5°C. It can be
clearly seen that both approaches result in the estimate of the BLA, that is quite similar in
magnitude but the variation of the BLA estimated using the MIMO setting of the LPM is bit
larger on the excited frequencies.
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CpLa Using data from different temperature

Here we present the result of the BLA estimation using the data acquired at different settings
of temperatures at a xed SoC level. Itis evident from Section 5.4 that the level of nonlinear
distortions (both even and odd) changes w.r.t. the operating conditions. Hence Assumption
6.5.1, made in Section 6.5 is not satis ed.

Fig. 6.5 BLA at (L0% SoC,10A RMS, [5°C, 14°C, 35°C]), Comparison between Red: BLA
with LPM MIMO settings, Green: LPM averaged

It can be clearly seen from the Fig. 6.5 that, due to varying levels of nonlinear distortions
between different datasets acquired at different temperatures, the BLA estimate using the two
approaches discussed in Sections 6.5.1 and 6.5.3 respectively is quite similar in magnitude
but the smooth nature of the estimate is lost because the uncertainty of the estimate using the
LPM MIMO approach is too large.
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Remark 6.5.2

» The nonparametric estimate of the BLA using the LPM MIMO case may pe
used to identify a parametric BLA, in case averaging over different experimgnts
is not feasible at all. Because the parametric t will eventually smooth out the
BLA estimate further (see Section 6.6 for details).

» The use of MIMO LPM technique is however not advisable for the systems wlith
varying dynamics, because using the averaged approach, the dynamics ¢f the
system at different operating condition is captured in a better way.

CgLa Using data from multiple operating conditions

Fig. 6.6Cga and individual BLAs at different operating conditiorE6 SoC,5°C) and
(4% SoC, 40°C)

Fig.6.6 shows th&€g a estimated using (6.21). The nal estimate of tGg A was
calculated using the data acquired at all operating condition, but to avoid the overcrowding
of Fig.6.6,Cg| a is plotted against the individual BLAs estimated at a few different operating
conditions of battery operating regime, where the data was acquired (see g. 5.17). It can
be seen thdTy, A is a reasonable approximation of the individual BLAs estimated at these
extreme operating conditions. Similar observations were made at other operating conditions.
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A parametric t on this estimate@g_a can be used as a starting point for the initialisation of
nonlinear model structure discussed in the next chapter.

6.6 Parametric BLA

In this step, a parametric model is tted to the nonparametric BLA. The parametric model
can be used to better understand the system behaviour using the pole-zero representation.
Thus, depending on the application and requirements, using the nonparametric FRF estimate
(CsLa) and its variances(éBLAs), which is found in the previous steps (see Sections 6.5.1 and
6.5.2), wheres= 1;2, we estimate a parametric model of our system by solving a nonlinear
weighted least squares (NLWLS) probleiri[257]. This model (discrete-time) describes

the system as a rational transfer function. The model considered here is a rational function in
the backward shift operatoy *:

bo+ b1g 1+ bpq 2+ i+ bpg ™
ao+ a;q 1+ apq 2+ i+ apq M

GCBLA(q; Gt f) =

The parameter vectog s 2 R("* "a*2) 1 contains the parametefie; ag; 2 ; an,; bo; by;:: 15 bn, 1T

) a7
Since one parameter can be chosen freely because of the scaling invariance of the transfer
function, onlyn, + ny+ 1 independent parameters need to be estimated by minimizing the

following NLWLS cost function:

F i jwi & j W - i2
s ICaLa(eM™)  Gega(e!™ o)
Mrlan)= & (6.26)
k=1 CaLag

WhereCBLAs(ejWk) is the frequency domain representatior((ﬁu125)andséBLAG includes both
noise and the nonlinear distortions. The order of the parametric model in (6.25) can for
example be determined using a signal theoretic measure such as the minimum description
length (MDL) criterion (see page nd39of [11]). This NLWLS framework also guarantees
the lowest possible uncertainty on the model parameters [11].

Thereafter, a balanced state-space realisaBigrr ( Agia; BeLa; Caia; DeLa) for the
stable portion of the linear syste@tBLA(q; gif) can be calculatedZpbg), where the subscript
ssstands for the state-space. This representation is an equivalent realization for stable systems,
for which the controllability and observability Gramians are equal and diag268] 260.
Other ways to convert the nonparametric model into a linear parametric state-space model
using the frequency domain subspace identi cation method are detailed in [261, 262].



138 The best linear approximation of the battery's electrical response

Parametric model at different temperatures

Fig. 6.7 Comparison of the BLAs using LPM averaged (green curve) approach and LPM
MIMO approach (red curve) at (6% SoC, 10A RMS, 5°C)

See blue curve in the Fig. 6.7,3f order discrete-time transfer function tted on
the BLA estimated using MIMO LPM setting at different temperatures. Individual BLAs
estimated at varying operating points can be used to develop black-box linear time-varying or
parameter-varying models or thg G can be used as initialization for the nonlinear model
structure proposed in [78].

Parametric model at multiple operating conditions

Figure 6.8 shows th&" order parametric BLA tted to th€g A calculated using (6.21)

and using the data acquired at all operating condition. It can be seen that parametric BLA
is a very good t to theCg a. Here a5™" order model was required because the level of
nonlinear distortions change drastically at various different operating temperatures and SoC
levels (see Chapter 5 for the details on the characterisation experiments).

6.7 Conclusion

In this chapter, the LPM based approaches to estimate nonparametrically the BLA of the
battery's short term electrical dynamics is proposed. It has been demonstrated that both single
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Fig. 6.8 A 8" order parametric BLA (blue curve) tted to thesCa, estimated using LPM
averaged (red curve) approach (see Section 6.5.2)

and multiple datasets can be handled ef ciently. The proposed framework paves the way
for handling data records of arbitrary lengths acquired under similar or different conditions
and dealing with nonlinear distortions ef ciently. This gives a practical advantage when
performing longer experiments is either not feasible or rather expensive and time consuming.
Similarly, the data of extremely poor quality can also be handled.

This whole process can be carried out in relatively short measurement time due to the
use of broadband excitation signals for identi cation. The nal values of the parameters of
the parametric linear model can be used as an initialisation for the data-driven identi cation
of a nonlinear model (see chapter 7), which is valid at varying operating conditions or
the individual BLA at varying operating points can be used to develop black-box linear
time-varying or parameter-varying models.






Chapter 7

Nonlinear modelling of Li-ion battery's
Short-term response

As it is shown in the previous chapters, the short-term response of the battery varies at
different operating conditions. Consequently the BLA is only valid in a small neighbourhood
of the operating point at which the BLA is estimated. Itis evident that in order to fully capture
the nonlinear effects arising due to a change in the SoC level and the temperature, there is a
need for more exible yet easily identi able nonlinear model structure. Therefore, in this
dissertation, the Polynomial Nonlinear State-Space (PNLSS) model structure is proposed
to simulate the short-term dynamics at varying operating conditions with varying levels of
nonlinear distortions and noise.

In the sections below, a formal mathematical de nition of the PNLSS model structure
is given. Thereafter, its identi cation procedure is detailed, which is followed by a short
summary of the advantages and drawbacks of the PNLSS model structure. The capability of
the PNLSS model structure is demonstrated on the battery data acquired at a xed as well as
at varying operating conditions.

7.1 Polynomial Nonlinear State-Space Models

A nonlinear state-space model described in Section 1.3.3, where the funitiong( ) are
approximated by polynomial basis functions can also be used to represent a MIMO system.
In that case, the nonlinear state-space model structure is known as the PNLSS5#jodel |
The PNLSS model structure is very exible to capture both nonlinear feed-forward and
feedback (e.g. the shifting resonances) dynamics. For the nal optimisation, the initialisation
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of the linear part of the PNLSS model structure can be done very easily via the estimate of
the BLA [11].

De nition 7.1.1: Model Structure
The PNLSS model can be described as:

x(t+ 1) = Ax(t)+ Bu(t)+ Ez(t)
y(t) = CX(t)+ Du(t)+ Fx(t)+ e(t) (7.1)

The coef cients of the linear terms ir(t) 2 R™ andu(t) 2 R™ are given by the
matricesA2 R"™ MagndB2 R"™ "uin the state equatioil; 2 R™ " andD 2 R"™ ™
in the output equation. The vectargt) 2 R™ andx(t) 2 R™ contain nonlinear
monomials inx(t) andu(t) of degree two up to a chosen degige The coef cients
of the nonlinear terms are given by the matrige R™ " andF 2 R"™ .

As stated before, in practice, the nonlinear degree of the monomialamux is limited
to a valuePy 2 N and usually a user-speci ed parameter, which is chosen depending on the
application. The nonlinear degree can be set to any chosen set of combinations of monomials
in both states and inputs of the model structure as below:

ai, Az by, bo bny
X1 XaoUp'Uy”  Ung

withas; anpbs bp,2Nand2 &jaj+aib PR

Due to this exibility the PNLSS model has the capability to describe a very large class
of nonlinear dynamical systems, such as bilinear systems, af ne systems, nonlinear systems
with nonlinearities either only in the states or nonlinearities only in the input.

In the past, the PNLSS model structure was successfully applied to describe with rea-
sonable accuracy various nonlinear block-structured systems such as Wiener, Hammerstein,
Wiener-Hammerstein and nonlinear feedback sysmmd63. In addition, the PNLSS
model structure has been successfully applied to identify a nonlinear model of several real-
world systems in various domains ranging from the nonlinear vibrations to the hydrostatic
drives and the hysteresis phenomenon [264-266, 58, 57].

Despite having good approximation capabilities and a generic black-box model structure
to capture the dynamics of many nonlinear systems, one of the major drawbacks associated
with the identi cation the PNLSS model structure (7.1) is, the combinatorial growth of
the number of parameters, when a fully parametrised PNLSS model with a high nonlinear
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degree is used in practice. One of the simplest ways to deal with this issue is by keeping
the nonlinear degree (of the multivariate polynomials) low, and the number of parameters
reasonable compared to the number of data in practice. Recent advances to decouple the
multivariate polynomials using the techniques from multi-linear algebra have shown great
promise to deal with this problem, even with a higher nonlinear degree [267—269].

Before proceeding towards the identi cation procedure, in the section below, some of the
assumptions related to the identi cation of the PNLSS model structure are stated:

Assumption 7.1.1: Exogenous Input

The inputu(t) is considered to be persistently exciting, noiseless and is assumed {p be
known exactly. In addition, it is assumed that the model structure is able to desqribe
the system output exactly in the absence of noise. This implies that there exits a
setting of the parameter vectqg for which the true model output is equal to the
system outpuy(t) = y(t;do). The output measuremenig are related to the system
outputy(t; do):

ym(t) = Y(t;do) + V(1) (7.2)

with g the true parameter values, av(d), the additive output measurement nois¢
Gaussian (possibly coloured), zero mean and with a nite variance.

J

Under Assumption 7.1.1, it can be shown that the least-squares estimator is asymptotically
consistent, ef cient and normally distributedd, 11]. Furthermore, under these settings,
the least-squares estimate corresponds to the maximum-likelihood est¥dtd some
cases, it is possible to relax the assumption on the noise characteristics to the coloured
noise (non-Gaussian) provided, the existence of second and fourth order moments can be
guaranteed.

Remark 7.1.1

It should be noted that, if these assumptions do not hold, the PNLSS model strugture
and its associated identi cation procedure can still be used, but at the expense of Igsing
the maximume-likelihood properties of the estimate. In case of a noisy input orf an
input signal with a low signal-to-noise ratio (SNR), the input induced bias will be
non-negligible. Particularly in the case of periodic inputs, the SNR can be improjed
by averaging over several periods to decrease the bias.
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Assumption 7.1.2: Model stability

The system output response to the bounded inputs is also bounded.

Remark 7.1.2

This need for this assumption is due to the fact that the model output responge is
calculated by applying the state transition/recursion. Although in certain cases|this
assumption may be relaxed. An approach to deal with model instabilities is propgsed
in [271].

7.1.1 Parametrisation of the PNLSS model structure

The PNLSS model (7.1) structure can be parametrised by de ning a vector of its parameters
gnL such that

ane = [ved (A);ved (B);vec (C);ved (D);ved (E);ved (F)]" (7.3)

with vecan operator, which stacks the columns of a matrix onto each other. Due to the
inclusion of all model parameters or in other words due to similarity transforms on the
states that do not in uence the input-output behaviour, this representation of the model is
over-parametrised. In this parametrisation, both linear and nonlinear transforms can exist.
By using the pseudo-inverse during the estimation process, this problem is avoided [271].
Other ways of parametrisation such as the use of canonical forms or Data Driven Local
Coordinates (DDLC) also exist in literatur72 proposed an approach using the DDLC
approach in case of a canonical parametrisation to avoid the numerical ill-conditioning of the
estimation problem. Authors ir2f 3 proved an equivalence between the DDLC approach
and the pseudo-inverse, which in fact can be implemented easily in the software. Furthermore,
[274) showed that the stochastic properties of the estimates of the invariants of the system
(i.e. the minimum variance bounds) is not affected by the the choice of parameterisation.

7.1.2 Identi cation procedure of the PNLSS

The PNLSS model given in (7.1) can be ef ciently identi ed in mean-square sense in three
major steps identi cation procedure.

* First, a nonparametric estimate of the system's frequency response function (FRF) is
determined in mean square sense. This is called the BLA (please refer to Section 6.3
of Chapter 6 for an overview of the BLA and its estimation using the LPM method).
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» Then, a parametric transfer function linear model is tted to this nonparametric average
BLA. Thereafter the state-space (linear sub-spl@& C andD matrices) estimate is
obtained. (please refer to Section 6.6 of Chapter 6 for further details)

 Finally the full nonlinear model is estimated with a Levenberg-Marquardt nonlinear
optimisation routine [275].

The whole identi cation procedure is performed in the frequency domain, which provides
the additional possibility to apply user-de ned (noise) weighting functions in the speci c
frequency bands of interest.

7.1.3 The cost function

For the identi cation of the full PNLSS, a weighted least-squares approach is employed. The
Weighted Least Squares (WLS) cost function that needs to be minimized with respect to the
parameteny, = [ved (A);ved (B);ved (C);ved (D);vec (E); ved (F)]" is given by:

bYyc+1
Mwislant) = & &L (iwi an)WhiL(jwi) e (jwic anw) (7.4)
k=0
whereN represents the number of time samp&g,(jwi;an) 2 C™ 1 the error, which is
de ned as

enL(JWi ONL) = Ymod(jWicanw) Y (jWwi) (7.5)

SuperscripH means that the Hermitian transpose is taken and the not%ioimplies that
the application of the oor function to the real numH%rVectoerod(jwk) 2CY LY (jwy) 2
C™ 1 are the DFTs of the modelled and the measured output, respectively. Similarly
U(jwe) 2 C 1 represents the DFT of the input

This formulation also yields equivalent results in the time doma#. [Formulating the
weighted least-squares cost function in the frequency domain simpli es the implementation
of nonparametric user-de ned frequency dependent weighigg jwyk) 2 C™ ™ due to its
block-diagonal structure. The cost function in (7.4) can be rewritten as the product de ned
below:

Vvig(ane) = &5 (any) Widwe(ane) (7.6)

where8u(an) T =[8um(0;an) T Bw(bYc+ 1;gn0) ] and the weighting matriy can
be de ned as
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2 3
W(0) ::: 0
We=9 : - £
0 W(bSc+ 1)

Remark 7.1.3

« Wyt can contains the inverse of the frequency domain noise covarsastany),
which can be estimated from repeated experiments, when using periodic eXcita-
tion. If the estimation of noise covariance is not available, then the structur¢ of
W« can be used to put more weight on a speci ¢ frequency band of interest, or
it can simply be chosen equal to identity.

» Because in nonlinear systems, model errors often dominate the disturbing npise,
we put the weighting factoiy: = 1. Only if the model errors are below the)
noise level\W,: should be put equal to the noise variasgé( jwy).

Remark 7.1.4

It is important to consider the effect of transients (which result from a mismajch
between the true and assumed initial sta{@ during the model estimation) on the
nal model output. Due to this mismatch, sometimes there exists a big differencg (a
number of transient pointsrans) between the modelled and measured output whigh
diminishes eventually. This can be handled rather effectively during the nonlirjear
optimisation step (see Appendix A for details).

7.1.4 The nal optimisation

As weighting matriX\; is a positive semi-de nite matrixJ76, the cost function in (7.6)
can be reformulated as below:

Mvigan) = efle (7.7)

wheree = m:zé/w and the parameter estimaim_ minimises the cost function

QL = argminViy Ls(anL) (7.8)

aNL

The minimisation of the non-convex cost functidg_s(gnL) (7.8) with respect to the model
parametersjy, is tackled via the Levenberg-Marquardt sche@éq] and a (local) minimum
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is found in an iterative manner:
@OTI0 41 Qfin, Hdayl = J0Tel (7.9)

wherel S\),I 2 R* represents the Levenberg-Marquardt factor #1d2 RN " is the Jaco-
bian matrix calculated at iteratian
fe

n=-_= (7.10)
TanL 40

The parameters are updated at every iteration by adtiing to the previous value afy :

(i+

o |
oG Y = ant + dayy (7.12)

In order to improve the numerical conditioning and reduce the numerical errors, the pa-
rameters updatéq,g)l_ is calculated by performing a singular value decomposition (SVD)
J0) = UJ-(i)Sgi)VJ(i)T [11] of the Jacobian matri%() such that:

dgll = v 0241 07, TSOyTen (7.12)
whereU®; V() are the left and right eigenvectors and the diagonal entri&)ofire the
singular values respectively.

Based on the value of cost function, the Levenberg-Marquardt factpis adapted
during the iterations. When the cost decreases during an iteratioM,i,@s(qS[l)) <
VWLS(q,S,i)L), then its value is typically decreased by a factoRoivhich makes the method
tending more towards a Gauss-Newton step; similarly when the cost increases, then it is
typically increased by a factor 10, such that the method tends more towards a gradient

method [25].

Stability of the PNLSS model

It is often the case that on the experimental data, the estimated PNLSS model becomes
unstable on the validation set. To overcome this problem, a heuristic approach can be
employed, where the input signal of the validation set is also passed as an argument to the
nonlinear optimization algorithm.

By passing on the input of the validation set, the validation output of the updated model
w.r.t the parameters (see patfgbin [54]) can be computed at every iteration. When the
output of the updated model is unstable on the validation input, the optimisation algorithm
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consider that as increase in the cost function. By following this approach stability of the
model can be guaranteed for the validation set. This heuristic approach prevents the iterative
search to traverse through an unstable (validation) region before ending up in a stable region
again.

The heuristic approach discussed above should only be applied when it is absoILter

necessary. For the identi cation of the battery model the dataset was split intg an
estimation set, a validation set, and the test set. Only the estimation data is uged to
t the parameters. The validation data is used for model order selection and to cleck
stability heuristically. The test set is not used in any way for estimation purposes

Initialisation of the method

Before starting the nal optimisation, the initial estimates for the linear parama{&;<;
andD in (7.1) are found by the two-step procedure described in Section 6.2.

Remark 7.1.6

To ensure good initial values, tii&sestimated in Section 6.6 is used to initialise th
nonlinear model structure. Hence, the identi ed full PNLSS model cannot perfgrm
worse than the BLA in least squares sense on the estimation (training) dataset. Qther
ways of estimating the full nonlinear model with different initialisation schemes gre
proposed in [278, 279].

D

7.1.5 Pros and Cons of PNLSS Model

There are various advantages and disadvantages associated with the use of the discrete time
PNLSS model structure to identify a nonlinear model for the dynamical systems. Some of
these pros and cons, are summarised below. The main advantages of the PNLSS model are:

» As stated above, the PNLSS model structure is quite exible to model nonlinear
feedback phenomena including e.g. dynamic nonlinearity like hysteresis, amplitude-
dependent resonances, sub-harmonics and chaotic behaviour. It can also be used to
describe many block structures with polynomial nonlinearity,

* the initial estimates to start the nal numerical optimisation procedure can be obtained
very easily via the estimate of the BLA,
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* the ease of computation of the polynomial basis functions,

» the ease of the extension and the application of the PNLSS model structure in a
multivariable framework,

* the ease of differentiability of the polynomials basis functions, which implies that,
during the nonlinear optimisation step the Jacobian matrix need not be approximated.

The cons associated with the PNLSS model structure are listed below:

* its combinatorial increase in the number of parameters for high nonlinear degree of
polynomials, inputs and states,

* the lack of physical interpretation in comparison with physical (white-box) models and
grey-box models (such as the block-structured model),

* the stability of the PNLSS model is not always guaranteed,

* the low accuracy of the PNLSS model outside the region in which it is estimated due
to poor extrapolation property of the polynomials .

To avoid the extrapolation problem, well conditioned basis functions (e.g. satura!ng)

can be used (se@T9 for details), but it is not advisable to extrapolate an estimatgd
model outside its domain, even for well behaving basis functions. There is a|big
chance that the optimisation might get stuck at the boundary of stability, which yill

yield a suboptimal model [271].

7.2 Nonlinear model of the battery

In this section, the PNLSS model structure described above will be used to identify the
nonlinear model of the battery short-term electrical response. Two different case studies will
be used to demonstrate the capability of the PNLSS model structure.

Assumption 7.2.1: Type of nonlinearity

The nonlinearity is assumed to be smooth and can be approximated well using the
polynomial basis functions.
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Remark 7.2.1

Note that a uniformly convergent polynomial approximation of a continuous nonjin-
earity is always possible on a closed interval due to the Weierstrass approximation
theorem [280]. The type of convergence can be relaxed to mean-square convergence,
thus allowing for some discontinuous nonlinearities as well. Furthermore, the method-
ology is not only restriced to polynomial basis functions but is exible enough [to
accommodate other user-de ned basis functions [279].

Assumption 7.2.2: Model Input

It is assumed that the inpuft) of the model in Section 7.1 is noiseless or the noige
level is very low so that it can be neglected. In addition it assumed to be indepenflent
of the output noise.

Remark 7.2.2

It should be understood that the model errors will not be independeutt)of In
addition, the assumption of the input being noiseless is not valid as in any feal

measurements scenario, the measurements are always corrupted by the measufement
noise.

7.2.1 PNLSS: Fixed operating condition

For this case study, the data acquired WA RMS high current pro le at25°C was

used. The data were acquired using two different (independent) realisations of the multisine
excitation signal. The data from the rst realisation were used for the estimation and the
validation of the model whereas the data from the second realisation was used as the test
dataset (see Section 5.4.1 for details about data acquisition). For the identi cation of a
nonlinear model at a xed operating condition, the PNLSS model structure is initialised with

an estimate o6ss A 39  order parametric mod&sswas selected on the basis of the MDL
principle [11] using the procedure described in Section 6.6.

By evaluating the model performance on the validation set at different degrees of the
monomials; all the monomials up-to-the degBawere selected for both the state and the
output equations in the model structure described by de nition 7.1.1. Hence, the order of
the linear termsAopt; Bopt; Copt; Dopt) in the nal optimised PNLSS model 8, and all the
combinations of the monomials up-to-the degree 3 are present i dinelF matrices.

The battery can be considered as a dynamic system with an integrating 28élct [
and a systematic shift in the data can result from sensor drift, non-ideal behaviour of data
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acquisition system etc. Signal drift is considered to be a low-frequency disturbance and
can result in unstable models. Therefore before the nal optimisation step, to remove the
non-stationary effects from the data as well as to improve the model performance at the
low frequencies, the underlying trend is removed using theegularized trend removal
technique developed i”282. The trend estimate as the minimizer of the weighted sum
objective function can be de ned as:

%ky mk3+ | kD mk, (7.13)

2 RN;kck; = &;jcij denotes thé;  norm of the vectoc andD 2 R(N 2 N s the second-

order difference matrix (which is Toeplitz in naturg3p]. The rst term in the objective

function measures the size of the residual whereas the second term measures the smoothness
of the estimated trend. The trend method produces trend estimates that are piecewise
linear, and therefore it is well suited to analyse battery time series data, which can be thought
of having a slowly time-varying system with underlying piecewise linear trend. To ensure
smoothness, a balance between the trend estimate and the residuals must be maintained.

Observation: Nonlinear modelling at xed operating condition

As stated above, although the PNLSS structure is capable of capturing the in uence of the
SoC, the current level and the temperature in its MIMO settings, its usability is rst tested at
one particular operating condition of 25°C, 20A RMS current input, and 10% SoC.

Fig.7.1 and Fig.7.2 show the comparison between the output responses of a linear model
and the PNLSS model in the frequency and the time domain, on estimation and test datasets
respectively. The advantage of using the PNLSS becomes more clear after zooming in to
the time domain response as shown in the Fig.7.3. It can be clearly observed both from the
frequency and the time domain plots that the PNLSS model structure is powerful and exible
enough to capture the dynamics of the battery. It outperforms the linear model by a factor of
10 (* 20 dB difference in the frequency band of interest) on the output error side.

7.2.2 PNLSS: Multiple operating conditions

In this case study, a multi-input single-output (MISO) PNLSS model is developed and
validated for the battery's short-term electrical response, starting from the input-output data
acquired from multiple operating conditions w.r.t. SoC levels and temperature usifg a
RMS current pro le. It has been shown that the level of noise and the nonlinear distortions



152 Nonlinear modelling of Li-ion battery's Short-term response

Fig. 7.1 Errors at 10% SoC w.r.t the output (frequency domain)

Fig. 7.2 Errors w.r.t the output (time domain)1@6SoC, RMSE PNLSS 2:8591 10 4,
RMSE Linear= 0:0072

varies at different operating condition (see Section 5.4.3 for details), which makes this
problem challenging. The developed model is especially suited for simulating the battery's
short-term electrical response at the operating points lying in the nonlinear regime of an
almost depleted battery in terms of the state of charge (SoC), i.e. beB¥eeh0% at
temperatures between 5°@0°C.
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Fig. 7.3 Model responses (zoomed Time domain) at 10%SoC

Fig. 7.4 Mathematical Model for the short-term voltage response

The main idea here is to capture the effect of the SoC and the temperature by including
these physical variables, as two extra inputs into the proposed model structure (see Fig. 7.4).
Furthermore, the ability to combine data from multiple experiments requires estimation
of the initial conditions, or in other words handling transients accurately. Hence, here, a
framework to handle the transients arising due to the concatenation of the data from multiple
experiments is proposed. The main use of this model will be in the calibration of the battery
cell or as an auxiliary lower level model for a higher level model present in the BMS, to
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simulate or estimate the battery's voltage response accurately, at very low levels of SoC at
varying temperatures.

In order to achieve this goal, the model structuré7iri)is extended to accommodate
the effect of the temperature and the SoC as extra inputs to the model. This model structure
gives a exibility to test the model performance at any setting of SoC and temperature. To
initialise the optimisation procedure, the linear part of the model structura;iBeC and
D matrices are initialised with an estimate®$s= ( Aga; Baia; CaLa; DeLa) obtained by
transforming thés!" order parametric model (described in Section 6.6) into the state-space
model form.

The coef cients for the temperature and SoC are put to zero in the input and feed-through
matrix in (7.14). Finally, the coef cients of both the linear and the nonlinear terms in this
extended model structure (as shown in (7.14)) are identi ed.

X(t+ 1) = Ag ax(t)+[BaLa O Ou(t)+ Ez(t)
y(t) = Caax(t) +[ Dgra 0 OJu(t)+ Fx(t)+ e(t) (7.14)

where now the dimensions & andD matrices ar®R™ ("w*2) jn the state equation and
R"Y (*2) in the output equation respectively. The vectorandx contain the monomials
starting from degre® (but not including the linear terms) up to a chosen de@xgéo also
estimate explicitly the contribution of the mean value or the any underlying trend in the data.
Figure 5.17 in Chapter 5 shows the operating points in terms of SoC and temperature, the
input-output data of which were used for the model identi cation, validation and test. Blue
balls represent the operating points, whose data were used for the estimation and validation
of the nal model whereas the red dots represent the operating point of the test dataset.
The degree of the monomials in the state and the output equations were selected by
validating the PNLSS model at the various levels of SoG°&t, 14°C, 35°C and40°C
respectively to a different (an unseen acquired period of) input load current pro le. For this
case study all the monomials up-to-the ded@éeth in the state and the output equations
(7.1)were selected. Please note that the contribution of the linear terms is already captured
in the BLA. The data acquired &% SoC at all temperatures ranging fr&C 40°C and
25°C for all other levels of SoC (the red dots) was kept as an additional test dataset (see page
118) to judge the performance of the PNLSS model in capturing the in uence of SoC and
temperature.
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Remark 7.2.3

Furthermore, to test the robustness of the proposed methodology and to represgnt the
uncertainties in the additional inputs of SoC and temperature, these inputs werg also
corrupted by additive white Gaussian noise.

The actual inputsi(t); to the model structure at tinteis the sum of the simulated
inputsu(t) (e.g. i = SoC, Temp in this present case) and no&g) respectively,
whereZ(t) is independent and identically distributed and drawn from a zero-me¢an
normal distribution with varianceﬁ (the noise). Th&(t) are further assumed to not
be correlated with tha(t).

Z(t) N (0;sf)
u(t); = u®)+ Z(t) N (0;s3) (7.15)

7.2.3 Transient Handling in Multiple Experiments

The two main aspects which need to be carefully handled during the optimisation step in
order to identify the nonlinear battery model from multiple experiments are:

1. Calculation of the Jacobian in state update step
2. Handling of the transients due to concatenation of the data

As mentioned, when computing the state sequeqije the initial statexy of the model

should be carefully taken into account. During the nonlinear optimization step, the simulated
states from the previous Levenberg-Marquardt iteration are used to calculate the Jacobian
J(k; gno) of the modelled output with respect to the model parameters.

Te(kianw) _ T¥mod(k;dne)

J(k; =
(kianL) Tane fanL

(7.16)

Therefore when calculating the state sequexfteof the model from concatenated data
from multiple experiments, we need to clearly de ne how the Jacobian should be calculated.
The concatenated data sequence contains different blocks of periodic data obtained from
multiple experiments. Suppose we condMcindependent experiments wikhsteady state

data samples, then the concatenated data sequence looks like:
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Fig. 7.5 Schematic representation of the concatenation of the d&taerperiments, each
containingN samples

This concatenation will result in transients effect at each transition. For this speci c
study using the periodic input and output data, to calculate the Jacobian and handle transients
accurately, at the start of each new block in the data sequengg Net 1;2 N+ 1::::(M
1) N+ 1] see Fig.7.5, we make use of the second case which is detailéd, ivg (see
Appendix A for further details) for calculation and handling of the Jacobian information
during nonlinear optimization step.

The model is simulated for multiple periods at each transition (based on the initial
guess of the number of transient samples e.g.the number of transient salpplesan
be approximated by calculating the impulse response of the linear model estimated in the
previous steps) before selecting the Jacobian where the effect of transients is considered
negligible. For this case stud¥ans was equal t2000samples and the model was simulated
for 2000samples at each concatenation point to mitigate the effect of transients before the
stead state condition was assumed. This methodology equally holds when the number of
steady state data samphss different for each individual experiment.

Observation: Nonlinear modelling at multiple operating condition

Fig. 7.6 shows the concatenated data records of the input load current and the output
voltage response of the battery used as the estimation dataset. Different colours represents
data acquired at different settings of temperature for different levels of SoC. Red, blue,
magenta and black colours correspon&G, 14°C, 35°C and40°C respectively. Within
each segment, the data has been arranged according to input temperature and SoC pro les
shown in Figs. 7.7 and 7.8 respectively.

The additional input pro les represent a realistic discharge in the levels of SoC going from
10% SoC ta2% SoC, and a random change in the temperature bet8/€:40°C respectively.
It should be noted that, the order of concatenation is irrelevant for this methodology, and one
is free to adapt any ordering of the data. Although this temperature pro le is not realistic
in nature as the temperature of a battery will not suddenly jump Btdnto 14°C and so
on, in the physical world, rather it is a worst case scenario to test the validity of the PNLSS
model as it contains sudden step changes in the temperature. The PNLSS model handles
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Fig. 7.6 The concatenated input and the output data record at different temperatures (see
Fig.7.7) and different SoC levels (see Fig. 7.8) used as the estimation dataset.

the problem by eliminating the transients effects through the proposed methodology. Figure
7.6 clearly shows the output voltage response data of the battery at different level of SoC



158 Nonlinear modelling of Li-ion battery's Short-term response

Fig. 7.7 Input temperature pro le with added white Gaussian noise with standard deviation
of 0:1.

and temperatures to a multisine signal of same RMS value is very different and is very
heterogeneous in nature.

Fig. 7.9 shows the performance of the PNLSS model in time domain on the estimation
data. It can be clearly observed that the PNLSS model is exible enough to accommodate
the effect of different levels of the noise as well as the nonlinear distortion arising due to
variations in the levels of SoC and temperature.

Fig. 7.10 compares the performance of the PNLSS model at a particular operating point
of 4% SoC at25°C from the validation dataset. Similar observations were also made at
other levels of SoC which were included in the estimation dataset. Figures 7.10 to 7.15 show
the comparison between the output responses of the best linear Gapdeind the PNLSS
model at different levels of SoC in the frequency domain on a validation datas¥ 825°C,
35°C and40°C respectively. It can be clearly observed that the performance of the PNLSS
model is approximatelt5-20 dB better in the frequency band of interesbat, 14°C and
40°C.

The advantage of estimating the PNLSS model become even more evident by looking
at Fig.7.15, which shows the validation results@#(SoC,25°C). During the estimation
step the PNLSS model was only estimate8%t, 14°C, 35°C and40°C. The data acquired
at (6% SoC,25°C) was therefore a completely unseen data record used in the test step. It
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Fig. 7.8 Input SoC pro le with added white Gaussian noise with standard deviatio of 0

Fig. 7.9 Comparison of the PNLSS model with Linear model on the concatenated estimation
dataset

can be seen that the performance of PNLSS mod@&RatoC,25°C) is also approximately
10-15 dB better than the linear model.
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Fig. 7.10 Model test at 4% SoC 25°C

Fig. 7.11 Model validation at 4% SoC 14°C

It can be concluded that the PNLSS model outperforms the linear model by a fad@r of
I.e. approximatel20dB difference in the frequency band of interest at the seen temperatures,
and by a factor o8 4 i.e. approximatelyl0-15 dB difference in the frequency band
of interest at the unseen temperature on the output error side, which is quite a signi cant
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Fig. 7.12 Model validation at 2% SoC 35°C

Fig. 7.13 Model test at 6% SoC 5°C

achievement considering the fact the battery operates at a very low level of SoC and deep
inside its nonlinear regime as per tBgen circuit voltag®oCV-SoC behavioral curve of the
battery R47). These observations reinstate the fact that a nonlinear model is indeed a better



162 Nonlinear modelling of Li-ion battery's Short-term response

Fig. 7.14 Model test at 6% SoC 40°C

Fig. 7.15 Model test at 6% SoC 25°C

choice to capture the nonlinear dynamics of the battery at such low SoC levels at varying
temperatures.
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7.3 Conclusion

In this chapter, a data driven methodology to identify a nonlinear model for modeling the
battery's nonlinear dynamics at a xed operating condition or over a range of operating
conditions is proposed. The PNLSS model structure can accommodate the effects arising due
to a signi cant increase in the level of nonlinear distortion due to low SoC levels and varying
temperatures. It is demonstrated within the proposed data-driven framework, that it is easy
to deal with the practical challenge of estimating a nonlinear model from the data acquired
from multiple experiments done at different operating conditions by ef ciently handling the
transients arising due to concatenation of data records.

This eventually means a saving in data acquisition time as well as the hardware resources
required for data acquisition. The PNLSS model structure outperformed the linear model
at all settings and is powerful yet exible. This generic approach can easily be extended to
include the in uence of SoH. The validation of this methodology was performed at extremely
low levels of SoC, which is quite a signi cant achievement as the future aim of the battery
manufacturers and consumer industries is to push battery operation much deeper into its
operational regime.






Chapter 8
Final conclusions and the future research

We are afraid of ideas, of experimenting, of change. We shrink from thinking a
problem through to a logical conclusion.

Anne Sullivan

During the course of this research, both the theoretical and the applied side of the
research spectrum has been explored.The main goals of this thesis were twofold: Firstly, to
develop an understanding of approximation errors due to the discrete-time representation
of the continuous time linear and nonlinear systems. Secondly, to develop a data-driven
methodology to characterise, and to identify a black-box nonlinear model for battery's short
term electrical response. Final conclusions about the proposed solutions for both parts of the
research are summarised below, together with some ideas for the future research.

8.1 Part-I: Data-driven discrete time identi cation of con-
tinuous time nonlinear systems

One major fundamental question, which has been answered in this part of the research is:

How to develop discrete-time models with output error bounds for
continuous-time systems (both linear and nonlinear) under band-limited
conditions?

ZOH assumptions are most widely used for developing the discrete time models of
dynamic systems. In order to develop real-time compliant discrete-time models, often one
has to work under bandlimited assumptions as the ZOH assumptions does not hold e.g. inside
a dynamic network or at the output of the actuator that is driving the system. Continuous
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time nonlinear feedback systems represent a very important class of dynamics systems in
many elds. One of the major hurdles in simulating these class of systems using discrete
time nonlinear models on a computer is the nonlinear algebraic loop, which has to be solved
at each time step. Presence of a delay in the loop facilitates the development of fast recursive
simulation models and resolves the problem of solving the DAE.

In Chapter 2 of Part-I of the thesis, a discrete time modelling approach for the linear
systems is proposed to model such kind of continuous time systems under bandlimited
assumptions, where the direct term of the model is forced to zero or in other words an explicit
delay is present in the loop. A comprehensive theoretical analysis which builds on a classical
result of "one step ahead prediction of bandlimited signals" is extended to calculate the error
bounds for such kind of approximated models. Furthermore, a measurement methodology is
proposed for quantifying and validating the output error bounds experimentally. It has been
shown that to develop good recursive discrete time models and to quantify the errors, the
choice of a good hardware generator lIter is necessary. During the identi cation process, it
is important to explicitly place this Iter before the continuous time plant to be identi ed. To
achieve low errors, suf ciently high sampling rates should be chosen, e.g. alEasies
the cut-off frequency of the chosen hardware generator lter.

This methodology can also be used to estimate suf ciently accurate model by upsampling
the data virtually, even if the data-acquisition setup has limited capabilities. Furthermore,
the error introduced by explicitly forcing the direct term of the identi ed model equal to
0 can be reduced by increasing the complexity of the model. The proposed measurement
approach, and the theoretical analysis is quite generic and can easily be applied to a wide
class of dynamical systems.

Building on the insights gained from the analysis done in Chapter 2, the framework is
further extended to develop discrete time nonlinear state space representation for continuous
time nonlinear state space models in Chapter 3. A more general concept of low pass (LP)
signals with a relative degrekis introduced. It has been shown that this LP-property is
maintained for a wide class of nonlinear systems, including cascaded and closed loop systems
and this idea is generalised to the discrete time integration of LP-signals.

Ideas of one-step ahead prediction of bandlimited signals and discrete time integration of
LP-signals are then combined to bound the approximation errors of an explicit discrete time
nonlinear state space representation for a continuous time nonlinear state-space model. It has
been shown that these are tighter error bounds, as the dominating part of the error is set by
that part of the signal that is not sampled fast enough (aliasing).
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8.2 Part-1l: Data-driven nonlinear modelling of batteries

For the sustainable future and large-scale use of electrical energy storage elements, reliable
models are essential therefore on the applied research front, Part-1l of the research contributed
towards

The development of data-driven characterisation and nonlinear modelling
framework for the battery's short-term dynamics.

The data driven framework presented in Part-1l of this thesis consists of several steps.
The stepwise approach has the advantage that it provides an early insight into the behaviour
and the dynamics of the battery at different operating conditions. This insight let the
battery modeller decide at an early stage, on the usefulness of using a particular modelling
methodology to model the short term response of the battery. It also helps in choosing the
most optimal model structure, based on the performance-costs trade-off. Moreover, in this
part of the thesis, it has been shown that a one-step solution is not the most optimal way to
tackle this highly complex nonlinear identi cation problem.

In Chapter 5, a user-friendly, data driven frequency domain nonparametric character-
isation is proposed to characterise the battery's short term electrical response at different
operating conditions. Based on the extensive analysis, it was concluded that the battery's
short term dynamics betwe&@% SoC -10% SoC can easily be modelled by using linear
identi cation techniques. It is only betwedr®% SoC 0% SoC, that the nonlinear distortions
become signi cant, which necessitates the use of a nonlinear modelling and identi cation
framework. It has been observed that the low temperatures also have signi cant in uence on
the level of nonlinear distortions.

Based on the information gained from the nonparametric characterisation, a number of
practical algorithms have been implemented in order to estimate the BLA of the battery's
short term electrical response from multiple datasets. The algorithms and the identi ed
models were successfully tested using the data acquired using a real-world experimental
set-up. In Chapter 7, a exible yet very powerful PNLSS nonlinear modelling structure is
proposed and its identi cation procedure is detailed, once the decision has been made to
identify a nonlinear model for the battery's short term dynamics betvi€efh SoC -0%

SoC. It has been shown that PNLSS model structure is quite powerful to capture the battery's
nonlinear dynamics at a xed operating condition or over a range of operating conditions.

It is demonstrated that the practical limitation of the data acquisition systems can be
overcome easily, and an ef cient nonlinear model can be identi ed. This can be done by
combining the data acquired from multiple experiments done at different operating conditions.
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This eventually gives a signi cant advantage during the experimentation stage and helps
in minimising the hardware resources required for data acquisition. The PNLSS model
structure is quite exible and can be easily extended to include the in uence of SoH and
other important parameters affect the battery's short term dynamics.

As discussed above it has been demonstrated that the battery's short-term electrical re-
sponse is nonlinear at the SoCs levels bel® and abov®0% mainly at low temperatures.
Hence, the methodology described to develop the best linear models in Chapter 6 can be used
to develop models which can then be directly used to simulate voltage response bE#¢een
—90% SoC. The PNLSS model will only be useful if there is a need to simulate the voltage
response very accurately to avoid any damage to the battery hédvor aboved0% SoC
levels.

An estimation of the SoC level and the average temperature is needed to implement the
PNLSS model in practice. This can be done using the estimator based on the BLA. The
PNLSS model can be used in situations where a meta-model or supervisory model is used
for predicting/simulating all the important parameters of the battery and switches between
different models depending on the regime in which battery is operating. Once the PNLSS
model is switched on based on the observed regime or parameters, then the output voltage
response of the model can be used to improve the SoC estimation further.

8.3 ldeas for the future research

Here, some suggestions and possible directions for the future research are listed.

8.3.1 Part-I

In this list below, some ideas relevant to the rst part of the thesis are mentioned. These ideas
build on the theme of sampling and reconstruction of continuous time signals.

* Non-uniform , Beyond bandlimited and compressed samplinghe rst part of the
thesis, one of the main underlying assumptions was, that the data (botlu{bpanhd
outputy(t) signals of the plants to be identi ed) can be sampled at the Shannon-Nyquist
rate, corresponding to at least twice or way beyond the signal bandwidth. In many
sampling processes, itis not always easy to sample regularly and only irregular samples
are available. Moreover, practical analog-to-digital converters (ADCSs) introduce a
(nonlinear) distortion that should be accounted for in the reconstruction process.

Furthermore, as it is shown that the bandlimited assumption is often only approximately
met in practice, but many real-world signals can be more adequately modelled in
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alternative bases other than the Fourier ba283[240, or might possess further
structure in the Fourier domain, which can be exploited more ef ciently during the
reconstruction stage. Hence the theoretical analysis to calculate the output error bounds
can be extended beyond bandlimited signa&], for sub-Nyquist samplingZ85 as

well as the compressed sampling [286] cases.

8.3.2 Part-ll

In this list below, some ideas relevant to the second part of the thesis are mentioned. These
ideas propose some future research directions both for theoretical extensions of PNLSS
models and its application to battery's modelling.

« Better initialisation of the PNLSS moddburing the identi cation of PNLSS model,
the starting values are linear state-space parameters of a parametric t on the nonpara-
metric BLA. It would be bene cial to explore some more advanced starting values (e.g.
a bi(non)-linear model), which may help to avoid local minima. Think for instance
of the subspace techniques, which have also been applied successfully to identify the
bilinear state-space models [287].

 Study of the in uence of the noise on the PNLSS model structlmdackle the in u-
ence of noise, in the identi cation of the PNLSS model structure, an output error
framework is utilised i.e. it is considered that the noise only impacts at the output of
the model. This assumption might fail in most of the realistic environments, where the
process noise can also become very signi cant. Consider for example biomedical and
biochemical systems. Hence, a thorough analysis of the impact of the process noise
on the performance must be explored in the future. Some recent contributions have
started to look into this direction [288].

« Stability of initial estimate and the overall nonlinear model:

The output of PNLSS model is calculated using a recursion approach and the calcula-
tion of the Jacobian for a nonlinear state space model eventually boils down to actually
computing the output of another nonlinear model. Therefore, a direct simulation of the
output of an unstable model will generally result in an unbounded response. For certain
classes of systems and problems, estimation of the BLA does not necessarily result
in a stable model. Hence, a stable initial model is required for simulating the PNLSS
model. A way to impose stability on the transfer function of a linear model is described
in [289. Apart from this stability of PNLSS is also not guaranteed. A method to
deal with the unstable models or to avoid unstable regions during the estimation of
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the PNLSS model, is detailed i@71]. Recent approaches using the sum of squares
polynomial and contraction theor290-292 might be useful for getting the deeper
insights and for the further development of theory needed to guaranty the asymptotic
global stability of PNLSS model, hence it can be further explored.

Different basis functionsAs mentioned above, the PNLSS model can suffer from
instability issues and extrapolation problems, if it is validated or utilised outside the
domain it is meant for, due to nature of polynomial approximations. Hence, use of
non-polynomial basis functions must be explored and evaluated.

Parameter reductions or decouplidgiother drawback of PNLSS model structure in

its present form, which was pointed out earlier, is the combinatorial rise in the number
of parameters with an increase in the input and state dimension. One of the ways to
tackle this problem is by using the decoupling approach presented in [267].

The basic idea behind this approach is that, after the identi cation of a full PNLSS
model, a parsimonious representation can be obtained by decoupling the multivariate
polynomials both in state and output equations. This decoupling is done by separating
the multivariate polynomial from the PNLSS structure and treating it as a static
multivatiate function for decoupling. Once the decoupled representation (approximate)
is obtained, then it is plugged back into the PNLSS structure again for a nal nonlinear
optimisation.

Varying temperature and SoC levelhe nonlinear model developed in this thesis is
able to perform well on a range of operating conditions, using the data acquired at
a constant setting of SoC and temperature during each experiment. But in practice,
this is not the case, therefore it is important as well as bene cial to carry forward the
analysis as well as the modelling work, in a non-stationary setting i.e. when either
temperature or SoC or both are changing during the experiment.

Extension to Meta model using SoH and capacity estimafibis work focussed on
modelling the short term electrical response of the battery, but in reality a battery model
should also consider the effect of SoH, capacity fade and ageing on the dynamics of the
battery. As mentioned in the conclusions, the PNLSS model structure is quite exible,
so it will be useful to explore and extend the model to accommodate the effects of
above mentioned quantities.

SoC Estimation using observets:the second part of the thesis, it has been shown
that either the BLA or the PNLSS model is very capable to describe the short term
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dynamics of the battery. It would be interesting to explore the possibility of developing
a SoC estimation algorithm based on linear or nonlinear observers for both the cases.

 Data driven approach to ECM modellinghe BLAs estimated at different operating
conditions can be further utilised to develop an ECM model for the battery. The
information in the parameters of BLA can be exploited and a map between these
parameters and the physical elements of an ECM (for lower order models) can be
found using symbolic computation techniques.
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A

Appendix A

Nonlinear optimization

Te(kianw) _ TYmod(K: anL)

Tone fTane
Itis impractical to calculat®¥yo4(k; gne) andJd(k; gni) in the frequency domain, therefore the
calculations are performed in the time domain, and it is followed by a DFT for an equivalent
frequency domain representation. It is a well known fact that the calculation of the Jacobian
for a nonlinear state space model eventually boils down to actually computing the output of
another nonlinear model.

The dynamics of this new nonlinear model are very closely related to the dynamics of the

original nonlinear model (e.g., se293; [53]). The equations for the derivatives (Jacobian)
of the model in Section 7.1, with respectdq,_ are computed below explicitly. Although
these calculations are already presente®4j jit is repeated here for completeness. First
the matricezqt) 2 R " andx{t) 2 R™ " are de ned as

J(kanL) = (A-1)

" #
_ Yz - 1z . Tz()
V=50 ° 0™ (®), “2
%) = fx®) - x( L x(t) (A-3)

COx(t) T Txat) T X (1)
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Iirjn N2 R™ N represent the zero matrix with a single element equal to one at @njjy
wherei andj are the row and column index respectively:

0 1
0 0 0

M "=go 1 0 (A-4)
0 0 0

Thereafter, the Jacobian is computed w.r.t the elem&ptsf the state-space matrik The
derivative of the output equation with respect to elemétss given by

YD) _ 1(CX)+ Dut) + Fx (1)
TA;] TA;]

Tx(t) x(t)
ma, 0,

=C (A-5)

It is evident that in order to determine the right hand side of (A-5), the derivatives of the state
equation are needed. This can be calculated from

Ix(t+ 1) _ T(AX(t)+ Bu(t) + Ez(t))

A-6
TA; TA; (A-6)
Furthermorexa; 2 R™ is de ned as
Tx(t)
()= —= A-7
Xa; (1) 1A (A-7)
Then, Eqg.(A-6) can be rewritten as
Xp; (1 1) = 172 "ax(t) + ( A+ Ez (1) Yxa; (1) (A-8)
Combining Egs.(A-5) and (A-8), we get
Xp; (14 1) = 152 "ax(t) + ( A+ Ez(t))xa; (1)
In; () =(C+ FxA0) xa; (1) (A-9)
whereJy; (t) 2 R is de ned as
t
(= D (A-10)

A
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Similarly, the Jacobian of the other model parameters is computed and results are summarized
below:

X, (t+ ) =1 Mu(t)+( A+ Ez(t))xe, (1)
J, (1) =(C+ Fx A1) xg, (1)
X (t+ D=1 “z(0)+( A+ Ez(1)xe, (1)

Jg; (t) =(C+ Fx Y1) xg; (1) (A-11)
and
o, () =17 "x()
Jo, () =17 “u(®)
I, ®=1 "h (A-12)

The model is over-parameterized due to the presence of a non-singular state transformation.
Numerical problems are overcome by taking the pseudo-inverse during the parameter update
step.

Calculation of the Jacobian

When computing the state sequemnx¢g , the initial statexg of the model in Section 7.1
should be taken into account. For this, three possible approaches are distinguished.

Jacobian of Full Data

The easiest, but rather inept way, is to calculate the Jacobian for the full data set, and then to
discard/neglect the rsiN samples of both the Jacobian and the model error, in this way a
part of the data is not used for the model estimation. The number of transient samples can be
determined approximately by analysing the impulse response of the linear model.

Periodic Case

In the case of periodic excitation signals, It is suf cient to calculate the Jacobian for several
periods, and to select a period for which the transients can be considered negligible (see Fig.
A.1). This can even be done for highly damped systems, or when the number of samples per
period is high.
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Fig. A.1 Transient handling in case of periodic data

Explicit Estimation of Initial State X

Finally, the last method, which is suitable for both periodic and non-periodic excitation signals
(and especially for the cases where the transients are very long), is to estimate the initial con-
ditionsxg as an ordinary model parameter, egg. = [ vec (A);vec (B);ved (C);vec (D);

ved (E); vecd (F);xo]". Note that, something similar can also be done by estimating an extra
column in the state space matrix B when adding an extra viain¢he input vector$9, 112].
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Data Driven Discrete Time Identi cation of the Continuous Time
Nonlinear Systems and Nonlinear Modelling of Li-ion Batteries

Rishi Relan

Nowadays, due to the environmental concerns, increasing demand for cleaner
energy and energy e cient systems, lithium-ion batteries are used in many
systems due to their high speci ¢ energy and energy density. Hence, the em-
phasis of this presented work is towards the development of a mathematical
model for lithium-ion batteries. System identi cation is the process of deriv-
ing these mathematical models from measured data or observations system-
atically. The dynamical response of lithium-ion battery evolves continuously
in time but discrete-time models are very convenient to simulate a dynami-
cal system on a computer. Therefore both linear and nonlinear discrete-time
models are often used to approximate such kind of dynamical systemis
this thesis, a measurement methodology is proposed to acquire data in or-
der to develop such discrete-time representation. Furthermore, theoretical
foundations are laid out to control the errors of such kind of approximated
discrete-time representation for continuous time systems.

The presented work also proposes data-driven methodology for char-
acterising the battery's short term electrical response at varying operating
conditions in terms of its linear and nonlinear behaviour A decision can
be made by the battery modeller at this stage to develop either a linear
or nonlinear model based on the information and knowledge gained from
the chracterisation step. Based on the choice made, this work proposes a
novel data-driven methodology to estimate eithea discrete-time best linear
approximation of the nonlinear battery responsat di erent operating con-
ditions, or to developa exible discrete-time nonlinear model (Polynomial
nonlinear state-space model (PNLSS)which is valid for the complete oper-
ating range, starting from the data acquired at multiple operating conditions
with varying levels of noise and nonlinear distortions. The developed models
are especially suited for operating points lying in the nonlinear regime of the
battery's electrical operation of almost depleted battery in terms of state of
charge (SoC) at a low temperature.
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