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Abstract

Many systems over different �elds of engineering exhibit either linear or a nonlinear dynamic

behavior. Discrete-time models are very convenient to simulate a dynamical system on a

computer therefore both linear and nonlinear discrete-time models are often used to model

dynamical systems.

In the �rst part of the thesis one major fundamental question, which will be answered

is "How to develop discrete-time models (with bounded output errors) for continuous time

linear and nonlinear systems under band-limited conditions?". In order to build the fast

recursive discrete-time simulation models for the linear and nonlinear systems (described

asy(t) = g1(u(t);y(t)) , one has to solve at each time step a nonlinear algebraic loop for

y(t)). If a delay is present in the loop i.ey(t) = g2(u(t);y(t � 1)) , fast recursive simulation

models can be developed and the need to solve the nonlinear differential-algebraic (DAE)

equations is removed. In this work, we provide the theoretical error bounds for such

kind of approximated models for both linear as well as nonlinear models (especially for

nonlinear state space models) developed under band-limited assumptions. Furthermore a

measurement methodology is proposed for quantifying and validating qualitatively the error

bounds experimentally.

In the second part of thesis, the emphasis shifts towards the characterisation and the

development of nonlinear models for lithium-ion batteries. Nowadays, due to the environ-

mental concerns, there is an increasing demand for cleaner energy supply and energy ef�cient

systems. Availability, certainty and ef�ciency of rechargeable electro-chemical energy sys-

tems, persuade us to consider them as alternative energy source in different applications

such as electric and hybrid vehicles, heavy transportation systems, renewable energy systems

and smart grids. Lithium-ion batteries are well-suited for fully electric and hybrid electric

vehicles due to their high speci�c energy and energy density relative to other rechargeable

cell chemistries. However, these batteries have not been widely deployed commercially

in these vehicles yet due to safety, cost, and poor temperature performance, which are all

challenges related to battery thermal management. In addition, due to slow dynamics, the

data acquisition process for battery characterisation and modelling is a time consuming



x

process. Hence, our understanding regarding the behaviour of different types of energy

storage systems under different operating conditions must be improved.

Therefore even before proceeding towards the modelling step, it is important to fully

characterise and understand the dynamic behaviour of the battery at varying operating

conditions. In this work, a data-driven methodology for characterising the battery's short

term electrical response at varying operating conditions, e.g. at very low levels of SoC and

different temperature levels, is discussed. A decision can be made by the battery modeller

at this stage to develop either a linear or nonlinear model based on the information and

knowledge gained from the nonparametric chracterisation step.

In this work, a novel way to estimate the best linear approximation and the polynomial

nonlinear state-space model (PNLSS) from the data acquired at multiple operating conditions

with varying levels of noise and nonlinear distortions, especially suited for operating points

lying in the nonlinear regime of the battery's electrical operation is proposed.
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Chapter 1

Getting started

Measurement is the �rst step that leads to control and eventually to improvement.

If you can't measure something, you can't understand it. If you can't understand

it, you can't control it. If you can't control it, you can't improve it.

H. James Harrington

1.1 Introduction

Simulation or prediction models for the continuous time dynamical systems are usually

obtained from the application of physical principles, e.g. conservation of energy, mass and

momentum. Through the application of the physical laws to the real-world phenomena,

these models take the form of linear or nonlinear differential equations. But in practice, in a

control loop where digital controllers are used to controlling a real-world system, the control

action can only be applied (or updated) at particular time instants (known as the sampling

instants). Similarly, in a data-driven approach to modelling, the system models (both the

continuous time and the discrete time models) are developed from the data acquired only

at sampling instants. As a consequence of this practice, sampling, as well as sampled data

models (discrete time models), have always been one of the foundational concepts in all

aspects of modern identi�cation, estimation and control theory.

Furthermore, in real-world scenarios, whenever the systems operate in their nonlinear

regime, or wherever the application calls for an increased ef�ciency and high performance,

then accurate nonlinear models are required to simulate or predict the output correctly.

Examples of such systems are modern mechatronics systems, energy-based systems such

as the fuel cell systems, Lithium-ion batteries, super-capacitors etc. Therefore, since1980,
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there has been a growing interest and a gradual shift towards the modelling of the nonlinear

dynamical systems in the system identi�cation community.

1.1.1 Discrete time modelling of the Lithium-ion battery

The high energy/power density and operating voltage make Lithium-ion battery well suited

for a wide variety of applications in various domains. The dynamical behaviour of the

battery cell varies over time from linear to nonlinear due to many different factors such

as stress-induced material damage, capacity fade, and temperature, etc. For the safe and

reliable operation of the battery-operated components as well as battery operated vehicles,

the health of the battery packs must be monitored by the battery management systems (BMS).

Moreover, some essential states of the battery such as the state of charge (SoC), the state

of health (SoH), the state of function (SoF) and the state of power (SoP). Most of these

dynamical states are usually associated with internal electrochemical reactions and cannot be

directly measured by physical sensors; hence model-based estimation algorithms are required

to estimate these dynamical states.

Since last few years, there has been a growing interest and activity in the �eld of battery

modelling as well as control of battery based systems. Both discrete time and continuous

time models are proposed in the literature for modelling the battery's dynamics. From the

control point of view, it is always good to have access to a continuous time model of the

battery under consideration because continuous time models are able to depict the physics of

the battery. Furthermore, the control of physical states of the battery using the continuous

time models becomes direct and easier as compared to the discrete time models.

As mentioned above continuous time models are usually developed using the application

of �rst principle laws on the real-world problems but identi�cation of the continuous time

models using the sampled data is major research area in the system identi�cation community

[12]. A �rst attempt to the continuous time modelling of the lithium-ion battery using the

sampled data is recently reported in [13]. The authors discussed the issues such as the system

identi�ability, the sensitivity of discrete time model poles, and the pre-scaling in �xed-point

storage related to discrete time modelling of batteries. Most of the issues mentioned above

were discussed and demonstrated using a case study involving the equivalent circuit models

(ECM). Although the case study shows some advantages of using the continuous time models

for batteries, their applicability and validity under different operating conditions are still

questionable.

Therefore, due to the ease of identi�cation and implementation, the discrete time mod-

elling of the lithium-ion battery still is a major thrust area and a dominating paradigm for the

lithium-ion battery research. In addition to that the battery electrical response at different
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operating conditions can be time-varying or nonlinear, and a linear model might not be well

suited to capture its dynamics. Hence a proper care must be taken while developing the

discrete time models for the batteries.

It has been shown in the literature that the battery displays both fast and slow dynamics

[14]. Therefore the application of the discrete time model identi�cation methodologies to

model the lithium-ion batteries requires a careful choice of the data acquisition set-up. The

data-driven discrete time modelling of the dynamical systems requires an understanding of

the approximation errors when a continuous time system like a battery is represented by the

identi�ed discrete time model. One of the most critical aspects which affect the nature of

the above-stated approximation error is the measurement set-up assumptions (zero-order

hold (ZoH), �rst-order hold (FoH), bandlimited (BL) etc.) under which the data are acquired

for identifying the model. The bandlimited measurement assumptions are usually preferred

when the model is developed using the measured input and output signals (which is usually

the case in most of the practical applications), and a discrete-time model is required for

simulation or prediction purposes [11].

Based on the discussion above two key issues which are not well addressed in the

literature are mentioned below.

• How to identify good discrete time models and assess their approximation capa-

bility to describe the underlying continuous-time dynamics under bandlimited

measurement set-up?

• How can such discrete time models be used to describe the Lithium-ion battery

fast dynamics ?

Hence, the primary emphasis of Part-I of the thesis is to propose a measurement method-

ology to understand and control the approximation errors, when the continuous time dynamic

systems are represented by the discrete time models, especially under the bandlimited mea-

surement assumption. In Part-II, the focus shifts towards application of data driven discrete

time linear and nonlinear identi�cation techniques to model the short term electrical response

of the lithium-ion batteries. A more in depth introduction on that is provided in Chapter 4.

In that context, to start with, an introduction of the general system identi�cation frame-

work is given in Section 1.2. A brief overview of some of the most common nonlinear model

structures relevant to this thesis is given in the next Section 1.3. The research objectives and

outline of Part-I of the thesis are discussed in Section 1.5.1. Finally, the research motivation

as well as objectives of the Part-II of the thesis are detailed in Section 1.5.2.
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1.2 System identi�cation

Mathematical models are employed by engineers and scientists for the design optimisation,

failure diagnosis and prognosis, control design or simulation purpose, to assess the in�uence

of various factors on system's output, and to understand the behaviour of the dynamic

systems. System identi�cation is a �eld of engineering science that infers a mathematical

model for a dynamic system from measured, noisy input-output data collected from a system

by utilising the statistical methods. Under some prior assumptions and prior knowledge of

the characteristics of the disturbing noise, it is made sure that the in�uence of disturbing

noise sources on the behaviour of the model during the identi�cation process is minimised.

The classic books [15, 16] provide a good overview of the principles, general frameworks

and various methods, which are prevalent in the system identi�cation community, mainly

for the identi�cation of the linear time-invariant (LTI) dynamic systems. The text written

by authors in [11] introduces the general framework for the identi�cation of LTI systems as

well as the best linear approximation in nonlinear settings in the frequency domain.

Based on the classic literature, the system identi�cation process mainly consists of four

major steps: the data acquisition, the selection of an appropriate model structure, the model

estimation (the cost function) and the model validation. Each step is discussed brie�y below.

• Data acquisition:The data acquisition step involves, the design of the experiment and

the selection of a set of input excitation signals, which are appropriate for extracting the

maximum information from the system under consideration. The selection of the input

signals should be made such that the acquired data are suf�ciently rich in information

to estimate or infer the parameters of the selected model structure (see below for further

details). The choices during the design of experiments, which the engineers have to

make, involve the selection of the bandwidth of the signal, the probability distribution

of the signal, the choice of the sampling rate, and the duration of the experiments.

Depending on the application, constraints and the intended use of the models, other

relevant choices include the choice between the BL or the ZoH measurement set-up,

and open or closed loop measurement etc. Once these choices have been made then

�nally the input and the output signals are acquired.

• Model structure selection:After the data acquisition step, the next most important

question is the selection of the mathematical structure to �t the data so that the

behaviour of the considered system can be explained through the use of this model.

This step is called the model structure selection step. During this step, for the linear

systems, a whole range of options between white-box, grey-box or black-box models,
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parametric or nonparametric models, etc. are available from the literature. These

choices become even more challenging in the case of nonlinear dynamic models.

Some recent developments starting from the best linear approximation may help in

the model structure selection step for a class of nonlinear systems [17–19]. In most

practical problems, this choice is heavily in�uenced by some prior knowledge about

the system and on the �nal purpose of the model.

• Model estimation:The parameters of the selected mathematical structure need to

be estimated and tuned/optimised in order to achieve a good match between the

modelled and the measured system behaviour. This is achieved by selecting a suitable

optimisation criterion (cost function). The parameters of the selected model structure

are then estimated by minimising the selected cost function. If the chosen model

structure is linear-in-the-parameters and the residual errors are assumed to be normally

distributed then one of the most common cost functions is the quadratic cost function or

thek �k 2 norm of the output error. This is also known as the least squares minimisation

criterion.

The linear least squares estimate can still be used if the normality assumption on the

residual errors does not hold true. For example, the Gauss-Markov theorem states that

the linear least squares estimates are still the best linear unbiased estimator (BLUE) in

mean squared sense as long as the errors have expectation zero, are uncorrelated and

have constant variance [20].

If the selected model structure is nonlinear-in-the-parameters, then a solution can

be obtained by decomposing the original nonlinear-in-the-parameters optimisation

problem into a series of smaller sub-problems which are linear-in-the-parameters, or by

using more advanced nonlinear optimisation algorithms available in the literature such

as the Levenberg-Marquardt optimisation algorithm [21]. In the optimisation literature,

various other methods such as non-linear programming methods, local search methods

such as gradient search, Newton Method, conjugate gradient methods, Gauss-Newton

methods are also proposed to tackle such problems. Though computationally expensive

but global search methods such as stochastic search, genetic algorithms, evolutionary

algorithms etc. can also be used for �nding solutions to such problems.

• Model validation:The estimated model should be able to generalise well and its

performance must be robust on the unseen datasets, which are acquired under similar

or slightly different experimental conditions. Hence, a model validation step must

be performed before the model can be used for the intended purpose. In this step,

there exists a possibility to compare various models of different complexity obtained



6 Getting started

on the same data. Many different model selection and validation criteria exist in

the literature, including but not limited to, Minimum Description Length (MDL),

Akaike information criteria (AIC), Bayesian information criteria (BIC), leave-one-out

validation, cross-validation, regularisation based criteria etc. [11, 16, 22].

1.3 Nonlinear system identi�cation

Most real life systems and phenomena are nonlinear, and vary with time therefore in many

situations, a nonlinear model might outperform a simple linear model, but still, the engineers

in the industry usually prefer to use a linear model. This is because a general unifying

framework for both the linear identi�cation and the linear control theory exists since many

decades. Even though there is a vast amount of literature available on the modelling and the

identi�cation of the nonlinear dynamical systems [23, 24], but a lack of unifying framework

and a large amount of possible nonlinear modelling structures discourages many engineers to

do nonlinear modelling in practice.

If during the experiment design step, it is permitted to use an excitation signal belonging

to a special input class such as specially designed periodic excitation signals (e.g. a multisine

signal), then at an early stage of the identi�cation process, it is quite easy to assess the level

of nonlinearities present in the system [11].

By accessing the level of nonlinear distortions with respect to the output of the system,

one can easily quantify the gain and assess the need of developing a nonlinear model as

compared to a linear model, even before proceeding towards the �nal modelling of the system.

This might be suf�cient in certain situations, but the question about the choice of a suitable

nonlinear modelling structure is still an open question, in situations where a nonlinear model

is required.

The choice between different nonlinear modelling techniques available in the literature

is very extensive e.g. nonlinear state-space models [25], Volterra and the Wiener theory

[26–28], NARMAX models [29], block-structured models [30, 31], neural networks and

fuzzy models [32, 33], restoring force models [34] etc.. In the section below, a short overview

of the class of the nonlinear model structures which are most relevant in the context of this

dissertation is given.

1.3.1 Volterra systems

One of the most general representations for the nonlinear systems is the Volterra series

representation [26] named afterVito Volterra[35]. Basically the Volterra series representation
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extends the idea of the impulse response of the linear systems in (1.1) to the nonlinear systems,

as in (1.2).

y(t) = G1u(t) =
� + ¥

� ¥
g(1)(t )u(t � t )dt (1.1)

y(t) = Vu(t) = G0u(t)+ G1u(t)+ G2u(t)+ � � � + Ga u(t)+ � � � (1.2)

whereG0u(t) = g0 = constant and

Ga u(t) =
� + ¥

� ¥
� � �

� + ¥

� ¥
g(a )(t 1 � � � t a )u(t � t 1) � � � u(t � t a ) dt 1 � � � dt a (1.3)

is called thea � th order Volterra operator. The integral kernelsg(a )(t 1; � � � ; t a ) are called

the Volterra kernels. The output of a (causal discrete time) Volterra kernelg(a )(t 1 � � � t a ) of

degreea is given by:

ya (t) =
nm

å
t 1;��� ;t a = 0

g(a )(t 1; � � � ; t a ) u(t � t 1) � � � u(t � t a ) dt 1 � � � dt a (1.4)

wheret 1; t 2 � � � t a 2 N0 andnm is the memory of the Volterra kernel. Due to symmetry of the

kernelg(a )(t 1; � � � ; t a ), the order of the delayst 1; t 2; � � � ; t a becomes irrelevant [26].

In an output error framework, it is well known that the problem of the estimation of the

Volterra series coef�cients can be formulated as a Linear Least Squares (LS) optimisation

problem. However, depending on the number of available data samples and the large number

of coef�cients, the LS problem is not always the most ef�cient way to obtain a solution of

acceptable precision. Recent developments have tried tackling this problem using Regularised

Least Squares (RLS) methods [36].

Equivalently a representation of the Volterra kernel in the frequency domainYa (k) can

be written as [11]

Ya (k) =

N
2 � 1

å
k1���ka � 1= N

2 + 1

G(a )
Lk;k1;��� ;ka

U(Lk)U(k1) � � � U(ka � 1) (1.5)

whereLk = k� k1 � k2 � � � � � ka � 1 andN is the total number of samples in one period. To

obtain the frequency domain representationYa (k), the Discrete Fourier Transform ofya (t)

is taken. G(a )
Lk;k1;��� ;ka

represents the symmetrised frequency domain representation of the

Volterra kernel of degreea . The frequency domain formulation helps in the nonparametric

analysis for separating the contributions of even and odd nonlinear terms, when specially



8 Getting started

designed input signals are used [11] (see Chapter 5 for an application on the characterisation

of the battery's short term response).

1.3.2 Block-oriented models

In block-oriented model structures two basic building blocks, namely the linear time invariant

(LTI) blocks, and the static nonlinear (SNL) blocks are interconnected either in series, parallel

and/or feedback connection to represent the system model under consideration [31]. Some

simple examples of such systems are: Hammerstein (SNL-LTI) and Wiener (LTI-SNL)

block structures which can be extended further to the Wiener-Hammerstein block structure

(LTI-SNL-LTI) by sandwiching a SNL block between two LTI blocks or to the Hammerstein-

Wiener (SNL-LTI-SNL) block structure by sandwiching a LTI block between two SNL

blocks respectively [37–40].

In order to capture the behaviour of the nonlinear system, the complexity of the model, can

even be increased either by connecting several branches in parallel e.g. as in parallel Wiener,

parallel Hammerstein or parallel Wiener-Hammerstein models [41–45] or by introducing the

feedback in the model structure as in [25, 46, 47]. Identi�cation and structure detection of

this class of models has been extensively studied in literature [17, 18, 30, 48–52].

1.3.3 Nonlinear state-space model

A physical interpretation of the system under test is not always required, for instance in

control or prediction problems. In that case, the user prefers a �exible and an easy-to-initialize

black box model with an ability to describe Multiple-Input Multiple-Output (MIMO) systems

in a compact manner. A state-space representation of the system is often a good choice,

because it ef�ciently captures the MIMO behaviour. A generalnth
a order discrete-time

state-space model is described by the following equations:

x(t + 1) = f (x(t);u(t))

y(t) = g(x(t);u(t)) (1.6)

with u(t) 2 Rnu the vector containing thenu inputs at timet, andy(t) 2 Rny the vector

containing theny outputs. The state vectorx(t) 2 Rna represents the memory of the system.

In this recent past, the black box identi�cation of nonlinear state space systems has

received quite some attention [53–55]. Nonlinear state space models can describe a wide

range of nonlinear systems [56–58]. They are a good candidate to model systems that exhibit

nonlinear feedback behaviour [25]. There exist approaches in the literature which convert
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the unstructured black box nonlinear state space models to structured ones [59], or use some

prior knowledge to impose grey-box structures in order to get a parsimonious model [60].

1.4 Continuous time or discrete time

Most of the real world systems are continuous time dynamical systems. Discrete time models

for the continuous time systems are used for many tasks, such as, control, simulation, and

estimation of system parameters (system identi�cation). For the modelling purpose, the input

and output signals are usually sampled. Thereafter, often a discrete time model is estimated

(as it is easier to run on a computer) from the sampled input and output data for the prediction,

simulation or discrete time controller design purposes.

For any non-zero sampling period, there is always a loss of information, which is

associated with the use of the discrete time representation of the continuous time systems.

In the time domain, the inter-sample (the time between the sampling instants) behaviour of

signals (measured) is unknown, whereas in the frequency domain, high frequency signal

components will fold back to low frequencies, which makes them impossible to distinguish.

This loss of information between thesampling instantsis one of the key differences between

the discrete time and continuous time systems.

The discrete time representation of any continuous time system can be developed either

under zero-order hold, �rst order hold, generalised hold [61] or bandlimited measurement

assumptions. The nature of the measurement assumption will affect the �nal approximation

errors between two representation of the system, which is under consideration. Under

zero-order hold measurement assumptions, it is not always possible to represent a sampled

continuous time system, using a discrete time model with the same model structure. This

is especially true for the nonlinear systems. However, under bandlimited measurement

assumptions, the approximation error can be made arbitrarily small if the input and output

signals are sampled suf�ciently fast [62].

The problem of identifying a discrete time model for sampled deterministic (stochastic)

continuous time linear (nonlinear) systems and associated approximation errors is already

very well studied in [63–70]. The identi�cation of the sampled Volterra systems is studied in

[71]. Further details on this issue can be found in Chapter 2 and Chapter 3.

1.5 Organisation of the thesis

As mentioned before, this thesis is divided into two main parts. The �rst part of the thesis

deals with more fundamental questions related to the discrete time modelling of continuous
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time dynamical systems, whereas the main emphasis of the second part of the thesis is on the

discrete time modelling of lithium-ion batteries. In the section below, the research objectives

(motivation) of both parts are explained brie�y and an outline is provided.

1.5.1 Research objectives and outline of Part-I

The major objective of Part-I of this work is to understand and answer the below-mentioned

questions for both linear and nonlinear systems.

• What issues are important, when identifying a discrete time model to represent

a system, especially under bandlimited measurement assumptions?

• How to design a measurement methodology to identify a discrete time model

for continuous time systems under bandlimited assumptions ?

• How do the results on discrete time identi�cation of linear systems apply to

nonlinear systems, and how can they be generalised or extended to the nonlinear

systems?

In order to achieve the above stated objectives, the following contributions have been

made in this dissertation.

• In Chapter 2, a measurement methodology to analyse the approximation errors made

during the identi�cation of a discrete time model of a continuous time linear system

under the bandlimited measurement assumptions is proposed. A theoretical analysis is

presented to understand the nature of the errors. It has been discussed in details, how

various experimental factors can be modi�ed to control the errors. Finally, laboratory

experiments are performed for the validation of the hypothesis.

The content of the Chapter 2 has been published as a journal article:

– R. Relan and J. Schoukens. Recursive Discrete-Time Models for Continuous-

Time Systems Under Band-Limited Assumptions.IEEE Transactions on Instru-

mentation and Measurement, 65(3):713–723, 2016.

and also presented in the peer-reviewed conferences

– R. Relan and J Schoukens. Output error bounds for discrete-time models with

forced delay under band-limited assumptions: An experimental study. InIEEE

International Instrumentation and Measurement Technology Conference (I2MTC
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2015) Proceedings, pages 228–233, Palazzo dei Congressi, Pisa, Italy, May 2015.

IEEE.

– J. Schoukens, M. Vaes, A.F. Esfahani, and R. Relan. Challenges in the identi-

�cation of discrete time block oriented models for continuous time nonlinear

systems.IFAC-PapersOnLine, 48(28):596–601, 2015 (Invited paper).

• In Chapter 3, �rst the classical ZoH and BL signal assumptions are uni�ed in the

more general concept of low pass (LP) signals with a relative degreed. It is shown

that, this property is an invariant for a wide class of nonlinear systems. Thereafter,

building on the understanding gained on the nature of the approximation errors for

discrete time model identi�cation of the linear system under bandlimited assumptions

and the LP signal class, the problem of modelling continuous time nonlinear (closed

loop) systems using a discrete time recursive model is studied and the error bound

on recursive discrete time models for continuous time systems is given. Finally, the

experiments are performed to validate (qualitatively) the theory.

The content of the Chapter 3 has been accepted for publication in the proceedings of

the IFAC WC 2017.

– R. Relan, K. Tiels, J. M. Timmermans, and J. Schoukens. Estimation of Best

Linear Approximation from Varying Operating Conditions for the Identi�cation

of a Li-ion Battery Model. In20th IFAC World Congress Proceedings, pages

454–459, Toulouse, France, July 2017. IFAC.

1.5.2 Research motivation and organisation of Part-II

The second part of the dissertation work has been impelled by a collaborative IWT-Strategisch

basisonderzoek (SBO) research project "BATTLE: Battery Modelling of Lithium Chemistries

Based on an Eclectic Approach" with local as well as international partner companies. To

obtain a fundamental understanding of the short term and the long term dynamics (see

Chapter 4 for details) of the battery during different operating conditions; simulations of the

battery's mathematical model are employed as an effective tool.

The BATTLE project aims to introduce a high performance interdisciplinary battery

modelling unit (by combining different dedicated models from different domains) that can

be used to address a diverse set of phenomena occurring on an electrode/electrolyte level and

on a cell level. Hence, in the framework of this project, different partners are responsible for

developing dedicated electrical, thermal, electrochemical and mechanical (considering the

fatigue induced factors) battery models.

http://etec.vub.ac.be/battle/
http://etec.vub.ac.be/battle/
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In the context of this dissertation key issues observable over a short time scale, such

as electrical and thermal responses of the battery are examined. Based on the initial

analysis of the battery's electrical response different data driven techniques have been

employed for modelling the battery's short term electrical response.

• In Chapter 4, a brief introduction to Li-ion battery technology and its working is

provided. Furthermore the state of art battery models are discussed. In the end, the

scope of Part-II of the dissertation and the contributions are clearly stated.

• In Chapter 5, a frequency domain methodology to analyse nonparametrically the

short term electrical response of the battery is discussed. This analysis is the �rst

step towards the development of a comprehensive data-driven modelling approach for

modelling battery's short-term response.

Further in the chapter, the details about the assumptions about signal class, system class

etc. are clearly stated. An overview about the experiment design and data acquisition

system is also provided.

The content of the Chapter 5 was published as a peer-reviewed conference article:

– R. Relan, Y. Firouz, L. Vanbeylen, J. M. Timmermans, and J. Schoukens. Non-

parametric analysis of the short-term electrical response of Li-ion battery cells.

In 2016 Indian Control Conference (ICC), pages 1–6, Jan 2016. doi: 10.1109/

INDIANCC.2016.7441097.

• In Chapter 6, the de�nition of the Best Linear Approximation (BLA) is provided.

This tool will then be used to estimate the linear dynamics in the presence of the

nonlinear distortions, that are present in the battery system around an operating point.

Both nonparametric and parametric methods to estimate the BLA are discussed in this

chapter.

Impact of various operating conditions such as temperature, input current pro�le RMS

value and SoC is also studied in this chapter. Finally the a method to estimate the BLA

from the data acquired from multiple operating conditions is described.

Some of the results obtained in Chapter 6 have been published or accepted for publica-

tions in the following articles:

– Y. Firouz, R. Relan, J. M. Timmermans, N. Omar, P. van den Bossche, and

J. van Mierlo. Advanced lithium ion battery modeling and nonlinear analysis
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based on robust method in frequency domain: Nonlinear characterization and

non-parametric modeling.Energy, 106:602 – 617, 2016. ISSN 0360-5442. doi:

http://dx.doi.org/10.1016/j.energy.2016.03.028.

– R. Relan, K. Tiels, J. M. Timmermans, and J. Schoukens. Estimation of Best

Linear Approximation from Varying Operating Conditions for the Identi�cation

of a Li-ion Battery Model. In20th IFAC World Congress Proceedings, pages

454–459, Toulouse, France, July 2017. IFAC.

– R. Relan, K. Tiels, J. M. Timmermans, and J. Schoukens. A local polynomial

approach to nonparametric estimation of the best linear approximation of lithium-

ion battery from multiple datasets.IEEE Control Systems Letters, 1:182–187,

2017.

– R. Relan, K. Tiels, J. M. Timmermans, and Johan Schoukens, A Local Polynomial

Approach to Nonparametric Estimation of the Best Linear Approximation of

Lithium-Ion Battery from Multiple Datasets.56th IEEE Conference on Decision

and Control (CDC), 2017, Melbourne, Australia.

• In Chapter 7, for the �rst time nonlinear identi�cation method to estimate the poly-

nomial nonlinear state-space model for the battery's short-term electrical response is

discussed. Along with the assumptions made, a comprehensive introduction about

the model structure, parametrisation, initialisation and optimisation framework is also

provided.

Some of the results obtained in Chapter 7 have been published in the following articles:

– R. Relan, Y. Firouz, J. M. Timmermans, and J. Schoukens. Data-driven nonlinear

identi�cation of li-ion battery based on a frequency domain nonparametric analy-

sis. IEEE Transactions on Control Systems Technology, 25(5):1825–1832, Sept

2017. ISSN 1063-6536. doi: 10.1109/TCST.2016.2616380.

– R. Relan, K. Tiels, and J. Schoukens. Dealing with Transients due to Multiple

Experiments in Nonlinear System Identi�cation.IFAC-PapersOnLine, 49:181

– 186, 2016. 12th IFAC Workshop on Adaptation and Learning in Control and

Signal Processing, The Netherlands.

Furthermore an article about the nonlinear modelling of battery's short term electrical

response using the data obtained from multiple operating conditions is under review

– R. Relan, K. Tiels, J. M. Timmermans, and J. Schoukens. Using the Best Linear

Approximation for the Identi�cation of a Polynomial Nonlinear State-Space
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Model of Li-ion Battery from Multiple Datasets.IEEE Control Systems Letters,

2017.

• Finally in Chapter 8, the overall conclusions of the thesis and some future research

directions are discussed.



Part I

Data driven discrete time identi�cation

of the continuous time nonlinear systems





Chapter 2

Discrete time modelling of continuous

time dynamical systems

The purpose of models is not to �t the data but to sharpen the questions.

Samuel Karlin

Discrete time models are very convenient to simulate a dynamical (linear or nonlinear)

system on a computer. For example, in order to build the discrete time simulation models

for the nonlinear feedback systems (see further for proper description), which is a very

important class of systems in many applications. The output of a nonlinear feedback system

(e.g. the Luré system: a linear time invariant (LTI) plant in the forward path is connected to a

static nonlinearity in the feedback path) with a slight abuse of the notation can be written

asy(t) = g1(u(t);y(t)) , whereu(t) andy(t) are the input and output of the system at time

instantt andg1 is an operator respectively.

To simulate such a system on a computer one has to solve at each time step a nonlinear

algebraic loop fory(t). If a delay is present in the loop i.e if the system output can be written

asy(t) = g2(u(t);y(t � 1)) or in other words, if the direct term of the model is explicitly

set equal to0, fast simulation models can be identi�ed and the need to solve the nonlinear

differential-algebraic (DAE) equations is removed.

In this chapter, a theoretical analysis is provided, in order to understand the nature of the

approximation errors which are made, while modelling the continuous time system using

the discrete time representation with the direct term equal to zero. The theoretical error

bounds for the such discrete time models under bandlimited signal assumptions are calculated.

Furthermore, a measurement methodology is proposed for the identi�cation of such models

as well as qualitative validation of the output error bounds experimentally.
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2.1 Discrete time modelling

Modern measurement instruments make frequent use of advanced signal processing and

control algorithms that are designed as well as implemented using discrete time models. Since

most of the real-world systems evolve in continuous time, it should be carefully checked,

if a discrete-time model can be used to describe such systems, and what errors might be

created in the discretisation step. Especially under the bandlimited assumption (signals have

no power above a given maximum frequency, for example measurements using anti-alias

protection) this question becomes important.

While for the linear systems, the error mechanism related to the discretisation step is well

understood, it turns out that, it is not obvious how to quantify these errors for the nonlinear

systems. This problem is addressed in this dissertation. In this chapter, �rst the nature of the

error for the systems with direct term forced to zero is analysed theoretically, and using these

insights, it is shown how the measurement procedures can be designed in order to keep the

error below the user speci�ed level by making a proper choice for the sampling frequency.

2.1.1 Sampled data models: general remarks

Identi�cation of continuous time systems from sampled data [80] is a problem of considerable

importance in the control system community. These discrete time representations of the

continuous time system can be developed under ZoH or BL assumption of the inter-sample

behaviour [81]. In linear system identi�cation, it is well known that a continuous time

system that is excited by a ZoH can be replaced by a discrete time model that gives an exact

description of the discrete time input-output relations at the sampling instances [15, 16, 82–

85].

This argument that there exists an exact discrete time representation for dynamical

systems may however, lead to a false sense of security when using sampled data as the

pole-zeros patterns of the discrete time systems may not be similar due to the presence

of the extra zeros called,sampling zeros, in the associated discrete time transfer function.

These extrasampling zerosare a consequence of the sampling process. These zeros have no

counterpart in the underlying deterministic continuous time model [86].

In principle, this problem (the discrete time modelling and simulation of the continuous

time systems) can be tackled by utilising dedicated numeric (integration) solvers. Researchers

and engineers in the control engineering community tend to use or prefer the Euler inte-

gration method for integrating the continuous time system without fully understanding the

repercussions of it. To fully understand the argument, �rst, the de�nition of the relative

degree of a dynamical system is given below.
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De�nition 2.1.1: Relative degree

The relative degree of a continuous time LTI transfer function describes the smoothness

of the system output. It corresponds to the number of times that the output has to be

differentiated to make the input appear explicitly. It is represented by the difference

in the degree of the numerator and the denominator polynomials of a LTI transfer

function.

Remark 2.1.1: Relative degree for nonlinear systems

The same notion can be extended to the nonlinear system usingLie Algebra. Note the

nonlinear system can have state-dependent relative degree [87].

It has been shown by Goodwin and his co-authors that with fast sampling the Euler model

(termed as simple derivative replacement (SDR) model) has the smallest relative errors up

to a frequency which is around ten times the frequencies of the open loop poles and zeros

[88, 61]. Thus, one is allowed to use the Euler model with con�dence provided one samples

quickly but the bandwidth of operation of these model is restricted to about10 times the

location of the open loop poles and zeros.

At higher frequencies, the relative error of Euler models converges to order1 when

the relative degree is even. On the other hand, the model using asymptotic sampling zeros

gives good performance up to the vicinity of the folding frequency but diverges to¥ at p=D,

whereD is the sampling time, for even relative degree. The model with corrected asymptotic

sampling zero has relative errors that are of the order ofD in all cases.

As it has been shown by Goodwin and co-authors in [89] all transfer functions of relative

degreer have response of orderDr at the sampling frequency. Take, for example the case of

a continuous time system,1
sr . Then, at frequencyw = p=D, the magnitude of the continuous-

time response isDr=pr . Hence, the relative error in such models does not go to zero asD

tends to zero for relative degree greater than or equal to two. This observation motivates

the search for approximate models that are more accurate than those obtained by Euler

integration.

A further idea for achieving a more accurate sampled-data model is to append the

asymptotic sampling zeros to the Euler approximate model. These approximate model

achieve the objective of having its relative errors go to zero asDapproaches zero. For a good

overview on this topic the reader is referred to the plenary paper of Goodwin [69]. The issue

of sampling zerosis of lesser relevance here because for the purpose of this study, the focus

is on the input-output behaviour of the underlying system at the discrete time samples.
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Similarly, the result for the ZoH measurement setup and other integration methods

such asTruncated Taylor Series Approximate Models[89] might sometimes be extended to

some speci�c nonlinear open-loop systems like Wiener, Hammerstein, Hammerstein-Wiener

[29, 31, 39, 90] but it does no longer hold in general.

For example nonlinear feedback systems (see further for more explanations) or nonlinear

systems with cascaded dynamics (e.g. Wiener or Hammerstein connected in series) have no

exact discrete time equivalent because the ZoH-nature is lost inside the nonlinear loop or

the cascade as will be explained later (see Section 2.2). For that reason, the approximation

of continuous time nonlinear systems by discrete time models has been studied for a long

time [29, 91, 92]. Further in-depth information about the sampled data models for linear

(nonlinear) deterministic (stochastic) systems with different sample and hold characterisations

can be found in [61, 88, 89, 93–97] and the references mentioned therein.

2.2 Measurement assumptions

As mentioned above the discrete time models for the dynamical systems can be developed

under different assumptions of the measurement set-up, e.g. the ZoH, the FoH and the

BL measurement setup and it has been shown in the literature that different models arise

when using different measurement set-ups [11, 89]. In the section below, this issue has

been elaborated further and it has been discussed how under the bandlimited measurement

assumptions, the discrete time models for the continuous time dynamical system can be

developed.

Linear systems

For the LTI system, this problem has been well studied. In this section below, two of the

most common measurement setups for the identi�cation of the LTI discrete time model are

brie�y described.

Zero-order hold measurement set-up

In the case of a ZoH measurement set-up, as shown in Figure 2.1, the output of the linear-time

invariant (LTI) system can be described using the discrete-time representation [16]:

y(t) =
¥

å
k= 1

g(k)u(t � k) (2.1)

whereg(k) is the impulse response of the LTI system.
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Fig. 2.1 ZoH measurement set up

Bandlimited measurement set up

For the bandlimited measurement setup, as shown in Figure 2.2, the discrete-time representa-

tion of the LTI system can be written as

y(t) =
¥

å
k= 0

g(k)u(t � k)

= g(0)u(t)+
¥

å
k= 1

g(k)u(t � k) (2.2)

It can be seen in (2.1), that it does not contain any direct term i.eg(0) term. This kind

of representation is very popular in discrete time control systems whereas the discrete-time

representation (2.2) contains the direct-term. This kind of model representation is very

popular in the digital signal processing community and it is more appropriate for simulation

as well as measurement applications [11, 12].

Nonlinear systems

One would reasonably expect similar arguments to hold for the nonlinear systems. However,

the situation for the nonlinear case is more complex than for the linear systems. In the case

of a ZoH measurement set-up, one would like to write the output of the system as:

y(t) = g1(ut� 1;yt� 1) (2.3)
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Fig. 2.2 Band-limited measurement set-up

whereut = [ u(t);u(t � 1); ::::::u(1)] andyt = [ y(t);y(t � 1); ::::::y(1)]. In general this does

not hold true for e.g. nonlinear feedback systems.

Nonlinear feedback systems

In the case of nonlinear feedback systems (system with linear dynamic block in the feedfor-

ward path and a static nonlinearity in the feedback path, see further for details), (2.3) becomes

y(t) = g2(ut ;yt) and one needs to solve nonlinear algebraic loops due to the presence of a

direct-term. Also for the bandlimited measurement set-up similar constraints exist. The

questions which one would like to raise is:

• whether it is possible to approximatey(t) = g1(ut ;yt) by y(t) = g1(ut� 1;yt� 1),

• and how the approximation error depends on the experimental conditions.

Consider for example a nonlinear feedback system as shown in Figure 2.3, whereGc(s)

is a Laplace transfer function between the input signalxc(t) and the output signalyc(t). The

memoryless/static nonlinearity in the feedback loop is represented byf (� ). Many electrical,

electronic and physical systems, e.g. oscillators [98], biomedical [99] and mechanical

systems [100–102], contain in an implicit manner, a nonlinear feedback loop and can be

described using the similar model structure.
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Fig. 2.3 Nonlinear feedback system: continuous time

Fig. 2.4 Nonlinear feedback system: discrete time

Figure 2.4 shows a possible model structure for a discrete time representation of the

continuous time system in Figure 2.3. For a bandlimited input signaluc(t) (see later for a

precise de�nition), the linear systemGc(s) can be approximated by a discrete time model:

yd(t) =
¥

å
k= 0

gd(k)xd(t � k); (2.4)

provided that the sampling frequencyfs is suf�ciently high such that the aliasing errors are

acceptably small. For a given sampling periodTs = 1
fs

, the discrete time signalsu andy can

be represented as

ud(k) = uc(kTs) ; yd(k) = yc(kTs): (2.5)

The output of the discrete-time model described by Figure 2.4 can be written as

yd(t) = gd(q;q)(ud(t) � f (yd(t))) : (2.6)
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whereq� 1 is the backward shift operator. This is an example of a nonlinear algebraic loop

[103], which implies that a set of nonlinear differential-algebraic equations (DAE) should be

solved at each time step in order to calculate the model output.

Again the main disadvantage of using a numerical integration solver for nonlinear alge-

braic loop is, that it can have multiple solutions. In fact, it is even possible that no solution

exists [104]. Moreover, it is a very time consuming approach as well as the robustness of the

obtained solution can not be guaranteed [105, 106]. Therefore these approaches are not well

suited for real-time applications.

In addition to that in the control engineering community, in order to deal with the

problem, many discrete time modelling approaches implicitly assume that the direct term

is equal to zero. Interested readers are referred to the Section 2.1.1 for a brief introduction

to the literature dealing with the issues of sampled data models within the control system

community.

The identi�cation of block-oriented nonlinear feedback models shown in Figures 2.3

and 2.4 received considerably less attention and still is in its infancy. This issue of (how to

avoid) nonlinear algebraic loop has not been tackled before by the community interested in

the block-oriented modelling. The authors in [46, 107, 108] used a block-oriented nonlinear

feedback structure to model a microwave crystal detector RF application, but it turns out that

in that work, the nonlinear algebraic loop created convergence problems for larger inputs.

In order to avoid the nonlinear algebraic loops while developing the discrete time

nonlinear-LFR (linear fractional representation) model (another representation of nonlinear

feedback system), the authors in [47, 109–112] assumed that one sample delay is present

implicitly in the loop, or in other words the direct feed-through term is0. The authors did not

check the validity (neither theoretically nor experimentally) of their assumption. As stated

above, the assumption that the delay is present in the loop is not valid assumption under

different measurement settings.

The authors in [113] proposed a solution by means of geometrical transformation of the

nonlinearities and algebraic transformation of the time-dependent equations in order to deal

with algebraic loops in nonlinear acoustic systems. This approach may not be optimal for

fast simulation models intended for real-time scenarios.

Hence, the main idea in this work is to show under which experimental conditions and

constraints one can develop a fast discrete time simulation model. To do this in a simple way,

one sample delay for the linear block will be imposed or, equivalentlyg(0) in (2.4) will be

set to zero. Taking into account the imposed delay, the following model equation is obtained:
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yd(t) =
¥

å
k= 1

gd(k)xd(t � k)

xd(t) = ud(t) � f (yd(t))

yd(t) =
¥

å
k= 1

gd(k)(ud(t � k) � f (yd(t � k)) (2.7)

Under the bandlimited assumption this discrete time representation does not contain any

direct term and for �nite limits of summation it is recursive in nature. Hence fast discrete

time simulation models by forcing the direct-term of the identi�ed model equal to0 (i.e. by

introducing explicitly a delay in to the loop) can be developed. In order to do this, some

associated questions need to be answered:

• How to quantify the errors associated with the approximated models ?

• What are the different factors/parameters which can in�uence the errors ?

• How can one keep the error in the approximated model small enough by choosing

the appropriate experimental conditions ?

In order to answer these questions, in this work, a measurement approach to analyse and

bound the output error of the developed discrete time model for bandlimited measurements is

proposed. The rest of the chapter is organized as follows. Section 2.3 formalises the problem

statement and provides a comprehensive theoretical analysis of the errors associated with

approximated linear discrete-time models with direct-term equal to0. Section 2.4 gives

an overview of an experimental investigation performed in order to validate the theoretical

error bounds qualitatively for the linear dynamical system and conclusions are formulated in

Section 2.5.

2.3 Theoretical analysis

It has been pointed out in the previous section that the linear models identi�ed under ZoH

measurement assumption do no contain the direct term (see also (2.1)) but most of the

assumptions for ZoH measurement set-up do not hold true for nonlinear dynamical systems,

including networked dynamical systems, as the signals in the loop are no longer ZoH. Hence,

it is important to consider discrete time models under bandlimited measurement assumptions.
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Even under bandlimited assumptions, an arbitrary good discrete time representation of

the underlying continuous time system can be retrieved. However, in that case, due to the

presence of the non-zero direct term, the impulse response will depart very slowly from zero.

The direct term in the discrete time representation of such continuous time models will be

small, and will diminish to zero as the sampling frequency is increased.

The main emphasis of this study is to analyse the impact of explicitly setting this term

to zero. The resulting error will not only depend on the signal properties (bandlimited in

this study), but also on therelative degreeof the underlying continuous time system. In this

section, a thorough theoretical analysis using the measurement methodology proposed by

[72] and as shown in Figure 2.5 is provided.

2.3.1 Proposed methodology

Fig. 2.5 Proposed methodology for the error quanti�cation. Please note thatFc(s) �lter is
explicitly placed before the system under consideration.

The aim in this study is to identify the discrete-time modelGd(k), with direct-termgd(0)

forced equal to 0, from the sampled measurementsu(kTs), y(kTs) of the continuous-time plant

Gc(s), with input signaluc and output signalyc, under bandlimited measurement conditions.

Ts is the sampling period.

The input signaluc can be an output from an actuator or a generator �lterFc(s) which

in turns can be excited by an arbitrary signal, e.g. white noise, random-phase multisines or

any ZoH. Please notice that, in this measurement methodology, the generator �lterFc(s) is
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explicitly placed in front of the plant to be identi�ed. The main aspects which can in�uence

the magnitude of the error in the output signal of the identi�ed discrete time model are:

• Is it possible to make an accurate prediction about the future inputuc given its

past sampled values i.e. ˆuc(tjt � 1) ?

• How much is the errore(t) that would be introduced in case one can not make a

perfect or accurate enough prediction of the input i.e.uc(t) = ûc(t) + e(t) ?

• What is the in�uence of the error in the one-step ahead predictionûc(tjt � 1)

and of the directgd(0)ûc(t) term on the �nal output signal of the discrete-time

model i.e. ˆy(t) in (2.2) ?

The reasoning mentioned above holds equally true in the case of block-oriented nonlinear

feedback models as discussed in Section 2.2, because there are bandlimited signals in the

loop, hence it is enough for one system to have a delay to break the nonlinear algebraic loop.

Hence, the �rst step in the analysis is to quantify the error in the one-step ahead prediction

of the input signaluc(t). Next its effect on the system's output is analysed. In this next

section, �rst a brief introduction to the bandlimited signals and processes is given. Thereafter,

to address the problem, the following steps mentioned below will be taken.

1. Quanti�cation of the one-step ahead prediction error in the case of a perfectly

BL signaluc(t),

2. Quanti�cation of the one-step ahead prediction error in the case of an actual BL

signaluc(t), e.g., �ltered ZoH signal,

3. Quanti�cation of the error in the �nal output signaly(t).

2.3.2 One step ahead prediction of a bandlimitedu(t)

In this section, the theoretical aspects related to the one-step ahead prediction of the perfectly

BL and the actual BL signals are brie�y discussed. Furthermore, the error bounds associated

with the prediction are calculated.
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Fig. 2.6 Power spectrum of an ideal bandlimited signal

De�nition 2.3.1: Band-limited signals and processes

A signal is said to be BL (perfectly) if the amplitude of its spectrum goes to zero for

all frequencies beyond some threshold called the cut-off frequency i.e.,U( jw) = 0 for

jwj > wB. A wide sense stationary (WSS) random process is termed BL if its power

spectral density (PSD) is BL, i.e.,Sucuc( jw) = 0 for jwj > wB is zero for frequencies

outside some �nite band. The power spectrum of a perfectly BL signal is shown in

Figure 2.6.

Error quanti�cation: Perfectly bandlimited signal

An interesting problem in linear-prediction theory is the following: Letuc(t) be a real

continuous-time signal, bandlimited to the regionjwj � wB or in other words consider a

stationary stochastic processuc(t) with power spectrum

S(w) = 0 for jwj > wB =
p
T

;where T is the Nyquist rate (2.8)

Then, what is the smallest sampling frequencyfs, which will enable us to predict the

present sample valuesuc(nTs) (where, Ts represents the sampling period), based on a

�nite number of past samples with an arbitrarily small (pre-speci�ed) error, and with

predictor coef�cients independent of the signaluc(t)?
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For an arbitrary positive numbere > 0, one can �nd a set of conditions such that

ûc(t) =
nn

å
1

annuc(t � nT1); (2.9)
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uc(t) �
nn

å
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annuc(t � nT1)

! 
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#

< e1: (2.10)

Here T1 is less than Nyquist rateT i.e T1 < T . For bandlimited processes with absolutely

continuous spectral measure i.e., processes with spectral density, Wainstein and Zubakov

[114] proved that, if the sampling rate is increased at least three times above the Nyquist

rate, a bandlimited process can be predicted with arbitrarily small error from its past samples

using an universal formula (see (2.10)) for the predictor.

A better result in this direction is [115], where a similar predictor is constructed when

the samples are taken at twice the Nyquist rate. This sequence of predictors converges with

exponential rate. However, it could be more dif�cult to �nd explicit coef�cients for the

predictor. These results were further improved by Splettstösser [116] in 1982, who showed

that this kind of prediction is possible even with the sampling frequency equal to1:5 times

the Nyquist frequency.

Brown [115] and Splettstösser [116] have also observed that, it is theoretically possible

to predict the samples ofuc(t) in the above manner, as long as the sampling frequency is

larger than the Nyquist rate by any arbitrarily small amounte2 > 0. This observation has also

been made by Papoulis [117] who has given a different proof showing that the greatest lower

bound of the prediction error (G.L.B.E) is zero.

G:L:B:E
ann
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uc(t) �
¥

å
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annuc(t � nT1)

! 





2

#)

= 0: (2.11)

Further references, and proofs can be found in [118],[119], and the references contained

therein. The result presented in [119] and [117] are in fact particular cases of [120]. This

discussion concludes that a bandlimited signal can be perfectly predicted from its past values

(samples) provided that the sampling frequencyfs is larger that the Nyquist rate by any

arbitrarily small amounte > 0.

Error quanti�cation: Low-pass �ltered signal

In practice, it is impossible to have a perfectly bandlimited signal. In practice, a bandlimited

signaluc(t) can be considered to be made of two parts:ubl(t) a part of the signal which

can be perfectly predicted, andue(t) which can not be predicted or remains unexplained as
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shown in Figure 2.7

uc(t) = ubl(t) + ue(t)

Fig. 2.7 Power spectrum of an actual bandlimited signal

Therefore the lower bound of the one-step ahead prediction error would be:

E
�
e(t)2�

� E
�
ue(t)2�

(2.12)

Further in the discussion below a concise theoretical explanation is given to quantify as well

as to identify the factors associated with the error in a one-step ahead prediction of an actual

bandlimited signal.

One-step ahead prediction of an actual bandlimitedu(t)

Fig. 2.8 Setup for the analysis of one-step ahead prediction of a bandlimited signal
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Consider the case of a low pass �lterFc(s) shown in Figure 2.8 for example, a Butterworth

or a Chebyshev �lter of ordern, with cut-off frequencyfc, excited by white noise input

signal.

Fig. 2.9 Representation of the error in an actual bandlimted signal

From the literature it is a well known fact that, the gain of the low-pass �lter in the roll-off

region varies as a factor of �
f
fc

� � n

�

�
�
�
�Fc

�
f
fc

� �
�
�
� ;

where f is the frequency of the signal,fc is the cut-off frequency, andn the �lter order (see

Figure 2.9). The �lter roll-off beyond the cut-off frequency is usually de�ned in dB/decade.

Filtered white noise The Power (Pueue) contained in the unexplained part of a bandlimited

signal generated by �ltering a white noise signal can be calculated by integrating the signal

over the frequency band[ fs � fc;¥ [ i.e.

Pueue �= 2
� ¥

fs� fc

�
fc
f

� 2n

d f

�=
2fc

2n� 1

�
fc

fs � fc

� 2n� 1

�=
2fc

2n� 1

�
fc
fs

� 2n� 1

(2.13)
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becausefs � fc �= fs as fs � fc. From (2.13) it can be concluded that the power in the

unexplained part of the bandlimited signaluc(t) varies as

Pueue = O
�

fc
fs

� 2n� 1

(2.14)

ZoH white noise In the case of the ZoH, the signal is considered to be constant between

consecutive samples. As seen from the envelope in the Figure 2.10 [81] , the envelope of

Sucuc for f
fs

> 1 is ( f
fs

)� 2, hence the ZoH will create an additional roll-off and therefore it

will not increase the order of magnitude of the error given in (2.14) .

Fig. 2.10 Envelope of the ZoH Spectrum

Conclusion From the analysis above it can be concluded that

Pueue =
h
juc(t) � ûc(t)j

2
i

� O
�

fc
fs

� 2n� 1

(2.15)

for an all pole generator �lter/actuator, independent of the ZoH or BL measurement of the

signal.

The next step in the analysis of error is to observe the impact of the error in the one-step

ahead prediction ofuc(t) on the �nal outputy(t) of the discrete-time model. In the section

below, a concise theoretical explanation of the impact of the error inû(t) on the �nal output

ŷ(t) is provided.
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Error quanti�cation of the output of a linear system

For the purpose of quantifying the impact of the error inûc(t) on the �nal outputŷ(t) the

following assumptions are made:

Assumption 2.3.1

The data can be acquired at suf�ciently high sampling rates and effect of sampling

zeros, folding, etc. can be neglected.

Remark 2.3.1

This can also be resolved sometimes by virtually up-sampling the data. It must be

clearly understood that the virtual up-sampling of the measured data is not always a

solution to mitigate the effect of sampling zeros and folding. Hence the measurement

must be done at a suf�ciently high rate.

Fig. 2.11 Impulse response for the system with relative degree= 1. The dominant term is the
direct term.

Assumption 2.3.2

The discrete-time model representation of the continuous-time system with any arbi-

trary relative degree equal tod will be close to the impulse invariant transform (I.I.T)

[121–125] of the continuous time impulse response ford = 1;2, as shown in Figures

2.11 and 2.12 respectively.
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Fig. 2.12 Impulse response for the system with relative degree> 1 departs slowly from zero.

Remark 2.3.2

The theoretical analysis is based on the impulse invariant representation of the continu-

ous time system, but it is equally valid for any other discrete time model representation.

2.3.3 Impact Of the error in û(t) on the �nal output ŷ(t)

Using the initial-value theorem of the Laplace transform, the impulse responsegc(t) of the

continuous time system with relative degreed > 1 [126–128] meets

gc
d� 1(t)

�
�
�
t= 0

= 0 (2.16)

The output of the identi�ed discrete time model can be expressed as:

y(t) =
¥

å
k= 0

gd(k)ud(t � k)

�=
¥

å
k= 0

gc(kTs)ud(t � kTs) (2.17)

Wheregd(k) �= gc(kTs) due to the impulse invariant transformation. From (2.16) it follows

thatgd(0) will converge to zero ifd � 2, for fs ! ¥ . In the rest of this work, it is assumed

thatjgd(0)j < M, whereM is a bounded value of the response and ifd � 2 then lim
fs! ¥

M = 0.

The outputy(t) can further be expanded as described by (2.18), whereû(t) is the one-step

ahead prediction of the input signalu(t).
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ŷ(t) =
1
fs

gd(0)ûc(t) +
1
fs

¥

å
k= 1

gd(kTs)ud(t � k) (2.18)

From (2.17) and (2.18), the error in the output signal can be written as

ye(t) = y(t) � ŷ(t)

=
1
fs

gd(0)ue(t) (2.19)

Furthermore the power contained in the output error signal can be expressed as

Pye =
�

1
fs

� 2

gd(0)2Pueue

=
�

1
fs

� 2

gd(0)2O
�

fc
fs

� 2n� 1

(2.20)

This implies that the root mean squared error inyeRMS is upper-bounded by

yeRMS�
1
fs

O
�

fc
fs

� n� 1
2

(2.21)

(2.20) and (2.21) above describe a relationship between the cut-off frequency of the generator

�lter, the sampling frequency and the error in the output as well as the unmodelled part of

the input signal respectively. In the next section a qualitative experimental investigation has

been performed to validate this theoretical analysis.

2.4 Experimental Veri�cation

In order to validate the theoretical results qualitatively, real-world experimental investigations

were performed. In the sections below, �rst the measurement set-up is introduced, next the

experiment design is explained, and �nally the results are discussed. The �ndings of the

results has been already presented in the [72].

2.4.1 Measurement Set-up

Linear System

Figure 2.13 demonstrates the schematic of the experimental set-up and the measurement

architecture for this validation study. For the sake of simplicity aR� C �lter is selected as
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Fig. 2.13 Experimental set-up

the continuous-time plant to be identi�ed in the experiment involving the identi�cation of a

linear system. Since in this case the relative degreed = 1, it is a worst case example because

g(0) will be the dominant term in the impulse response. In general, it can be any other real

continuous-time system.xc(t) denotes the ideal reference signal from the function generator

whereasuc(t) andyc(t) are the actual continuous time input and the output signal of the plant

respectively .

As shown in the measurement set-up in Figure 2.13, the signals are generated by an

arbitrary waveform generator (AWG) or function generator, the Agilent/HP E1445A, with

an internal reconstruction �lter that has a cut-off frequency at250kHz. The output of the

generator �lter is �ltered by a4th � order Wavetek Dual Hi/low pass (Model432) �lter with

a cut-off frequency of1000Hz. The input and output signals of the plant (analog RC Filter

with a cut-off frequency of 1kHz) are measured by the alias protected acquisition channels

(Agilent/HP E1430A).

The AWG and acquisition cards are clocked by the AWG clock, and hence the acquisition

is phase coherent to the AWG. Finally, buffers are added between the acquisition cards and

the input and output of the device under test (DUT) to impose impedance isolation of the

signals. The buffers are added to match the50Winput impedance of the Agilent/HP E1430A

VXI modules acquisition channels to a high impedance input. The buffers are very linear (�

85dBc at full scale and1 MHz) up to10V peak to peak, and have an input impedance of1

MWand a 50Woutput impedance.
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2.4.2 Experiment Design

A normally distributed noise signal (white noise) is used as an input excitation signal for the

identi�cation of the linear model. The choice of the input excitation signal is not restricted

to only this signal, rather one can also use any persistently exciting signal such as e.g. a

�at spectrum random phase multisine or a uniformly distributed noise signal as an input

excitation signal. The choice of a multisine excitation signal is generally made in order to

verify the level of the nonlinear distortions during the experiment. The excitation signal has

a period of78125samples. The level of the input excitation is zero mean with a standard

deviation 0:99 V for the the identi�cation of the linear models.

Remark 2.4.1: Model identi�cation

Even though the measurement set-up shown in Figure 2.13 points towards the errors-

in-variable (EIV) settings [129] but the level of the measurement noise on the input

was found to be signi�cantly lower therefore it can be neglected and we identify the

models in an output-error (OE) framework [16].

1. The one-step ahead prediction of the generator/actuator signalu(t):

For the one-step ahead prediction the data is acquired for ONE period at different

bandwidths of the generator �lter/actuator while keeping the sampling frequencyfs
constant at78:125kHz. For the sake of brevity an Auto-regressive with an exogenous

input (ARX) model structure [16] was chosen for the one-step ahead prediction and

the model orders ranging from1 to 1024were tested by doubling the model order at

every iteration. The one-step-ahead prediction is performed at different bandwidths of

the generator �lter for each model order.

2. Identi�cation of a discrete-time model based on the sampleduc(t) andyc(t):

Two periods of data are acquired at a sampling frequencyfs of 156.25 kHz for the

model identi�cation experiment at a constant generator �lter/actuator bandwidth. The

data is down-sampled virtually for identifying discrete-time models at the different

sampling frequencies. For the identi�cation of the discrete-time model, the OE model

structurey(ts) = B(q)
F(q) u(ts � nk) + e(ts) is chosen, herey(ts) is the output of the model,

u(ts) is the input to the model ande(ts) is the error term at the sampled time indexts.

The termnb is the order of theB polynomial+ 1, nf is the order of theF polynomial

andnk is the input delay, which is expressed as the number of samples which appears

as leading zeros of theB polynomial.
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During the identi�cation of the model withB0 = 0, the complexity (order) of the model

was slightly increased (numeratornb = 2, denominatornf = 5 from numeratornb = 2,

denominatornf = 2 with B0 term intact) to account for the extra dynamics which needs

to be accommodated due to the periodic repetition caused by the sampling process,

sampling zeros(if any?) and not perfectly bandlimited nature of the measurements.

2.4.3 Results

Figure 2.14 shows the evolution of the Root Mean Square Error (RMSE) in the one step ahead

prediction of an actual bandlimited signal for different model orders against the bandwidth of

the generator �lter/actuator. It can be clearly observed that the RMSE of the one-step ahead

prediction varies as a function of the generator �lter bandwidth and ultimately converges to

a constant (maximum) value. This result qualitatively supports the arguments made in the

section 2.3.2 (see equations (2.12) and (2.15).

Linear system
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Fig. 2.14 The one-step ahead prediction error of the ARX model structure at different
bandwidths of the generator �lter and at a �xed sampling frequencyfs = 78:125 kHz.
Different dashed colour lines represent different model orders and the head of the arrow point
towards the higher model order.

Figure 2.15 provides an explanation to the slight dip observed in the RMSE of the one-

step ahead prediction for low model orders at around1 kHz bandwidth of the generator �lter.
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It shows the spectral analysis performed using the Hanning window on the signals acquired

at different bandwidths of the generator �lter. It clearly shows that at the lower bandwidths of

the generator �lter, the signal-to-noise (SNR) is much lower than at the higher bandwidths.
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Fig. 2.15 The power spectrum of the measureduc at the different bandwidths of the generator
�lter for a �xed sampling frequencyfs = 78:125kHz. It is evident from the �gure that the
signal around the cut-off frequency (1kHz) of RC �lter is not persistently exciting (due to
poor SNR) for the identi�cation of the linear model

Figure 2.16 shows the frequency spectrum of the input and output signals of the linear

system and the results obtained from the identi�cation of the discrete time model for the

continuous time �rst order linear dynamical system with and without forcing the direct term

gd(0) = 0 are shown in Figure 2.17. It is clearly observed that the in�uence of explicitly forc-

ing the direct-termgd(0) = 0 diminishes very quickly, if the data are acquired at suf�ciently

high sampling frequencies.

It is clearly seen that the slope of the error curve withB0 = 0 is approximately�

� 75 dB/decade. The theoretical prediction made in Section 2.3.3, corresponds to� � 90

dB/decade because the1st� order linear system was excited by the white Gaussian noise

�ltered with a 4th� order low-pass �lter. The observed drop in error is slightly less than as

per the theoretical prediction. The reason behind this can easily be understood by carefully

looking at Figure 2.16, which clearly shows that the input excitation rolls off very slowly

above1 kHz. This is a violation of the low-pass assumption that is made in the developed
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Fig. 2.16 Spectrum of the input and output signals of the linear system

Fig. 2.17 Output error of the linear model with and without direct term. It can be seen that
eventually at a higher sampling frequency the model without the direct term approaches the
error bound of the model with the direct term.

theory, hence along with the presence of the measurement noise, it hinders the achievement

of the error bound predicted by the theory exactly.
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The RMSE of the discrete time model with forced delay term reduces very quickly with

respect to the sampling frequency and ultimately converges to the same minimum value

(lower bound) which is observed while keeping the direct term intact during the identi�cation

of discrete time model of a particular pre-speci�ed model order as well as model structure.

2.5 Conclusion

For developing more realistic discrete time models, often one has to work under bandlimited

assumptions as the ZoH assumptions do not hold at the output of the actuator that is driving

the system. In this chapter, a measurement approach for developing discrete time simulation

models with direct-termgd(0) equal to zero under the bandlimited measurement assumptions

is proposed. A theoretical expression involving the factors affecting the error bounds

associated with these kinds of linear models was also derived.

Results obtained from the experiments qualitatively support the theoretical reasoning

provided in the Section 2.3 which in-turn further extends our knowledge of the errors

associated with the discrete time models with forced delay under bandlimited assumptions.

It has been shown that how one can exploit the experimental conditions to come up with

such discrete time models with bounded output errors. The theoretical analysis and the

experimental investigation reveal that, to develop good discrete time models with quanti�ed

error bounds, it is important to choose a good generator �lter and explicitly introduce it

before the continuous time system to be identi�ed (as shown in Figure 2.5). The sampling

rates should be chosen adequately fast.

A suf�ciently accurate model can also be obtained by up-sampling the data virtually, even

if the data acquisition set up does not allow for very high sampling rates (please keep in mind,

this will not reduce the error due to aliasing, for deeper insights refer to 3). Furthermore,

the order of the identi�ed discrete time model can be increased to compensate for the error

introduced by explicitly forcing thegd(0) equal to zero to eliminate the need to solve the

algebraic loops explicitly at each time step. This measurement approach, as well as the

theoretical reasoning, is quite generic and can easily be applied or extended to a wide class

of dynamical systems including nonlinear systems (see Chapter 3 for further details).

Finally, the main advantage by following the proposed measurement methodology to

develop the discrete time models, the user will get an indication, how fast the error of such

models drops as a function of the sampling frequency.





Chapter 3

Approximating continuous time

nonlinear state-space models

All models are approximations. Essentially, all models are wrong, but some are

useful. However, the approximate nature of the model must always be borne in

mind.

George E.P. Box

In this chapter, the problem of approximating a continuous time nonlinear state space

model with an explicit discrete time state space model is discussed. In order to achieve this,

a two steps procedure is adapted. First the classical ZoH excitation signal assumption is

replaced by a more generic concept of low pass (LP) signals. It is shown that as opposed

to the ZoH property, the LP-property is maintained for a wide class of (non)linear systems,

including cascaded and closed loop systems. The second step builds on the results obtained

in Section 2.3 of Chapter 2, about the one step ahead prediction of bandlimited (BL) signals.

This result is generalised to the discrete time integration of LP-signals by introducing an

error bound that can be made arbitrarily small by increasing the sampling frequency.

Finally, both ideas are then combined to bound the approximation errors of an explicit

discrete time nonlinear state space representation for a continuous time nonlinear state

space model. The order of the decay of the approximation error as a function of the

sampling frequency is given. The results obtained are directly applicable to nonlinear system

identi�cation. The proposed theories are experimentally veri�ed on the identi�cation of a

closed loop nonlinear system using a discrete time nonlinear state space model.
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3.1 Introduction

As stated in Section 2.3 of Chapter 2, the approximation errors related to the sampled data

modelling problem is studied exhaustively by [69], and references therein. The authors

looked for an approximate discrete time representation of the continuous time systems, while

still operating in a ZoH-framework. Using thetruncated Taylor series approximate model,

they showed that the global �xed-time truncation error (the error when integrating over a

�xed time interval) drops to zero, at a decay rate proportional to the inverse of the sampling

frequencyfs [130].

This result lays a strong theoretical foundation for the popularly prevalent and successful

practice to identify explicit discrete time models for continuous time nonlinear systems using

a wide variety of methods like nonlinear state space models [54], nonlinear autoregressive

exogenous model (NARX) and nonlinear autoregressive moving average with exogenous

input (NARMAX) models [90], block-oriented identi�cation [39, 31]. However, the theoretic

results in [130] indicate that the discretisation error drops only at very slow rateO(1=fs).

Building on the understanding and the results obtained in Section 2.3 of Chapter 2, it is

shown here, that tighter error bounds can be obtained. To do so, the more general low-pass

(LP) assumption is proposed. ZoH-assumption is a special case under this assumption. The

LP-assumption guarantees that the high frequent signal power rolls off with frequency at a

given rate.

Proposition 3.1.1

In this chapter, it is shown that the LP-behaviour will be maintained under mild

conditions for a wide class of nonlinear systems. It will be shown that under these

low-pass conditions, a continuous time nonlinear state space can be approximated

by an explicit discrete time nonlinear state space model with a discretisation error

that drops as anO(1=f d� 0:5
s ), whered will depend on the nonlinear system or the

excitation LP characteristics.

Hence, the main goal of this chapter is to formalise these results, leading to the following

main contributions:
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• the introduction of the LP-signal assumption and studying its invariance for

static nonlinearities,

• showing that a continuous time nonlinear state space model can be approximated

arbitrary well by an explicit discrete time nonlinear state space model,

• illustrating the results on the identi�cation of a continuous time nonlinear closed

loop system.

3.2 Low-pass signals

As explained before, in this chapter, the class of ZoH-excitation signals is replaced by the

more general class of LP-excitation signals. First, a formal de�nition of these signals is given

below, thereafter it is shown that LP signals can be predicted one step ahead with an arbitrary

small error. Finally, the discretisation error of a continuous time (CT) integrator is studied as

this is the basic dynamic component in a CT nonlinear state space (CTNLSS) model.

3.2.1 Low-pass signal assumption

The power spectrum of the bandlimited signals (BL) above a given frequency is zero:

Suu(j f j> fmax) = 0 ([85, 11], see Section 2.3.1 for details). As shown in Section 2.3 of

Chapter 2, this turns out to be a very practical concept for system identi�cation and in signal

processing in general. For the purpose of nonlinear system identi�cation in general, this is

too restrictive. This strong BL requirement is relaxed here by using the concept of low-pass

excitation signals that is formalised in the following assumption.

Assumption 3.2.1: Lowpass signal (LP)

uLP(t) is a lowpass excitation of relative degreedu and bandwidthwc, if the amplitude

spectrumAu(w) (square root of the power spectrum) is anO(1=wdu) for w � wc, with

wc the upper frequency of the passband of the excitation. It is a lowpass excitation of

strict relative degreedu if O(1=wdu+ e) < Au(w) � O(1=wdu), 8e > 0.
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Remark 3.2.1

In support of the above stated assumption following statements are made:

• A ZoH signaluZoH is an LP-signal with a strict relative degreeduZoH = 1. This

follows directly from the fact that the frequency domain representation of a

ZoH results in a multiplication of the repeated spectrum with a sinc function:

sin(2p f =fs)=( f =fs) = O( f � 1
s ): (see Section 2.3.2 for details)

• The sum of two signalsu1;u2 with a strict relative degreedu has a relative degree

� du. A simple example isu2 = � u1 + ud , with ud a signal with relative degree

dd > du. In that caseu1 + u2 = ud > du. This increase of relative degree can not

appear, if both signals have a different strict relative degree.

• The sum of two signalsu1;u2 with a strict relative degreedu1 anddu2, with

du1 < du2 has a strict relative degreedu1.

The major advantage of this assumption is that, it will be maintained in many nonlinear

systems as explained later in this chapter (see Section 3.5 and Section 3.6 for details).

3.2.2 Error bound on the one-step-ahead prediction of a low-pass sig-

nal

As discussed in details in Section 2.3.2, the basic idea to bound the one-step ahead prediction

of an LP signal starts from the well known result that a BL-signalu(k) can be perfectly

predicted from its past valuesuk� 1 [117] using a linear predictorL: u(k) = L(uk� 1).

It is shown, that in practice, most signals are not perfectly BL, but the power spectrum at

the output drops to zero at a given rate forj f j> fmax and the excess powerSuu(j f j> fs=2)

creates an approximation error due to the aliasing effect, that can be made arbitrarily small by

choosing the sample frequencyfs signi�cantly higher thanfmax. It is proven in Section 2.3.3,

that for low pass �ltered white noise (low pass �lter with relative degreen), the RMS-error

of the aliasing error is anO(( fc
fs

)n� 0:5). This results eventually in the following theorem.
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Theorem 3.2.1: One-step-ahead prediction of a low-pass signal

Consider a LP-signalu(t), with relative degreedu � 1, and a bandwidthfc, is sampled

such that the discrete time signalud(k) = u( k
fs

) or ud(k) = u(kTs) whereTs = 1
fs

is the

sampling period. It is possible to make a one-step-ahead prediction ofud(k), using

a linear prediction �lterL that depends only on the past sampled values ofud, i.e.

ûd(k) = L(udk� 1), such that the RMS-error
p

Ef (u(k) � ûd(k))2g is anO(( fc
fs

)du� 0:5).

Proof: Follows directly from the calculation of the excess power of the LP signal as

shown in Section 2.3.3 and [62].

Remark 3.2.2

• It should be clearly understood that, this theorem guarantees that the relative

error on the signal spectrum in any �nite frequency band drops to zero for a

growing sampling frequency. This is because the error in the approximation is

due to the signal power above half the sampling frequency.

• The error bound is tight, because it is completely due to the aliased part of

the signal. Without any additional prior information, it is almost impossible to

describe that part of the signal, and hence it is impossible to predict its behaviour.

3.2.3 Sampled data integration of LP signals

The major problem to convert a nonlinear continuous time state space model into a discrete

time model, is the discrete time approximation of the continuous time integration. Authors

in [131] designed IIR-�lters that approximate a continuous time integrator arbitrary well in

a user de�ned bandwidth. The errors of this approximation can be tuned with an arbitrary

frequency weighting function that is adapted to the LP signal characteristic. The overall

integration error, for a given complexity of the digital �lter, is made arbitrary small by

increasing the sampling frequency.

This approach can be used in the following ways to obtain an explicit discrete time

nonlinear state space model:
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• Design an integrating discrete time �lter that meets the user speci�cations

(bandwidth, error). Next the direct term in this model is forced to zero by

replacingu(k) by its one-step-ahead prediction ˆud(k) = L(udk� 1).

• An alternative one step procedure imposes directly during the �lter design step

that the direct term should be equal to zero. Such a procedure combines in one

step the design of the linear prediction �lter and the integration �lter, resulting

in a lower complexity.

The lower error limit that can be achieved by using this procedure is again set by the

aliased power of the LP signal. This will lead to the RMS-error as speci�ed in Theorem

3.2.1. This discussion can eventually be formalised in the following theorem.

Theorem 3.2.2: Discrete time integration

Consider an LP-signalu with relative degreedu, that is sampled with a sample fre-

quencyfs, e.g. ud(k) = u(kTs): The CT integraluI (k) =
� kTs

t0
u(t)dt, wheret0 is the

initial sample time andkTS is �nal sample time; can be replaced by a causal DT �lter

without direct term within an RMS output error that is anO
�

1
fs

� du� 0:5
:

uI (k) = LI (udk� 1) + O
� 1

fs

� du� 0:5
(3.1)

Proof: The proof consists of two steps.

• Replacing the integral by a discrete time approximation :The authors in [131] showed

that a CT integrator, excited by a bandpass (BP) signal with a user de�ned bandwidth

can be approximated by a DT �lter arbitrary well . This result can be extended to a LP

signal, but with an additional alias error added, that is anO
�

1
fs

� du� 0:5
. It should be

noted that the direct term of this �lter is different from zero.

• Forcing the direct term equal to zero :In [62], Section III d, it is shown that for a

CT system with relative degreed � 1, the additional RMS error that is created by

forcing the direct term of the digital approximation equal to zero is bounded by
1
fs

O
��

fc
fs

� du� 0:5�
, wheredu is the relative of the low-pass �ltered signal �lter. This

shows that the additional error is an order of magnitude smaller than the aliasing error

of the �rst part which shows the theorem.
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Remark 3.2.3

• The error bound in Theorem 3.2.2 is again a tight bound, because the error is

bounded by the aliasing effect.

• In practice, the user might be satis�ed by a suf�ciently small error. In that case,

an increase in the sample frequency can be balanced against the complexity

of the discrete time �lter. The higher the sampling frequency, the simpler the

integrating �lter LI (uk� 1) can be chosen.

3.3 Discrete time approximation of continuous time non-

linear state space models

Building on the results of the previous sections, in this section, an approximation is made

for a continuous time nonlinear state space model (CTNLSS) by an explicit discrete time

nonlinear state space model (DTNLSS). Consider the CTNLSS shown in Figure 3.1 and

de�ned as in (3.2)

Fig. 3.1 Continuous time nonlinear state space: CTNLSS

dx(t)
dt

= F(x(t);u(t))

y(t) = G(x(t);u(t)) (3.2)

wherex;u have appropriate dimensions. It should be noted thatF(x;u) is a multivariate

static nonlinear function. Before continuing, the following assumption is made on the output

equation.

Assumption 3.3.1: Output continuity

The output equationy = G(x;u) is locally Lipschitz continuous of order 1.
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Remark 3.3.1

This assumption is made in order to avoid large variation of the output for in�nitely

small variations of the state variables.

Assumption 3.3.2: Stability

The CTNLSS is input to output, and input to state stable.

Remark 3.3.2

Due to the discretisation process, (small) errors will be introduced on the input and

states. These should not result in large deviations of the internal or external signals in

the system.

Next, the following assumption on the nonlinear functionF(x(t);u(t)) is made.

Assumption 3.3.3: LP behaviour of the static nonlinear function F(x,u)

u(t) is LP of degreedu, andx(t) is LP with degreedx. ThenF(x;u) is LP of degree

min(du;dx;dF ), wheredF is the relative degree de�ned by the system characteristic.

As it will be shown in Section 3.5, this assumption is valid for a wide class of nonlinear

systems. The degreedF is a system characteristic. For example, sign(u) hasdF = 1 if du � 1,

and abs(u) hasdF = 2 if du � 2 (see Section 3.5 for a more systematic explanation).

Theorem 3.3.1: Discrete time nonlinear state space model

Consider the CTNLSS (3.2) that meets Assumptions 3.3.1, 3.3.2, and 3.3.3, and is

excited by an LP excitationu(t) of degreedu. Thenx(t) is a LP signal of degreedx =

min(du;dF ) + 1. Considering the sampled signalsud(k) = u(kTs) andxd(k) = x(kTs),

the CTNLSS (3.2) can be approximated by a DTNLSS.

xd(k+ 1) = Fd(xd(k);ud(k))

yd(k) = Gd(xd(k);ud(t)) (3.3)

such thatxd(k) = x(kTs)+ O(1=f dx� 1:5
s )+ eI , andyd(k) = y(kTs)+ O(1=f dx� 1:5

s )+ eI .

WhereFd andGd are discrete-time static nonlinear functions, The amplitude of the

erroreI due to discrete time integration is a user choice.
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Proof: The proof is as follows

• dx = min(du;dF ) + 1:

If p(t) = dx=dt is an LP signal of degreedp = min(du;dx;dF ), then we have that

x(t) is LP with degreedp + 1 (due to the integration, see Figure 3.1). Then it follows

immediately thatdx = min(du;dx;dF )+ 1= min(du;dF )+ 1; becausedx = min(dx)+ 1

is not possible.

• Bounding the error onxd;yd:

From the results in the �rst part of this proof it assumed thatp(t) is an LP signal. Then

it follows immediately from Theorem 3.2.2 that the CT integrator can be replaced by

an explicit discrete time expression, such that

xd(k) = xc(kTs) + O(1=f (dp� 0:5)
s ) = xc(kTs) + O(1=f (dx� 1:5)

s ): (3.4)

Due to the CTNLSS stability 3.3.2, the small errors (3.4) will not grow very large. The

error on the outputyd will then also be anO(1=f (dx� 1:5)
s ), with dx = min(du;dF ) + 1

for the same reasons.

Remark 3.3.3

As mentioned before, a lower degree discrete time approximation of the integrator at a

cost of an additional erroreI can be used, if desired.

3.4 Experimental illustration

Here, the result of the experimental investigations are discussed.

Nonlinear system

In the case of a nonlinear system, the plant shown in Figure 2.13 is replaced by the Silverbox

[11] (see below for the description of the system) while keeping the other experimental

set-up/measurement methodology the same.
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A nonlinear feedback system: the Silverbox

The Silverbox is an electrical circuit, simulating a mass-spring-damper system. It is an

example of a nonlinear dynamic system with feedback as shown in Figure 3.2, where the

linear contributions are dominant for the small excitation levels of the input signal [132].

Fig. 3.2 The block structure representing the Silverbox dynamics

The system's behaviour can be approximately described by the following equation:

mÿ(t) + d �y(t) + k1y(t)+ k3y3(t) = u(t) (3.5)

whereu(t) represents the input force applied to the massm, and the outputy(t) is the mass

displacement. Parametersk1 andk3 describe the (nonlinear) behaviour of the spring, andd is

the damping of the system [11]. Although the behaviour of the Silverbox is described by a

differential equation(3.5) , it will be modelled in discrete-time using the PNLSS model [54]

(see Chapter 7 for more details on the PNLSS model) in this thesis.

3.4.1 Experiment design

During the experiment design, two experiments at different settings of signal bandwidth were

performed. The details of which are provided below:

• Experiment 1 :

A full odd-random phase multisine signal [11] is used to excite the Silverbox in the

frequency band of [0� 100Hz] (please see the de�nition 3.4.1 below and refer to the

setup in Figure 2.13 in Chapter 2. For a more detailed de�nition of the multisine signal,

the reader is referred to section 5.3.1 of Chapter 4).
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De�nition 3.4.1: Multisine signal

A multisine signal is mathematically de�ned as follows [133, 11]:

ums(t) =
1

p
p

Ne
å

k2Kexc

Ã(k) cos(wkt + j k) (3.6)

wherek is an integer index drawn from the discrete setKexc � ([1; T fs
2 ] \ N)

of the excited frequency bins,wk = 2pk
T is the discretised angular frequency,T

represents both the length of the measured time record and the period of the

multisine signal,N set of natural numbers andfs is the sampling frequency.

Ã(k) determines the amplitudes of the individual sines.

In a full odd-random phase multisine signal, only the odd frequency lines are excited

with the user-de�ned amplitude levels. The amplitude of the full odd random phase

multisine is zero mean with a standard deviation of127mV during the identi�cation

of the model.

Two periods of data for10 different realisations of the odd random phase multisine

input excitation are acquired at a sampling frequencyfs of 78:125kHz for the model

identi�cation experiment at a constant generator �lter/actuator bandwidth. Nine re-

alisations are used for the training purpose whereas1 realisation is kept aside to test

the model performance on an unseen validation data. For the analysis purpose, the

sampled data was virtually down-sampled at different sampling rates by explicitly

omitting the samples.

Figure 3.3 shows the input and output spectrum of the silverbox dynamics excited by

a full odd random phase multisine input signal. From the output spectrum, it can be

observed that the �rst resonance peak of the system lies at around� 70Hz. In order

to completely capture the information about this resonance peak inside the PNLSS

discrete-time model structure, one must at least sample the input and output signals at

� 210 Hz or at a greater sampling frequency.

Observations: Experiment 1

The results obtained from the identi�cation of the DT nonlinear polynomial state space

model (PNLSS) model [54] is shown in Figure 3.4. This particular discrete time model

structure implicitly embeds the forced delay term. Figure 3.4, shows two metrics

namelyyrms andyrelative for the output error of the PNLSS model, which are de�ned
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Fig. 3.3 The input and output spectrum of the nonlinear silverbox system

Fig. 3.4 RMS output error (training set) of the PNLSS model as a function of the sampling
frequency.

below. The mean value of all the signals is removed in order to eliminate the effect of

the offset error, that might be present in the measurement setup.
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Fig. 3.5 Spectrum of the PNLSS model error

yrms(t) =

vu
u
u
t

Ns

å
t= 1

(ỹval(t) � ỹmod(t))
2

Ns
(3.7)

yrelative(t) =

s
Ns
å

t= 1
(ỹval(t)� ỹmod(t))

2

Nss
Ns
å

t= 1
(ỹval(t))

2

Ns

; (3.8)

whereỹval = yval � mval, ỹmod = ymod� mmod, Ns is the number of data samples,mis

the mean,yval is the measured output andymod is the model output respectively.

From the Figure 3.4, it is clearly observed that, the RMSE of discrete time PNLSS

model structure for a sampling frequency of200Hz is � � 25dB which can be further

reduced to a level of� � 44dB just by doubling the sampling frequency. It can also be

seen that the error diminishes very quickly with respect to the sampling frequency for

both the training data set. Figure 3.5 shows the variation of the spectrum of the model

error for different sampling frequencies.
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• Experiment 2 :

An odd random phase multisine excitation signal with af0 = 1 Hz is used as the

excitation signal in the frequency band [0 –39062Hz]. The level of the input excitation

is zero mean with a standard deviation700 mV (before the Wavetek �lter) for the

identi�cation of the model. The signaluc has a �at amplitude spectrum up to200Hz

as compared to the bandwidth of the second order system that is below 100 Hz.

A discrete time nonlinear state space model is identi�ed on the measurementsud(k);yd(k)

using the PNLSS model, with the methods described in [54] and detailed in Chapter 7.

The model has2 states, and the degree of the internal multivariate polynomial is3 (it

depends on both the states and the input). Higher orders and degrees were tested, but

this did not signi�cantly improve the results. The measured signals were sub-sampled

at different rates to obtain data records at different sample frequencies.

Observation: Experiment 2

In Figure 3.6, the amplitude spectrum of the output is plotted, together with the error

of the best linear approximation [11], and the error of the best nonlinear model. The

linear model has errors in the order of10%, while that of the nonlinear models is

well below the1% level (� 50dB). Because there might be small offset errors in the

measurements, we did not include the DC-errors in the error plots (and also not in the

cost function during the identi�cation).

In Figure 3.7, the nonlinear error on the estimation set and a validation set is plotted as

a function of the sample frequency. It is also compared to the relative alias error of the

input and output. The model errors are close to but below the relative aliasing error of

the input. This can be understood, the aliasing at the input is dominant at the highest

frequencies, but these are attenuated by the system. The alias error drops with about

70 dB/decade, which is in perfect agreement with the presence of the 4th� order �lter

in the generator path. From Figure 3.7, it is also seen that the error on the modelled

output follows the slope of the aliased power of the input and output, as was expected

from the theory. At lower error levels, the model errors dominate. These could not be

further reduced by increasing the complexity of the model.

In this section below, it is illustrated brie�y that many static nonlinearities maintain

the LP-characteristics of a signal. A detailed and in-depth information is available in

the references given below, and in the technical report [134].
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Fig. 3.6 Validation of the nonlinear state space model on the Silverbox measurements. Blue
dots: measured and modeled output; Green dots: error of the best linear approximation; Red
dots: error of the nonlinear modelfs = 78125 Hz

Fig. 3.7 Evolution of the relative rms error of the nonlinear model as a function of the sample
frequency
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3.5 Impact of a static nonlinearity on the roll-off and the

bandwidth of a low-pass signal

In this section, the focus is on �ltered white Gaussian noise, but at the end these results are

also extended to non-Gaussian distributions.

Assumption 3.5.1: Class of �ltered Gaussian low pass signalsSG

z(t) is a �ltered Gaussian low pass signalz2 SG of strict relative degreed, if it is a

white Gaussian noise signalu with unit variance:u � N(0;1) that is �ltered by a linear

�lter G with a relative degreed.

Remark 3.5.1

The amplitude of the �ltered noise is scaled by the �lter gain. The latter is assumed to

be �nite.

In this section, the following examples will be discussed.

• The variation of the relative degree and the bandwidth of a signalz2 SG under a static

nonlinear operation of the formy = zn , n being a natural number.

• y = f (x) with f a static nonlinear function, including some general transformation

rules.

• Generalisation to non-Gaussian noise.

To proceed, �rst the autocorrelation and power spectrum ofy are calculated as detailed

below.

3.5.1 Calculation of the autocorrelation and power spectrum ofy = zn

The linear dynamics are given by the impulse responseg(t) or transfer functionG(w). The

following relations hold:

z(t) =
� ¥

� ¥
g(t )u(t � t )dt (3.9)

and

y(t) = z(t)n: (3.10)
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From here on, the integration limits are dropped to simplify the notation and avoid overloading

of the operators. The output can then be written as

y(t) =



g(t 1) : : :g(t n)u(t � t 1) : : :u(t � t n)dt 1 : : :dt n: (3.11)

The autocorrelation functionRyy(t ) = Ef y(t)y(t + t )g is given by:

Ryy(t ) =

 


g(t 1) : : :g(t n)g(t n+ 1) : : :g(t n+ n)

Ef u(t � t 1) : : :u(t � t n)u(t � t n+ 1 + t ) : : :u(t � t n+ n + t )g

dt 1 : : :dt ndt n+ 1 : : :dt n+ n: (3.12)

Sinceu(t) is Gaussian noise, the higher order momentsEf u(t � t 1) : : :u(t � t n)u(t �

t n+ 1 + t ) : : :u(t � t n+ n + t )g can be calculated by taking the sumå An over all alloca-

tions An of the setf t 1; : : : ; t n; t n+ 1 + t ; : : : ; t n+ n + t g into n unorderd pairs, denoted as

(p1; p2); : : : ; ( p2n� 1; p2n):

Ef u(t � t 1) : : :u(t � t n)u(t � t n+ 1 + t ) : : :u(t � t n+ n + t )g =

å
An

Ef u(p1)u(p2)g: : :Ef u(p2n� 1)u(p2n)g

The expected value will be equal to zero, if not in all pairsp2i� 1 = p2i , the time variables

are equal, becauseu is white noise. For the remaining non-zero terms in the sum (consider

for example the �rst pair), the following result holds [134].

Type 1 contributions: p1; p2 2 f t 1; : : : ; t ng_ p1; p2 2 f t n+ 1 + t ; : : : ; t n+ n + t g

Consider, without loss of generality that the �rst condition is met. Then, assigning without

loss of generalityt i ; t j to p1; p2, we get that

�
g(t i)g(t j )Ef u(t � t i)u(t � t j )gdt idt j =

�
g(t i)g(t j )d(t i � t j )dt idt j

=
�

g(t i)2dt i :
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The �rst equality holds becauseu(t) is unit variance white noise. Hence, terms of this type

result in a constant contribution to the multi-dimensional integral (3.12).

Type 2 contributions: p1 2 f t 1; : : : ; t ng^ p2 2 f t n+ 1 + t ; : : : ; t n+ n + t g

Assigning without loss of generalityt i ; t j � t to p1; p2, we get that

�
g(t i)g(t j )Ef u(t � t i)u(t � t j + t )gdt idt j =

�
g(t i)g(t j )d(t i � t j + t )dt idt j

=
�

g(t i)g(t i � t )dt i = g� g:

This shows that this type of contributions result in a convolution of the impulse response of

the dynamic system. Observe that forn even, the number of Type 2 contributions will be

also even, while forn being odd, this number will be also odd.

Combining all type 1 and type 2 contributions in the sum

Depending upon the combinations, each of the pairs result either in a type1 or 2 contribution.

Hence, the expression for the auto-correlation (3.12) will be of the following form:

Ryy(t ) = C1 + C2(g� g)+ C3(g� g)2 + : : :Cn(g� g)n; (3.13)

where the convolutionsg� g are evaluated int . For odd nonlinearities (n is odd), only the

odd powers will be present, while for even nonlinearities (n is even), only the even powers

appear in (3.13). The power spectrum ofy becomes:

Syy(w) = C1 + C2jG(w)j2 + C3jG(w)j2 � j G(w)j2 + : : :

CnjG(w)j2 � j G(w)j2 � � � � j G(w)j2; (3.14)

where the last term is an(n� 1)� fold convolution.

Remark 3.5.2

To obtain this result, a speci�c behaviour on the linear systemG is not imposed. The

only strict requirement is that all the integrals should exist.
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3.5.2 Impact of a static nonlinearity on the roll-off of a low-pass signal

In this section, the power spectrumSyy, obtained in the previous section, is evaluated for low

pass signalsy = zn; andz2 SG for w ! ¥ . Consider the �ltered white noise signal(3.9), and

assume, without loss of generality that

jG(w)j =
1

p
1+ w2k

: (3.15)

This is a simpli�ed representation for a system with a bandwidth ofw = 1, and a relative

degreek, resulting in an asymptotic roll-off of1=wk. The signalz(t) = Gu(t), with u(t) white

noise, has a relative degreedz = k. By scalingw = w̃
wc

, it is possible to adapt the bandwidth

to an arbitrary value. Consider

jG(w)j2 =
1

1+ w2k : (3.16)

Observe that this spectrum rolls-off in1=w2k. Next we considerjG(w)j2 � j G(w)j2 and

evaluate it forw � 1. The following approximations are made [134–136]:

jG(jwj < 1)j2 � 1; jG(jwj � 1)j2 �
1

w2k : (3.17)

Moreover, it is observed that the dominant contributions in the convolution expressions below

come fromjWj < 1, or jw � Wj < 1. This leads to the following approximating expression

for the convolution [134–136]:

jG(w)j2 � j G(w)j2 =
� ¥

� ¥

1
1+ W2k

1
1+ ( w � W)2kdW

�
� 1

� 1

1
1+ W2k

1
1+ ( w � W)2kdW+ � � �

� w+ 1

w� 1

1
1+ W2k

1
1+ ( w � W)2kdW

�
� 1

� 1

1
w2kdW+

� w+ 1

w� 1

1
W2kdW

�
4

w2k :
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This result can be also generalised to the multiple convolutions

jG(w)j2 � j G(w)j2 � � � � j G(w)j2 =
� ¥

� ¥
� � �

� ¥

� ¥
jG(Wn � Wn� 1)j2 � � �

jG(W1 � W2)j2jG(w � W1)j2dW1 � � � dWn� 1:

Making the same observations as before, it follows that also in this case [134–136]

jG(w)j2 � j G(w)j2 � � � � j G(w)j2 = O(
1

w2k ):

Hence, it can be concluded that the roll-off of a low-pass signal is not changed by a

static nonlinear operationxn. Since a wide class of static nonlinear functions (including

discontinuous functions) can be approximated by a polynomial in least square sense [11].

This result suggests that a static nonlinear operation does not change the roll-off of a low-pass

signal. However, as discussed before, some restrictions need to be put on the convergence

rate of the polynomial approximation for this result to hold true.

3.5.3 Impact of a static nonlinearity on the bandwidth of a low-pass

signal

A static nonlinearity will widen the bandwidth of a low-pass signal, due to the presence of

the repeated convolutions (3.14).

De�nition 3.5.1: Class of nonlinear systemsSSNL

The static nonlinear systemf (x) excited by excitation signalsx 2 SG, belongs to the

classSSNL(SG) if: Exf f (x)2) exist (withEx the expected value taken overSG),

Assumption 3.5.2: Class of nonlinear systemsSSNL

There exists a polynomial static nonlinear systemfN(x) = å
N

n= 0bnxn such that:

8e;9Ne s.t. 8N > Ne : Exf ( f (x) � fNe(x))2g < e:

In order to get a better understanding and for simplicity a Brickwall shaped systemGB is

considered here:
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Assumption 3.5.3: Brickwall systemGB

A systemGB(w) is a Brickwall system ifGB(w) = 1 for jwj < wmax, andGB(w) = 0

for jwj > wmax.

The convolution of two rectangles results in a triangle, the convolution of two triangles

leads to a4th� degree waveform. Repeating this process leads eventually to a Gaussian wave

form (similar to the central limit theorem applied to a uniform distribution).

Consider for example uniformly independently distributed variableswk, k = 1; : : : ;n on

the interval[� 1;1]. Then forn large, we have that

w =
n

å
k= 1

wk � N (0;ns 2); (3.18)

with s 2 = 1=3. So it is easy to understand that for the(n� 1)� fold convolution of an

LP-signal the following result is found [134, 135]:

Theorem 3.5.1: Bandwidth extension under a static nonlinear operationun

Consider an LP-signalz 2 SG, with a 3 dB bandwidthfc: The bandwidth ofzn =

O(
p

n fc) for n large.

Proof: Consider that the signalz = Gu, with u a white noise excitation signal, s.t.

Ezf u2ng < M < ¥ : Bound the systemG (after proper scaling) by a Brickwall systemGB,

s.t. the bandwidth ofGB is larger than that ofG. Using the result(3.18), it follows that the

bandwidth ofzwill grow with
p

n, because

jGB(w)j2 � j GB(w)j2 � � � � j GB(w)j2 � a e
� 3w2

2nw2
max: (3.19)

Wherea = 1=
q

2p nw2
max
3 : This result can be further generalized tof 2 SSNLxwithin an

arbitrary small errore [134].

Theorem 3.5.2: Approximation error due to bandwidth extension

A static nonlinear systemf 2 SSNLxextends the bandwidth of a lowpass signalz2 SG;

within an arbitrary small rms errore, with
p

Ne.
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3.5.4 A simulation example

The previous results on the growth of the bandwidth and the invariance of the roll-off

are veri�ed in a simulation on a discrete time Wiener system. The linear system is a5th

order Butterworth �lter with a cut-off frequency of0:5� 10� 3, the sampling frequency is

normalised to1. The static nonlinear system is chosen to be:y = pn; n = 1;2;3;7;8. The

mean value of all these output signals is removed, and next the power is normalized to1 in

order to facilitate the graphical representation of the results.

Fig. 3.8 Normalized amplitude spectrum of the output of a Wiener system, with a static
nonlinear system,y = pn; n = 1;2;3;7;8. All the signals have the same relative degree,
independent ofn.

In Figure 3.8 it can be seen that the roll-off of all these signals is indeed the same, while

the bandwidth is increasing. In Figure 3.9 the Gaussian approximation is illustrated for

y = pn, n = 2 (red), andn = 16 (blue).

A good match is obtained, the slight difference between the Gaussian approximation

and the actual power spectra is due to the fact that the Butterworth �lter has a smooth

characteristic, opposed to the Brickwall shape of the idealised bandlimited characteristic that

was used in the analysis [134, 135]. This results in a slightly lower bandwidth of the actual

signal such that the Gaussian approximation results in an upper bound of the bandwidth

extension.
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Fig. 3.9 Normalized amplitude spectrum of the output of a Wiener system, with a static non-
linear system,y = pn, n = 2 (red), andn = 16 (blue). Thin line: the observed approximation;
dots: Gaussian approximation.

3.6 Study of the LP-properties ofy = f (x)

3.6.1 Properties of polynomial approximations

Theorem 3.6.1: Relative degree of a lowpass signal

The relative degree of a lowpass signalx 2 SG; can becomedf for a static nonlinear

systemf 2 SSNLx(SG) within an arbitrary small RMS errore.

The result follows immediately from assumption 3.5.2 and the observation in Section

3.5.2 thatf (x) = xn does not change the relative degree of an LP-signal. The LP-behaviour

of a static nonlinear systemf 2 SSNLx(SG) excited by a low-pass signalx 2 SG; is a balance

between two opposing effects: on the one hand the coef�cientsbn drop to zero so that the

high power contributions get less important, but on the other hand the bandwidth of these

contributions grows with
p

n; such that a wider frequency range is affected. This lead to two

possible behaviours [135]:
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• If the series converges fast enough i.e.bn ! 0 asn ! ¥ , the bandwidth of the

output will be set by the bandwidth of the excitation signal, and the output has

the same relative degree as the input.

• If the series converges slow, the relative degree of the output will be set by the

convergence rate of the polynomial coef�cients. In that case, the output will

still be an LP signal, but the relative degree will become a characteristic of the

system, calleddf in this study.

Remark 3.6.1

Here, the terms "fast enough" and "slow" are not speci�ed.

• The precise balance will depend on the nature of the system and the relative

degree of the excitation. In practice, for a given functionf (x), and LP-excitation

signal with relative degreedu, the reader can always check by a numerical

simulation which of both effects dominates.

• In order to prove these results, polynomial representations that are orthogonal

for the given distribution should be used. For example, for Gaussian signals, Her-

mite polynomials should be used [134]. This will make sure that the individual

terms of the approximation are uncorrelated with each other.

3.6.2 Special cases of static nonlinear functions

In the literature, the impact of a static nonlinear function is studied for a series of special

cases. Moreover, also some transformation rules are obtained. The reader is referred to [137]

for further details. Here, only a very brief summary of some of the results is given.

Transformation rules

Consider a signalu with autocorrelation functionRuu(t ). Consider the static nonlinear

functiony = f (u), with correlation functionRy(t ). Then the correlation function ofy0=

dy=du is given bydRy(t )=dRu(t ). A similar result is available for an integrationyI =
�

f (u)du:. In that case the autocorrelation function is obtained by an integration ofRu(t ).

These results give a lot of insight into nature of these signals. For examplejuj can be

considered as the integration ofsign(u). So, the autocorrelation ofjuj will be smoothed with

respect to that ofsign(u), and it will have a higher relative degree. Using the tables in [137],
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it can be concluded that the relative degree increases with1 for each integration step, till it is

equal or larger than the relative degree of the input. From then on it is equal to the relative

degree of the input.

Tables

Fig. 3.10 Normalized amplitude spectrum ofu, and the output ofsign(u)un, for n = 1;2;3.
The relative degree ofu is du = 5.

Using the tables in [137], the following results are obtained. Consider a static nonlin-

earity y = f (u), with u a LP-signal with relative degreedu. Baum tables [137] state the

results for the following series of integrated functions:sign(u); abs(u), sign(u)u2, abs(u3);

� � � ;sign(u)un. The smoothness of these functions is growing,sign(u) is discontinuous,

abs(u) has a discontinuous �rst derivative, etc. This results in an increasing relative degree:

dsign(u) = 1;dabs(u) = 2;� � � From this example, it is easily observed that even discontinuous

functions and functions with sharp edges still result in a fast roll off of the output. This is

also visible in Figure 3.10. It can be seen that the relative degree increases till it reaches that

of the input signal.

Generalisation to non-Gaussian noise

All the results discussed in the above section were obtained under the Gaussian excitation

assumption. It is possible to generalise these results to signals that have another distribution,

provided that their power spectrum and the expected value of the absolute value of their �nite

Fourier transform exist. Under these conditions, it is possible to show that for a product
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of stationary signalsy(t) = u(t)v(t) the following inequality holds for their power spectra

[134, 135]:

SY(w) �
4
p

(
p

SU (w) �
p

SV(w))2 (3.20)

Using this results, the previous properties can be generalised to a much wider class of random

signals.

3.7 Conclusions

In this chapter, the problem of modelling continuous time nonlinear systems using a discrete

time nonlinear model is discussed. Two new ideas are proposed to do so. The �rst idea is to

unify the classical ZoH and BL signal assumptions in the more general concept of LP signal

with a relative degreed.

It is shown that this concept of LP-signal is an invariant for a wide class of nonlinear

systems, including stable closed loop systems. The second idea uses a classical result from

signal processing that states that a BL-signal can be perfectly predicted by a causal linear

�lter from its past samples.

This result is generalised to LP-signals by introducing an error bound that is anO( f � (d� 0:5)
s ).

Both ideas are then combined to give error bounds on recursive discrete time models for

continuous time systems. These error bounds are tight since the dominating error is set by that

part of the signal that is not sampled fast enough (aliasing). The results are experimentally

veri�ed on a laboratory scale closed loop nonlinear system (the Silverbox).



Part II

Nonlinear modelling of the Lithium-ion

battery cells





Chapter 4

Battery technology and battery based

systems

In the Part-I of the thesis, it is demonstrated that discrete-time nonlinear state-space models

with de�ned error bounds under bandlimited measurement set-up assumptions can be identi-

�ed easily. The focus of the second part of this thesis is to demonstrate how such discrete

time models can be identi�ed from battery's input-output data for modelling (simulating) the

short-term electrical response of the battery. Therefore, in this chapter, a brief introduction to

the battery technology and battery based systems are provided. A short overview of the recent

development in the battery sector, the state of the art technologies and the basic terminologies

associated lithium ion battery operation are introduced. Thereafter the challenges associated

with battery modelling are discussed. Finally, the research objectives, and the contributions

of this part of the thesis are clearly stated.

4.1 Introduction

Modern battery based systems are one of the most promising enabling technologies as

we leap towards the more electri�ed future that ranges from smart phones, tablets, smart

computing hardware to more electri�ed transportation. There are around7:5 billion active

mobile subscriptions around the globe presently and as per the recent survey carried out, the

mobile subscriptions are growing at a rate around 3% - 4% annually globally [138].

Although there is a signi�cant advancement, which has happened in state of battery

technologies in the last few years, but with the ever growing demand of the society, an

advancement is needed in the battery based systems and the infrastructure supporting these
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Fig. 4.1 Japan airlines B-787 event battery, Jan 7, 2013 [1]

Fig. 4.2 Samsung S7 Galaxy Note after explosion [2]
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systems. With an advancement of the battery technologies, in order to ensure safety, advanced

control strategies are needed.

Figures 4.1 and 4.2, show lithium-ion batteries that exploded recently, in a commercial

Japan airlines Boeing787airplane [1] and in a Samsung S7 smartphone [2], respectively. It is

quite apparent from the pictures, that the damage which can be caused by the uninformed use

or misuse of these batteries. Therefore, the safety of the battery and battery based systems is

extremely important. Therefore it should always be on the prime agenda for the proliferation

of battery based systems and related technologies in day to day life.

To accomplish this foreseen goal, one of the possible ways is, to manufacture better batter-

ies through the development of new and better materials for the battery's active components

or the other possible way is by developing more ef�cient battery management technologies

to extract higher performance from existing (or new) batteries through the use of advanced

modelling, control, and estimation techniques.

This work focuses on the latter to enhance the understanding of the short-term electrical

dynamics (see below for explanation) of lithium-ion batteries by proposing better characteri-

sation techniques and identi�cation methodologies for modelling battery's electrical response

at various operating conditions. The model-free black-box techniques discussed in this

dissertation aim to address some of the challenges that arise when achieving the highest

performance physically possible from lithium-ion batteries within a safe operating window.

4.2 Battery Technology

There are various types and con�gurations of battery technologies which have been com-

mercialised for about more than two decades. But the lithium-ion (Li-ion) batteries due to

their numerous bene�cial properties such as rechargeable usage, higher energy and power

density are considered mature as compared to other battery technologies in the consumer

electronics market such as cell phones and laptop computers. In addition, long cycle and

shelf life, low self-discharge, and fairly wide operating temperature range makes them one of

the most attractive elements in energy grids to store energy generated from renewable energy

sources such as windmills, solar panels etc. for cleaner energy today.

Figure 4.3 shows the relationship between speci�c and volumetric energy density for

rechargeable battery technologies. The general research goal for the battery development

community is to increase energy and power densities, while minimizing the volumetric and

mass constraints (which means moving to the upper right hand corner of Figure 4.3, [3]).

The market of Li-ion battery based system continues to �nd new applications (see Fig. 4.4).
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Fig. 4.3 Comparison of the rechargeable battery technologies as a function of volumetric and
speci�c energy densities. Illustration courtesy [3]

Fig. 4.4 Various new growth sectors of Li-ion battery. Illustration courtesy [3]
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4.2.1 Consumer electronics and renewable energy

For example with the recent introduction of the modern products based on the �exible

electronics, �exible lithium-ion batteries have been able to attract great interest as one of the

most reliable sources of power in these products. Flexible Li-ion batteries have already found

its use in the continuously growing �elds of �exible and wearable electronic devices. The

range of these devices is quite extensive ranging from the roll-up displays, radio frequency

identi�cation tags, touch screens, wearable sensors and bio-implantable medical devices

[139].

Products like e.g. cellular phones, laptops, etc. from portable consumer electronics

industry, are an excellent example where consumer demand imposes both smaller and lighter

batteries. These products require minimal time to charge, but without compromising talk

time or usable (extended) battery life. Such a counter balance between the energy density

and the charging rate has propelled the lithium ion battery research to the forefront of

battery technology. Therefore, in response to these expectations, the next generation of

Li-ion batteries will need to achieve higher speci�c capacities, faster C-rates (time for cell

discharge in reciprocal hours, see Section 4.8 for battery terminologies), increased safety,

and appropriate cyclability.

Similarly continuous emphasis on the reduction of greenhouse gases and introduction of

Smart grids has triggered the use of renewable energy resources in many sectors. Furthermore,

miniaturisation, requirements on the extended range of vehicles and the need of high-power

electronic devices is also contributing signi�cantly to the exponential growth of Li-ion battery

based systems.

4.2.2 Transportation sector

By the year2020, a multi-government initiative called "The Electric Vehicles Initiative

(EVI)", is aimed at accelerating the adoption of electric vehicles (EVs) worldwide by20

million EVs including plug in electric vehicles (PHEVs) and fuel cell based electric vehicles

(FCVs) [140]. Just in the transportation sector, based on the cost and the energy targets,

which have to be achieved in the near future, it is quite apparent that there is a pressing need

of modern battery technologies as well as advanced battery based systems [140].

In general, based on how the powertrain is con�gured or arranged, the EVs can be divided

into four main categories: a) battery electric vehicle (BEV), b) plug-in hybrid electric vehicle

(PHEV) or extended-range electric vehicle (EREV), c) hybrid electric vehicle (HEV), d) and

the fuel cell electric vehicle (FCEV). As it is clearly shown in Fig. 4.5, the battery is the
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major part of the powertrain arrangement in all types of EVs. In EV applications, there are

mainly two categories in which the function of the battery can be divided:

• To act as the main source of the electric energy to drive vehicles,

• and/or act as a storage element of recycled regenerative energy from vehicle

braking

Fig. 4.5 Comparison of various electric vehicles with integrated battery functionalities with
their representative vehicles. Illustration courtesy [4]

For example in HEVs, the internal combustion engine (ICE) is used as the main source of

energy, and to improve vehicle fuel ef�ciency, an electric motor is used for assisting the ICE

in different driving modes in different terrains. Mostly, the batteries in HEVs are used as an

energy storage element (buffer). These are then typically charged from the internal power

distribution [141].

PHEVs/EREVs are developed on the basis of HEVs [142]. They are usually equipped

with high power heavy duty electric motors, which are capable of driving the vehicle alone,

and a high capacity battery which can be charged from external power sources, such as a

household AC source or a high-power DC charging station [143–145].

FCEVs use hydrogen as the main fuel for the generation of the electric energy needed for

the electric motors [146, 147]. The function of the battery equipped in FCEVs is equivalent to

HEVs [148]. In the case of BEVs and PHEVs, on-board batteries or battery packs should be

able to store a signi�cant amount of energy, so that the mileage requirement for the extended
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range of EVs/PHEVs can be satis�ed. This increasing demand in the long range electric

vehicles requires further improvements in the existing Li-ion batteries based energy storage

system in vehicles [149].

4.3 Battery's short term versus long term dynamics

The pursuit for battery models with high accuracy and computational ef�ciency still remains

a challenge for the engineering community. Generating a mathematical model of a Li-ion

battery, e.g. needed by BMS, that can describe the input current-to-output voltage dynamics

of a battery is a challenging problem. A primary reason for this is that battery dynamics vary

signi�cantly with operating conditions. Depending on the �nal purpose of the developed

model, one can divide battery models into two major classes i.e the models which describe

the short term response and the other which describe the long term behaviour of the cells

(see Fig. 4.6).

4.3.1 Short term dynamics

The short term dynamics of the battery primarily deal with modelling responses of a cell that

can be observed over a short time scale. It includes phenomena such as the electromotive

force (EMF) or thermal dynamics of the cell at various operating conditions. The internal

states of a cell can not be observed directly. These states need to be deduced from the

measured data. The state of charge (SoC) is such an example of the internal state. The

estimation of such states from the mathematical model either derived through physical

principles or identi�ed using the measured data is also classed as a short-term phenomenon.

The SoC in battery systems is an indicator of the operating conditions of a battery system

(see Section 4.8 for a formal de�nitions). It is used to regulate charge/discharge decisions of

the battery as well as to ensure its safety and longevity. However, it is a well known fact that

the estimation of SoC level is a substantial challenge, mainly due to the high sensitivity of

the voltage inverse mapping, uncertainties in models, nonlinearity, variations in the battery

characteristics from one cycle to another cycle, and measurement errors [150].

4.3.2 Long term dynamics

The long-term dynamics deals in understanding ageing, fatigue and deterioration mechanisms

both on an electrodes/electrolyte level as well as on a cell level respectively. Factors such as

the solid electrolyte interface, thermo-mechanical fatigue and capacity fade from cycle life

loading , Lifetime models, state of health estimation etc. fall also into this category [151].
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Fig. 4.6 Categorisation of the short-term and the long-term behaviour of the battery, Illustra-
tion courtesy [5]
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4.4 Challenges in modelling the battery

Despite various advantages, the main factors which affect the performance of Li-ion batteries

are relatively high material cost, need of a protection circuit to avoid overcharge, over

discharge, and excessive temperature rise. The cycle life (as well as the calender life) and

capacity, which normally reduces, if the battery is overcharged or sometimes over discharged

than the prescribed limits provided by the battery manufacturers [152]. Hence, there is an

evident need for better understanding of these characteristics and the processes associated

with the battery dynamical operation.

Fig. 4.7 Challenges in modelling of the battery

There are many challenges associated with the modelling of the lithium-ion battery's

electrical response. There are many factors such as statistical variation of material parameters

of a cell dependent on the manufacturing imperfections, different chemistries, thermal

management etc. (see Fig. 4.7), which directly effect the response and the performance of a

battery cell. Some of the most important factors are listed below:
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• Battery response change due to material characteristics, e.g. a NMC cell be-

haviour at same operating conditions will be different from a LFP cell (see

Section 4.7 for details on different Li-ion chemistries).

• Manufacturing variations affect the cell response.

• Operational conditions such different loading requirements, varying temperature,

different SoC and state of health (SoH) affect the cell behaviour.

• Ageing mechanisms, cycle life as well as calender life give rise to different

dynamical responses.

• Thermal management of the battery also decides, how a cell is going to respond

to a particular load pro�le at different operating conditions.

Due to the large format of automotive Li-ion batteries, a unique set of challenges are

associated with the use of Li-ion batteries in the automotive domain as compared to batteries

used in the consumer electronics products such as the cell phones, laptops, and other consumer

goods. In high power automotive applications, the temperature distributions on the cell and

throughout the packs very widely due to high rates of charge and discharge in combination

with the large surface area of the cell.

This non-uniformity of the temperature distribution across the cell, the module and the

battery pack causes a number of serious issues, such as poor battery performance, rapid

degradation, and potential safety concerns. These problems in turn inhibit, the full utilisation

of the active material inside the battery.

Synthesising actual cells and packs with new materials to deal with above mentioned issue

is a time consuming and an extremely expensive task, which makes an ef�cient, high �delity

simulation tool very desirable. However, due to strongly coupled nature of electrochemical

and thermal physics, the relevant scales of a battery cell or pack (ranging from sub-microns to

meters depending on the application), and the need for a comprehensive materials database,

the development of a Li-ion battery model a unique and challenging task.

4.5 Commercial Li-ion battery

Commercial lithium-ion battery cells are mainly packaged in two shapes/forms namely

cylindrical cells and prismatic cells (as shown in Fig. 4.8). The operating voltage of a single

cell typically lies between2 –4 volts for various kinds Li-ion battery chemistries. The battery
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Fig. 4.8 Left: Button cell, Middle: Cylindrical cell, Right: Prismatic or Pouch cell. Illustration
adapted from [6]

cells are usually connected either in series and/or parallel con�guration to form a battery

pack for applications requiring higher voltages and energy/power.

Fig. 4.9 Typical battery packs used in commercial vehicles. Illustration adapted from [7]

A battery pack composed of multiple cells for an HEV is shown Fig. 4.9. A typical battery

pack is also equipped with various kind of sensors (current, voltage, and temperature), which

are further connected to a battery management system (BMS) for controlling or managing its

operation (e.g. charging, discharging, etc.).

In this next section, some of the basics principles behind the working of a Li-ion battery

are reviewed and a brief introduction to different kind of Li-ion chemistries is provided.

Thereafter a literature survey about different kinds of modelling methodologies is given and

�nally the scope as well as the contributions of this part of the thesis are detailed.
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4.6 Lithium-ion battery fundamentals

Fig. 4.10 Schematic of a Li-ion battery. Illustration courtesy [8]

A battery is made of two different types of electrodes, namely the anode (negative elec-

trode) and the cathode (positive electrode), which are separated by an electrolyte solution

as shown in Fig. 4.10. The electrodes are connected to an external circuit by an electrical

conductor. In a typical lithium cell, the anode generally contains a carbon-lithium intercala-

tion compound, hence it is usually referred as the graphite electrode. The cathode includes

metaloxide materials, to which positive ions migrate inside the cell during a chemical reaction

and the generated electrons migrate through the external electrical circuit. The electrolyte

solution facilitates the �ow of positive ions (lithium ions), from one electrode to another

electrode.

The composition of the material at the cathode normally determines the cell's capacity.

The electrolyte is most commonly a liquid solution containing, a salt dissolved in a solvent.

The electrolyte material can also be either a polymer or a solid material, which must be

stable in the presence of both electrodes. In case, it a polymer or a solid electrolyte, then it

will also act as a separator. The porosity of the separator helps in preventing the cell from

short-circuiting as well as thermal runaway and enables the transport of lithium ions.

Fig. 4.11 (a) and (b) show the schematic of a pouch-type lithium-ion battery in a folded

and unfolded form respectively. The chemical reactions taking place in a Li-ion battery cell

can in general form be represented as:
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Fig. 4.11 (a) Folded core with battery tabs for external circuit connection (electrode-separator
stack) of a pouch-type lithium-ion battery (b) The battery core is constructed by repeating
different layers of the cell. The transport of Li-ions from the negative electrode (anode)
to the positive electrode (cathode) during a discharge process is depicted by the arrows in
z-direction, which correspond to the transfer current. Current streamlines on electrodes are
represented by the arrows inx-y plane. Illustration courtesy [9]

6C+ Li M y Oz �� *) �� Lix C6 + Li1� xMy Oz (4.1)

where0 � x � 1, M is the representative metal (nickel, cobalt, manganese, or their combina-

tion depending on the chemistry used) in the positive electrode, y, z are the concentration of

the ions and O is oxygen. The reactions proceed from the left direction to the right direction,

and right to left for the charge and discharge process respectively. The respective charge and

discharge reactions in the electrodes are as follows:

6C+ xLi+ + xe� �� *) �� Lix C6 (for positive electrode) (4.2)

Li M y Oz �� *) �� Li1� xMy OzxLi+ + xe� (for negative electrode) (4.3)

4.7 Lithium-ion chemistries

There are various kinds of Li-ion chemistries, which are under development and are suited

for the use in various industries. Each kind of chemistry offers a unique mix of cost, life span,

durability, performance, and safety as shown in Fig 4.12. The different kinds of chemistries

are discussed below.
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Fig. 4.12 Comparison of various factors related to different Li-ion chemistries for the use
in EV, in terms of speci�c energy or capacity; speci�c power or the ability to deliver high
current; safety; performance at high and low temperatures; life span or cycle life; and cost.
Illustration courtesy [8]
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Lithium cobalt oxide (LCO)

The most common type of Li-ion batteries, which are used in small consumer electronics due

to its high speci�c energy is LiCoO2. The battery consists of a cobalt oxide cathode and a

graphite carbon anode. LCO has a relatively short life span as well as a low thermal stability

and it is limited in its load capabilities (speci�c power) as shown in Fig. 4.12.

Lithium manganese oxide (LMO)

LiMn2O4, has a low internal resistance, relatively high thermal stability and enhanced safety

due to the three-dimensional spinal structure of the cathode in lithium manganese oxide

(LMO), [9]. On the downside its cycle and calendar life is rather limited (see Fig. 4.12).

Lithium nickel manganese cobalt oxide (NMC)

The unique blend of materials of nickel, manganese, and cobalt in the cathode of an NMC

cell (LiNiMnCoO2) improves the speci�c energy, prolongs the cell's lifespan, and lowers the

raw material and manufacturing cost due to reduced used of cobalt. As it is shown is Fig.

4.12, the overall performance of the NMC cell is satisfactory w.r.t different factors. Due to its

high speci�c energy, it is one of the preferred choices for the electric powertrains [153, 154].

Lithium iron phosphate (LFP)

An acceptable electrochemical performance with low internal resistance can be extracted from

the use of LiFePO4, as the cathode material for the Lithium based batteries. Li-phosphate

battery is relatively better suited than other chemistries for full charge conditions or for

prolonged usage at high voltage. It offers a moderate level of speci�c energy, relatively low

operating voltage, and high self-discharge rate as compared to other Li-ion based batteries.

The advantage in comparison to other chemistries is the better safety and a longer lifespan.

Lithium nickel cobalt aluminum oxide (NCA)

NCA (LiNiCoAlO2) battery shares quite a few similarity with NMC especially w.r.t. the

high speci�c energy, a long life span and a reasonable speci�c power. All these properties

also makes NCA batteries, a suitable candidate for the use in electric vehicles. However, due

to relatively higher cost and marginal safety, there use is not wide spread (see Fig. 4.12).
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Lithium titanate (LTO)

For the high rate capability and longer cycle life, graphite is replaced by Li4Ti5O12 as the

anode material. These types of batteries can be charged very fast and also deliver a high

discharge current due to their low nominal cell voltage. The low temperature performance of

LTO based batteries is better compared to graphite-based batteries [155], which makes them

safer. Nonetheless, as it is shown in Fig. 4.12, there is still a room for improvement in the

LTO based batteries in terms of the energy density and the cost.

Generally, the most of the batteries discussed above can be divided in two main categories,

i.e. the batteries with high power density or the batteries high energy density. A battery with

high energy density is useful in applications, where one has to drive longer distance e.g. in

EVs and PHEVs, which are intended to be driven on electric mode mainly for long distances.

In contrast, a high power density battery is generally useful in applications, where a short

but strong power pulse is needed; e.g. in HEVs, where the function of the electric motor

is normally to assist the internal combustion engine during speci�c driving conditions or

driving modes for short periods [156].

4.8 Battery speci�cations

In order to model the battery dynamical response, it is important to understand the under-

lying working operation of the battery, environmental conditions in which it operates, the

characteristic nature and factors in�uencing the response of the battery. It makes it easier to

relate to the terms used in the state of the art models and further the operation of the battery.

Here, we de�ne the most common speci�cations related to battery which are used through of

the second part of this dissertation.

Cell, module and packs

As discussed above, EVs and HEVs usually have a high voltage requirement, thus require

a battery pack that consists of individual modules and cells organised either in series and

or parallel. A cell is the smallest, packaged form a battery can take. The voltage output is

generally one to six volts. A module consists of several cells connected in either series or

parallel. A battery pack for the EVs is then assembled by connecting different modules again

either in series or parallel con�guration.
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State of charge (SoC)

It is de�ned as the ratio of actual charge in a battery (expressed in either Ah or C) at timet

and the initial charge at the begin of life at a reference temperature and reference discharge

pro�le. It is generally expressed as percentage of maximum capacity [4].

SoC(t) = SoC0 �
1

h � Cnom

� t

0
I (t)dt (4.4)

where SoC(t) is state of charge at time instantt, SoC0 is initial or full charge SoC (depending

on the charge or discharge cycle), Cnom is the nominal capacitance of the battery, andI(t) is

the instantaneous current.I (t) is usually positive for discharging and negative for charging.

h is the Coulomb ef�ciency of battery de�ned as the ratio of charge extracted Qout during

the discharge phase to the charge supplied or pumped into the battery Qin the equation for

the same can be seen below in (4.5).

h =
Qout

Qin
(4.5)

C-rate

The charge and discharge current of a battery is measured in C-rate. Most portable batteries

are rated at1 C. This means that a20Ah battery would provide20A for 1 hour, if discharged

at1 C rate. The same battery discharged at0:5 C (1=2 C) would provide10A (20� 0:5 = 10)

for 2 hours.1 C is often referred to as a1 hour discharge; a0:5 C would be2 hour and0:1 C

a 10 hour discharge.

Terminal voltage

The voltage between the battery terminals with load applied. Terminal voltage varies with

SoC and discharge/charge current.

Cut-off voltage

The minimum allowable voltage. It is this voltage that generally de�nes the empty state of

the battery.
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Open circuit voltage

It is de�ned as the voltage across the terminals of the battery/cell under the no-load condition.

This voltage is also related to the difference of the electrochemical potential of the electrodes,

often abbreviated as OCV. OCV alone can provide essential information about the system

under test. For Lithium Ion Batteries, the OCV is the key quantity to determine the SoC of

the cell, given it is in steady state.

Nominal capacity

The total Amp-hours available when the battery is discharged at a certain discharge current

(speci�ed by C-rate) from100% SoC to the cut-off voltage. Capacity is the product of

discharge current(in Amperes) and time taken to discharge (in hours)

State of health: SoH

Battery health condition at a reference temperature and reference discharge pro�le. The

battery100% SoH matches the manufacturer's speci�cation and the0% matches with the

End-of-Life (EoL) of the battery. SoH is the measure of the general condition of the battery

at a certain point in its lifespan. It re�ects its ability to deliver the speci�ed performance in

comparison to the fresh battery.

Nominal voltage

It is de�ned as the voltage of a fully charged battery or cell when delivering electric power at

a speci�c discharge rate.

Internal resistance

The internal resistance of the cell is sometimes considered as the ohmic resistance of the

cell, which is the direct voltage change after application of a current step on a cell in an

equilibrium or relaxed state. Another de�nition for the internal resistance available in the

literature, is the sum of the ohmic, activation and diffusion polarisation resistances, which is

the largest possible voltage drop in the cell.

The internal resistance of a battery is dependent on various factors such as the temperature,

the C-rate and the SoC. Different values for the internal resistance can be found depending on

the measurement method, which is utilised to calculate the internal resistance. This is caused

by the time constants associated with the activation and diffusion polarisation resistances; i.e.
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whether the battery electrodes are in equilibrium (relaxed) state or not is also important in

determining the value of the internal resistance [157, 158].

4.9 Battery models

A battery is a complex electrochemical system, the dynamical response of which is hard

to describe and predict using a simple linear model. Take, for example, the evolution of

the SoC, it is dependent on the charge or the discharge pro�le (which in turn is dependent

on the driving mission and environment) and ambient temperature, the remaining capacity

(in Ah) of the battery. A huge number of battery models have already been developed by

scientists in the various domain of science and engineering e.g. by electro-chemists, electrical

engineers and applied mathematicians. Fig. 4.13 gives an overview of the complexity of

different modelling methodologies adapted by different scienti�c communities for modelling

the battery short-term dynamics.

The availability of these model-based evaluation tools is essential to answer a number of

questions faced not only by battery users but also by manufacturers, maintenance personnel

in many industries, �eet operators and several types of mobility operators who are emerging

in the new business models of electric mobility. Reliable models allow one to unveil the

arcane of the battery system and to make a more ef�cient use of it. In the �eld of battery

modelling many different battery models exist [159–161]. These models can be classi�ed in

the following categories:

• Electro-chemical models,

• Analytical and stochastic models of a cell,

• Impedance based models,

• Equivalent circuit models,

• Empirical and semi-empirical models.

A short review of the different models is given below.

4.9.1 Electrochemical models

Electrochemical models explicitly model the chemical reactions, the ion transfer between

electrodes as well as mass transfer phenomena in a battery. Some of these models also take

into account the side reactions leading to degradation. Most of these models are based on
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Fig. 4.13 Overview of different class of battery models available in different engineering do-
mains. The blue arrows point towards the modelling methodology with lesser computational
complexity and the domain knowledge requirements. Illustration extended from [10].

balance equations. These models are generally solved with the Finite Element Methods

(FEM), hence electrochemical models are rather computationally and resource expensive.

On the other side, these models provide a deeper insight into the working mechanism of the

battery. Such models make sense at the cell level and can be used to provide data for other

types of models such as more elaborate electrical models, empirical models and for module

or pack models.

4.9.2 Equivalent circuit models

Electrical or equivalent circuit models describe the battery's behaviour, with electrical

networks made by using basic electrical circuit building blocks such as resistances, capacitors,

resistors, and diodes to represent the input current to output voltage characteristics of the

battery. Due to their structural simplicity and relatively few parameters, they can thus easily

be coupled with any electrical system in the vehicle such as BMS [162–164].

4.9.3 Thermo-electrochemical and electro-thermal models

The heat generation within lithium ion battery can be classi�ed into different categories as

explained in [165]. Using the thermo-electrochemical models, the temperature distributions

throughout individual cells can be studied. In these models, the thermal effects are mainly
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modelled at the macro scale, regarding stacks and battery packs. Most of these thermal

modelling is often performed using computational �uid dynamic (CFD) methodologies.

In order to do so, the battery geometry is discretised and mass transfer through different

transport modes is implemented to predict the heat distribution and dissipation during

operations [166, 167].

Electro-thermal models make use of mainly two methodologies: a) equivalent circuit

models [168] and b) regression models [169] . In these models, generally the terminal voltage

is captured by the equivalent circuit model, and the regression function representing the

thermal model is adopted to estimate the core and/or surface temperatures. Further details

about the various kinds of the thermal models can be found in the extensive literature survey

section below.

4.9.4 Empirical models

Semi-empirical as well as the full empirical models use experimental data to model and

investigate the behaviour of Li-ion batteries. In comparison to ECM and electro-chemical

models, empirical methods do not explicitly rely on dedicated hardware/software and physics-

based models of battery dynamics. If comparable and adequate training data are available

under different operating conditions, data-driven methods are signi�cantly more ef�cient than

model-based methods in terms of computation, execution time, and memory requirements.

Some electro-thermal and thermal models discussed above can be categorised among the

semi-empirical models [170]. Semi-empirical models are also referred as reduced models. In

reduced models, some physical processes are neglected, and the parameters of these empirical

based models are directly inferred from the experimental data. These kind of models do

not require a detailed knowledge of the battery electro-chemistry and its internal dynamics,

hence can be used in many real-time applications [171].

4.10 Literature review

As discussed before, from a systems perspective, batteries are essentially single input-single

output (SISO) systems with the input being the loading current and the output being the

terminal voltage. But, it can be extended to multi input- multi output (MIMO) systems by

considering the effect of the ambient temperature, state of charge and the battery temperature

etc. (see Chapter 7 for a case study). As discussed in Section 4.9 above, depending on the

application and speci�cations, a choice between different class of models can be made. In
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the section below, from the vast literature on modelling Li-ion battery electrical response,

some of the most relevant recent approaches are discussed.

Equivalent circuit and state observer based modelling

ECMs are widely used for impedance analysis [172], SoC estimation [173], and charging

control [174] due to their structural simplicity and computational ef�ciency. Performances

of several commonly used ECMs is compared in [175].

Based on an ECM and an adaptive Kalman �lter (KF), an algorithm to estimate the

SoC of a lithium-ion battery for application in EVs is developed in [176]. A model-based

SoC estimation method combining an indirect nonlinear adaptive observer and KF for state

observation and parameter identi�cation respectively is discussed in [177]. The application of

an extended Kalman �lter (EKF) combined with a per-unit (p.u.) system to the identi�cation

of suitable battery model parameters for the high-accuracy SoC estimation and state-of-health

(SOH) prediction of a Li-Ion degraded battery is described in [178].

An EKF based technique involving �rst and second order Thévenin ECM for SoC is

proposed in [179]. To further improve the results using the EKF based SoC estimation, an

improved OCV model accounting for hysteresis in combination with �rst order Thévenin

battery model for NMC battery is proposed in [180].

[181] proposed a nonlinear model for the electrode voltage–current relationship employ-

ing a more accurate model of the battery electrode nonlinear steady-state voltage drop based

on the Butler–Volmer (BV) equation and KF. In [150] an adaptive nonlinear observer is

designed that compensates nonlinearity and achieves better estimation accuracy.

[182] used an EKF for the SoC determination and a multi-physics battery pack model,

along with a procedure to identify its parameters. [183] proposed a SoC estimation method

based on the proportional-integral (PI) observer to estimate the SoC of lithium-ion batteries

in electric drive vehicles (EDV).

In [184] authors introduced a methodology that utilizes existing cell-balancing circuits to

estimate an individual cell's voltage and current from battery string terminal voltage/current

measurements. A two-time-scale signal processing method is employed to attenuate the

effects of measurement noises on SoC estimates. The results are further expanded to derive

an integrated algorithm to identify model parameters and initial SoC jointly.

Electrochemical modelling

Electrochemical model described in [185] used coupled nonlinear partial differential equa-

tions (PDEs) to describe ion transport phenomena and electrochemical reactions to achieve
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high accuracy, but incurring heavy computation load. In general electrochemical models such

as pseudo two dimensional models [186], single particle models [187, 188], and extended

single particle models [189] are more accurate than ECMs.

Authors in [190] utilised electrochemical battery models to optimise the power manage-

ment in Plug-in HEVs, whereas [191] presented a state estimation strategy for a detailed

electrochemical model of a lithium-ion battery. [192] proposed an adaptive unscented

Kalman �ltering (UKF) method for online estimation of model parameters and SoC of Li-ion

batteries for autonomous mobile robots.

[193] used a simpli�ed version single particle model (SPM) in combination with a non-

linear geometric observer approach to design adaptive observers for the SoC and parameter

estimation. A two time-scaled electrochemical battery model (where the slower and faster

battery dynamics are identi�ed separately) based parameter identi�cation method is proposed

by [194].

Usually ECMs are easier to implement, but have worse accuracy than electrochemi-

cal models [195], indicating that ECMs are unable to characterise the battery impedance

accurately due to their structural simplicity. Drawback of electrochemical models is that

they require a large number of battery internal immeasurable parameters such as diffusion

coef�cients, concentration of species in electrolytes, electrode geometry and porosity, transfer

coef�cients, and the reaction constant etc. to be estimated which leads to over-�tting in a

parametric identi�cation. Hence, this approach is complex and dif�cult to use in practice.

Usually the Kalman �lter based approach to SoC estimation requires an estimation of the

voltage of the battery. For an accurate estimation of the battery voltage at very low SoC levels

as well as low temperatures linear models proposed in the literature might not be suf�cient.

Hence, nonlinear dynamical models might be needed to understand, simulate and predict the

voltage response of the battery.

Analytical and reduced order modelling approach

In analytical models, the major properties of batteries are modelled using few explicit

equations to compute the battery states. However, such equations are not easy to solve.

Peukert's law [196] is an example of such models. It captures the nonlinear relationship

between battery lifetime and its rate of discharge, but without modelling the recovery effect.

For instance, a pseudo two dimensional (P2D) model, developed by [186], is one of the

most popular variants and can take seconds to minutes to simulate [197]. For simplicity, a

single particle model (SPM) that assumes electrodes are represented by two single spherical

particles is proposed in [198]. To improve accuracy of the SPM under high C-rate, several
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extended single particle models (E-SPMs) were proposed [199, 200], where lithium-ion

concentration and potential distribution in electrolyte are taken into account.

In [201], authors designed a KF based on a reduced order electrochemical model to

estimate internal battery potentials, concentration gradients, and state-of-charge (SoC) from

external current and voltage measurements. A reduced electrochemical model is used to

propose a nonlinear robust observers for SoC estimation of lithium-ion cells in [202].

Data driven and system Identi�cation based modelling

A system identi�cation-based model and KF is used for the online monitoring of batteries

for electric vehicles (EVs) in [203]. The algorithm uses a combination of battery voltage

and current measurements plus battery data sheet information to implement model-based

estimation of the stored energy, also referred to as SoC, and power capability, also referred to

as state-of-function (SoF), for deep-cycle batteries. The disadvantage is that the KF may be

adversely affected by signi�cant divergence problems when the battery model inaccurately

reproduces the behaviour of the battery.

In [204] an empirical method of determining electromotive force and battery internal

resistance as time functions, which are depicted as functions of SoC is proposed. Broad-

band excitation signals were used by [205] in order to identify the electrical impedance

characteristics of the battery.

In [206] a battery management system (BMS) framework is proposed that estimates the

critical characteristics of the battery such as SoC, SoH, and Remaining Useful Life (RUL)

using a semi data-driven approach. It uses a combination of a modi�ed Randles circuit

model, support vector machines (SVMs), low-current Hybrid Pulse Power characterization

(L-HPPC) test data, support vector regression, and a hidden Markov model (HMM). It is

quite good in nonlinearity mapping but it is very sensitive to the amount and quality of the

training data. A comparative analysis of different experimental and machine learning based

black-box techniques for SoH estimation of NMC cells is provided in [207, 208] but no clear

recommendation is made w.r.t the choice of models for SoH estimation.

A Fractional system identi�cation is applied to battery SoC estimation in [209, 210].

Fractional order systems accumulate the entire information of the system function in weighted

form using a time varying initialization function which must be known as long as the system

has been operated. Fractional dynamics require history of states or a suf�cient number

of points for the initialisation function computation. Hence, it results in large memory

requirements.

Linear-parameter-varying (LPV) battery models for batteries used in HEV applications

have been presented in [211]. Generally, LPV models suffer from serious disadvantages
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in terms of non-eliminatable pitfalls of interpolation, selection of adequate linearisation

points, choice as well as estimation of a scheduling parameter, and the loss of a general

representation of the nonlinear dynamics.

Modelling approaches explicitly capturing the effect of temperature

The operating temperature has a signi�cant impact on the performance of electrochemical

systems such as batteries. The amount of energy stored inside depends largely on the

temperature. Generally, a drop in ambient temperature implies a signi�cant rise of the

internal resistance of the cell, creating a high opposing force while operating the battery.

Thereby, it limits the amount of energy extracted and reduces cell energy, power capability

and capacity [212]. For example, at� 20°C, only 50% of the battery energy is available

[213]. Experimental results also show an important interaction between the electrical and

thermal phenomena (See Chapter 5).

However, some models do not consider the temperature effect [185, 214] at all, or its

effect on the internal resistance of the battery, or the range of the battery cell temperature

modelled does not �t hard winter applications [215–217]. Hence, in order to develop an

effective thermal management and its optimal operation, it is crucial to model the thermal

dynamics along with the electrical dynamics over the entire operational range of the lithium-

ion batteries.

In the literature, some strategies exist to tackle that issue. For instance, [218, 219] propose

warming up the cell before use with an external heating system powered either by an external

source or mostly by the battery itself. Therefore, it induces a remarkable temperature rise of

the cell, implying a decreased internal resistance [220]; thereby, it restores cell performances.

Different methods are proposed in the literature for the estimation of temperature dis-

tribution on a cell [221, 222]. A critical review of different types of thermal management

models and solutions of lithium-ion batteries for the development of pure electric vehicles

is given in [223]. In addition to providing a comprehensive review of lithium-ion batteries

used in hybrid and electric vehicles at cold temperatures, the authors in [224] also discuss

the in�uence of low temperatures on the ageing mechanisms of lithium-ion batteries. The

authors in [225] discuss the effects of in-plane non-uniform temperature on the performance

of a large-format lithium-ion pouch cell.

An online parameter estimation method based on the Lyapunov's direct method based is

proposed in [226, 227], and in order to compensate the estimation inaccuracies introduced

by temperature variations, either a pre- or the post-compensation scaling methodology using

surface temperature is proposed by the same authors. The drawback of the proposed approach

is that, it is based on the assumption that the battery dynamics at operating conditions can be
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represented by a �rst order ECM as well as it requires a priori knowledge about the topology

of the ECM elements. A lumped thermal model where the cell was modelled as a thermal

network is proposed in [228].

A temperature dependent SoC estimation method and online parameter updating using

a dual square root unscented KF is proposed in [229]. These models suffer from the

fact that all effects originating due to thermal dynamics are lumped into a few of the

network parameters/elements, which reduces the �exibility of the model to capture other

nonlinear effects unless explicit nonlinear elements are a part of the network. The authors

in [230] proposed two separate models to capture the electrical and thermal dynamics. The

disadvantage of this model is that it cannot capture the dependencies as well as the interaction

between the thermal and electrical dynamics.

A 2D-potential distribution model based on over-potential of the battery is bi-directionally

coupled with a3D-temperature distribution model in [231]. This model is then combined

with an EKF for the SoC estimation. Though accurate but one of the main disadvantages of

this model is the complexity of model for real-time SoC estimation. Even though several

methods were proposed and compared to tackle this issue but the fastest simulation time

achieved through one of the reduced models was1 minute, which is still not optimal for

real-time scenarios.

Practical challenge of data acquisition

In addition to the physical parameters e.g., a varying temperature, humidity etc. which

effect the short-term electrical dynamics of the battery, in practice there are many other

situations that can lead to a series of sub-records of data of equal [232] or unequal lengths

[233] during an experiment. A �rst illustration is an experiment, where some parts in the

data have extremely poor quality due to a sensor failure, component failure in the battery

tester or due to very large disturbances coming from other processes. Eliminating these bad

parts results in a series of broken sub-records of the data.

In other experiments, it might be impossible to measure for a very long time without

interruption; only a series of shorter tests can be performed e.g. due to inadequate technical

capabilities of data acquisition equipment, where performing a longer experiment was not

feasible due to the lack of on-board memory for storing the data. Finally, systems such as a

battery, vary slowly due to changing operational conditions.
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4.11 Research objectives and scope of Part-II

From the extensive discussion above, it can be concluded that most of these existing battery

models for describing the short-term electrical behaviour are either too simple or too complex,

and they are impractical for electric vehicle system designers as they require extensive

background knowledge of electro-chemistry, electrical circuitry, partial differential equations

as well as multivariable calculus to be implemented in a real-time BMS. In addition to that,

most of the approaches described above assume that either a model is available or can be

obtained easily, which is not the case always.

Therefore, in order to describe the short-term behaviour of the battery, the empirical

and semi-empirical models are good alternatives to the highly complex electro-chemical,

electro-thermal or thermo-chemical models. Hence, a comprehensive data-driven framework

to solve these problems and develop a dynamic model must be developed and validated.

From the discussion above, it is also imperative that, the effect of temperature and SoC

change on the dynamics of battery is accurately accounted in the developed model and the

modelling methodology should be able to deal with data records available from multiple

experiments.

So, even before proceeding towards modelling the battery dynamical behaviour, it is

very important to understand and characterise the battery short term electrical response

under varying operational conditions, so that an accurate decision about the use of an

identi�cation/modelling methodology at an early stage can be made. Therefore, in the

context of this part of dissertation, the main idea is to show,

• How to develop a complete range of computationally effective data-driven

modelling approaches that can be applied easily for developing a model of the

short term dynamics of any kind of battery chemistry ?

• How to develop test protocols (broadband) for battery characterisation and to

collect the data required for developing the empirical models ?

• How these specially designed excitation current signals can be used to reveal

useful information about the battery dynamics under varying operating condi-

tions, such as revealing an interplay between electrical and thermal behaviour

of Li-ion batteries under various current loading and temperature conditions ?
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• Once this information is available to the battery modeller, then it is discussed,

how can it be exploited to model accurately different regimes of battery's

operation.

• How to to develop a simulation model for the battery's short-term electrical

dynamic response accurately using the best linear approximation (BLA) of its

short term electrical impedance?

• If the BLA is not able to explain the dynamics of the battery then how to identify

a nonlinear model to simulate the battery's short-term response accurately in the

deep depletion regions in terms of SoC at different temperatures.

4.12 Contributions of the Part-II

In this thesis, a data-driven black-box approach to the identi�cation on the battery's short

term electrical response is proposed. The advantage of using a black-box identi�cation

scheme is that, it is completely data-driven approach and it does not require the user to have

any pre-speci�ed knowledge of the system. The structure and parameters of the models are

learned from the data itself. As per the research objectives and the scope of the work, the

contributions of the second part of this dissertation are listed below:

• Development of a data-driven frequency domain nonparametric analysis methodology

using specially designed multisine signals, for analysing the short term electrical

response of the battery in terms of nonlinearties and time-variations at varying operating

conditions.

• Estimation of the best linear approximation of the battery's short term electrical

response from the data acquired at various operating points in terms of SoC and

temperature.

• Data driven approach to develop a nonlinear model of the battery's short term dynamics

by utilising the polynomial nonlinear state space model (PNLSS) structure.

• Validation of the PNLSS model using the multiple input-output datasets acquired at

multiple operating conditions from a range of operating conditions in terms of SoC

and temperature.
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Nonparametric analysis

An experiment is a question which science poses to Nature, and a measurement

is the recording of Nature's answer.

Max Planck

The empirical or semi-empirical models, require experimental data acquired in realistic

(possibly different) operating conditions in order to determine the model parameters. Hence,

the focus of this chapter is to design an experimental methodology to collect the data required

to characterise the battery's behaviour and for the battery's short-term electrical response

model identi�cation.

In this chapter, a frequency domain nonparametric battery characterisation technique is

proposed which exploits the properties of specially designed random phase multisine signals.

First the details about the chosen battery type is given, thereafter the measurement set-up

is introduced. Furthermore, a formal de�nition of the multisine signal is given and a brief

introduction to the nonparametric analysis technique is provided. Finally the results of the

battery characterisation are discussed.

5.1 Li-ion battery: Short-term response

The short-term voltage response of the battery to the input current load pro�le at a particular

setting of SoC and temperature can be approximately described by the following nonlinear

relationship, wheref is a nonlinear function which maps SoC, currentI and temperatureT

to the terminal voltageV at a particular instant in time.

V(t) � f (SoC(t); I (t);T(t)) (5.1)
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The level of noise and the nonlinear distortions may vary with the change in SoC and

temperature. Fig.5.1 shows a hypothetical relationship for the short-term voltage response of

a Li-ion battery as a function of SoC and temperature at a given Root Mean Square (RMS)

value of input current. This relationship may even be more complex and non-smooth in

reality.

Fig. 5.1 Representative �gure for the short-term electrical response of a Lithium-ion battery
cell. Blue squares are the operating points (SoC, Temperature) at which the data are acquired
for a current load pro�le of a �xed RMS value.

Remark 5.1.1

In the work, we only performed experiments and acquired data at the discrete operating

points as represented by the blue squares in Fig.5.1. Please note that, we have access

only to the measured input current load pro�le and output voltage response of the

battery to that load pro�le at different levels of SoC and temperatures.

5.2 Measurement Setup

5.2.1 Sample battery

For this research, a high energy density Li-ion Polymer Battery (EIG-ePLB-C020, Li(NiCoMn))

Pouch-type Li-ion battery cell which is fabricated by EiG Corporation in South Korea, was
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considered as prototype battery for the data generation. This battery uses active materials like

Li[NiCoMn2]O2 at the cathode and graphite at the anode respectively. Various mechanical

and electrical speci�cations of the battery are listed below in Fig. 5.2.

Fig. 5.2 Speci�cations of EIG-ePLB-C020, EiG battery cell.

5.2.2 Battery data acquisition and testing

The tests are performed on a pre-conditioned battery inside a temperature controlled chamber

at different temperatures. The PEC battery tester SBT0550 with 24 channels (see Fig.

5.3) is used for the data acquisition. The SBT is a system with a number of independent,

microprocessor controlled channels and uses water cooled power MOSFETs (5V/50A) to

obtain a very high accuracy.

An individual channel of the tester is fully programmable with its own charge-discharge

pattern. The channels of the SBT0550can be switched in parallel. In such case, the total

maximum current isnch parallel channels times50A, which is the maximum allowed current

per channel. E.g.100A for 2 and150A for 3 channels. The maximum current in this way is

600A, when the maximum of 12 channels are switched in parallel.

The charging and discharging pattern (pulse signals, multisine signals etc.) are generated

by an independent, microprocessor. Finally, the voltage, current, time and auxiliary inputs

and outputs are constantly monitored and stored with a programmable constant sample period.

Each channel has its individual memory for storing the acquired data. A large number of
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Fig. 5.3 Experimental setup: PEC Tester with acquisitions channels connected to the temper-
ature controlled climate chambers (not shown here)

measurements can be buffered in the onboard memory for each channel depending on the

number of auxiliary inputs for each channel.

5.2.3 Experiment Design

Three different investigations were performed at different RMS values of input current load

pro�le. A 20A RMS value high current load pro�le was used to scan the operating range

between10%-90% SoC of the battery's short-term electrical response for the presence of

nonlinearities. Once a signi�cant level of nonlinearities were detected at10% SoC (see

Section 5.4.1 for further details), thereafter a5A RMS value low current load pro�le was used

to detect nonlinear distortions at different temperatures. Finally, an input with RMS value of

10A is selected for the �nal analysis. The data are acquired under the typical bandlimited

measurement setting i.e. directly at the input and output of the battery with the PEC tester's

measurement channels equipped with the anti-aliasing �lters [234].

An odd-random phase multisine signal is used as an input excitation signal for the tests

(see Section 5.3.1 for the formal de�nition). All the multisine signal input pro�les were zero

mean with a random realisation of the phases. In case of20A RMS value high current load

pro�le, data for2 different realisations with10periods are acquired at different levels of SoC

at at25°C. For5A RMS and10A RMS value current load pro�les, data for1 realisation with

7 periods are acquired at different levels of SoC at different temperatures.
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The band of excitation is kept between0:1Hz–5Hz. The dynamic range of interest of the

battery for HEVs and EVs applications is covered well within this band of excitation, as this

frequency bandwidth is corresponding to the bandwidth of the power demand of a vehicle

application (acceleration and decelerations), when considering the high power perturbations

[76]. The excitation signal has a period of5000samples and the sample frequencyfs is set to

50 Hz resulting in a frequency resolution offo = 0:01 Hz. The range of excitation frequency

is also limited due to the system limitations of the PEC testers [234].

For the test, the battery is �rst charged using a constantC
3 rate, whereC is the rated

capacity, to the maximum charge voltage of4:1V using the constant current-constant voltage

method. Then, after a relaxation period of30minutes, it is discharged to the desired SoC level

Ah-based and considering the actual discharge capacity at25°C until the end of discharge

voltage3:0V of the cell. After each discharge a rest period of60minutes is applied before

the multisine tests are performed. It is made sure that the synchronisation is maintained

between the signal generation and acquisition side.

5.3 Getting to know the battery

Like many engineering systems, battery dynamics vary with time and show nonlinear be-

haviour. But in order to develop a fast and an accurate dynamic model of the battery short

term response, it is important to know, how the battery would behave in a particular scenario

such as; at a particular setting of SoC, SoH and temperature .i.e. when the battery would start

operating in the nonlinear regime, when the time variations would become stronger etc.

Hence, in the rest of this chapter, the main emphasis will be to develop a methodology

(based on the measured input current and output voltage signals) to characterise the battery's

electrical behaviour and to detect as well as quantify the presence ofa) Non-linearities,

andb) Time variations, over its full regime of operation. Information extracted from the

methodology will give a new insight into the electrical behaviour of the battery and it will be

very useful for the system (battery) modellers to develop an accurate dynamic model of the

battery over its operating regime.

5.3.1 Multisine as the perturbation signal

Before proceeding to model the battery dynamics, it is very important to characterise the

battery's electrical response under varying operational conditions, in terms of the level as

well as kind of non-linearities.
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Gaussian excitations are widely used for this purpose. Broadband signals such as mul-

tisine excitation signals offer various advantages over the random Gaussian noise signals

in extracting information from dynamical systems [235, 236, 205], e.g. full control over

the amplitude spectrum and power spectral density (PSD), while maintaining noise-like

properties in the time-domain [237]. A detailed information on the use of multisine signals

for identi�cation can be found in [11]. A quick look at the output spectrum of system to a

multisine excitation indicates whether the system is behaving nonlinearly or not at a certain

operating point.

The goal here, is to characterise a nonlinear system (Lithium ion battery) for the Gaussian

excitation signals, using the random phase multisine excitations. The amplitude spectrum of

the multisine excitation signal should be done such that the equivalence between the random

phase multisine excitation signal and the Gaussian random noise with respect to the nonlinear

behaviour is always guaranteed [238].

Hence, the equivalence classESu is de�ned, which contains all signals that are (asymp-

totically) Gaussian distributed, and have asymptotically, forN ! ¥ , whereN is the number

of excited harmonics, the same power on each �nite frequency interval. This statement is

formalised precisely in the de�nition below.

De�nition 5.3.1: Riemannian equivalence signal classESu

Consider a piecewise continuous signalu with a power spectrumSU ( jw), with a �nite

number of discontinuities. A random signal belongs to the Riemann equivalence class

of u, if it obeys by any of the following statements:

• It is a Gaussian noise excitation signal with power spectrumSU ( jw).

• It is a random multisine or random phase multisine excitation [11] such that:

1
N

k2

å
k= k1

Efj U( jwk)j
2g =

1
2p

wk2�

wk1

SU (n)dn + O(N� 1) (5.2)

wherewk = k2p fs
N ;k 2 N;0 < wk1 < wk2 < p fs and fs is the sample frequency.
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De�nition 5.3.2: Multisine signal: Time domain representation

A multisine signal is mathematically de�ned as follows [133, 11]:

ums(t) =
1

p
p

Ne
å

k2Kexc

Ã(k) cos(wkt + j k) (5.3)

wherek is an integer index drawn from the discrete setKexc � ([1; T fs
2 ] \ N) of the

excited frequency bins,wk = 2pk
T is the discretised angular frequency,T represents

both the length of the measured time record and the period of the multisine signal,N

set of natural numbers andfs is the sampling frequency.

The multisine excitation signal consists of a sum of sines (or cosines), whose frequencies

are all multiples of the same fundamental frequencywo = 2p
T . The user-de�ned discrete

function Ã(k) determines the amplitudes of the individual sines. The scaling factor1p
Ne

,

with the constantNe the number of excited frequencies, renders the RMS value of the signal

independent of the number of excited frequencies. If the phasesj k are randomly distributed

betweenp and� p such thatE[ej j k] = 0 (E is the expectation operator), the signal is called

a random phase multisines.

De�nition 5.3.3: Multisine signal: Frequency domain representation

The frequency domain representation of the multisine signal is the sum of the Fourier

transforms of the individual sines. By de�ning,

8
<

:

A(k) � Ã(k)ej f k
p

Ne

A(� k) � Ã(k)e� j f k
p

Ne

9
=

;
k > 0

the Fourier spectrum of the multisine signal is given by [239]:

Ums( jw) =
1

p
p

Ne
å

k2� Kexc

A(ke)d(w � wke)e
j j k (5.4)

whered(� ) is the Dirac delta function. The amplitudes of the multisine components

A(k) � 0 can be chosen arbitrarily, depending on the application.A(k) is generally set

to zero beyond a certain frequency indexkmax such that the signal is bandlimited, and

aliasing is avoided when signal is sampled at fast enough sample frequency according to the

Shannon-Nyquist sampling criteria[240].

In addition, in a specially designed multisine signal such as the odd-random random

phase multisine signals, only the odd frequencies in a frequency band of interest are excited
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and along with some of the odd frequencies are not excited i.e.A(kn:exc) = 0. The signal

at these unexcited frequencies (detection lines) in the output spectrum contains valuable

information about the presence of non-linearities and/or the time variations of the system

[11].

5.4 Frequency domain nonparametric characterisation

In this work, to characterise the battery's short term electrical response for different levels of

SoC at different temperatures, a nonparametric characterisation technique proposed by [241]

is used. It utilises the properties of the specially designed random phase multisine signal

described above in Section 5.3.1.

Assumption 5.4.1: Battery discharge capacity

For this particular analysis, it is assumed that the battery discharge capacity and the

corresponding SoC levels can be estimated accurately.

Remark 5.4.1

Before starting the multisine experiment at each setting of temperature, the battery

discharge capacity was estimated at the nominal temperature of25°C and SoC levels

were calculated w.r.t that discharge capacity.

Assumption 5.4.2: PISPO assumption

System class:S is the class of nonlinear systems such that, when excited by a random

phase multisine:

9 C1;s.t.
¥

å
a = 1

MG0
a
MUa � C1 < ¥ ; (5.5)

with MG0
a

= maxjGa
Lt

; t 1; t 2; � � � ; t a � 1j as de�ned in Section 1.3.1.

A system belongs to the class of PISPO systems, if it obeys the period preserving principle.

According to Assumption 5.4.2, for the PISPO system there exists a uniformly bounded

Volterra series whose output converges in mean square sense to the output of the nonlinear

system, which belongs to the system classS (see [11] for further detail).
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Fig. 5.4 Response PISPO: Total output is the sum of linear contributions (at excited lines),
even NL (at even lines), odd NL (at odd lines) and noise (at all lines, not displayed here).

Remark 5.4.2

A nonlinear system is called PISPO, if the steady state response to a periodic input

is also a periodic signal with the same period as the input (with preservation of the

period length). This system classSincludes systems with saturation and discontinuous

nonlinearities, but it excludes systems with period multiplication, chaotic behaviour,

sub-harmonics, and hysteresis, see [237, 243–245] for a more formal de�nition.
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It is assumed that the battery can be modelled as a weakly nonlinear periodic-in-same-

period-out (PISPO) system described by a Volterra series (see [11, 242, 243] for more

details).

For the characterisation, a odd-random random odd multisine excitation signal [246] with

a specially chosenA(kn:exc) = 0 is used, see Fig.5.4 (a). A linear system would only generate

energy at the excited frequency lines, see Fig.5.4 (b) and it would only consist of the green

contributions. Whereas, a nonlinear system can also generate energy at non-excited lines:

hereinafter termed as the thedetection lines.

For example, a nonlinear system with degreem can generate energy at any output

frequency that is the sum ofm frequenciesfi , that are present in the input (spectrum), where

repeated selection of the same frequency is allowed [11]. Even nonlinearities only generate

energy at evendetection lines, assuming that no constant term is present in the multisine. An

even combination of odd lines is always even.

As such, the level of the even nonlinearities can be quanti�ed immediately by looking

on the even lines in the output spectrum Fig.5.4 (c). Similarly, the non-excited odd lines

serve asdetection linesfor the odd nonlinearities. This is visualised in Fig.5.4 (d). Since

the nonlinear system (here battery) is operating in open-loop, the output Discrete Fourier

Transform (DFT) spectrum of each period of the steady state response (with known input) to

an odd random phase multisine with random harmonic grid is given by:

Y[p](k) = Y0(k)+ N[p]
Y (k)+ YS(k) (5.6)

The total response of the system is the sum of linear (Y0(k)) and stochastic nonlinear

(even & odd) contributionsYS(k), wherep = 1;2;3; :::;P, periods of the multisine andN[p]
Y is

the noise term. This is depicted in the Fig.5.4(e) in the case of noiseless measurements. For

interested readers. a detailed description of the procedure can be found in [11, 241].

5.4.1 Observations: High current

Here, the results of the nonparametric characterisation performed using a20A RMS current

signal at25°C are discussed. For this �rst test, the operating regime of the battery between

10%SoC–90% SoC is divided into5 equal operating points at every20% change in SoC

starting from 10% SoC.
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Input current load pro�le

Both measured input and output signals are periodic in nature with the preservation of period

length, hence the PISPO assumption is validated (see Figures 5.5 to 5.10). The odd-random

phase multisine excitation current pro�le signal applied to the battery at all levels of SoC's is

shown in the Fig.5.5. It can be seen that the power is only injected in the frequency band of

interest, which in this particular case lies between0:1Hz–5Hz. A very small odd (red dots)

nonlinear effect is visible at� 70dB. A probable cause may be the non-ideal behaviour of

the the power electronics (e.g. switching of IGBTs) in the data acquisition system.

Fig. 5.5 Current pro�le in frequency domain at all SoC's

Voltage response of the battery

Using the methodology discussed above, valuable information about the nonlinear behaviour

of the battery over its complete operating range w.r.t SoC levels at25°Celsius is extracted.

Figures 5.6 to 5.10 show the output voltage response of the battery at90% SoC,70% SoC,

50% SoC,30% SoC and at10% SoC to the applied multisine excitation current signal for

two different realisations respectively. It can be observed that the battery behaves almost

linearly (green dots) at the90% SoC and the level of in-band noise is higher during the �rst

realisation as compared to the second realisation of multisine signal.

A similar behaviour can also observed at the50% SoC and70% SoC levels. At the30%

SoC, the level of nonlinear distortion start to increase and at the10% SoC even (blue dots)
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(a)

(b)

Fig. 5.6 Output voltage response in frequency domain at 90% SoC and 25°C.
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(a)

(b)

Fig. 5.7 Output voltage response in frequency domain at 70% SoC and 25°C.
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(a)

(b)

Fig. 5.8 Output voltage response in frequency domain at 50% SoC and 25°C.
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(a)

(b)

Fig. 5.9 Output voltage response in frequency domain at 30% SoC and 25°C.



114 Nonparametric analysis

(a)

(b)

Fig. 5.10 Output voltage response in frequency domain at 10% SoC and 25°C.
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and odd (red dots) nonlinear effects become signi�cant, but dominantly even behaviour can

be observed. The results obtained are in accordance with the behaviour of theOpen circuit

voltageOCV–SoC curve of the battery [247]. According to the shape of the OCV–SoC curve

between10%SoC–90% SoC, the battery behaviour is almost linear in the neighbourhood of

the operating point at all temperatures, whereas at the10% SoC level, the battery operating

point is at the cusp of linear and nonlinear regime of its range of operation.

5.4.2 Observations: Low current

Based on the observations of the high current pro�le test, it was established that the more

tests must be performed in the nonlinear (both upper and lower) regimes of the battery. Here,

the results of the nonparametric characterisation performed using a5A RMS low current

pro�le are discussed.

Fig. 5.11 Output voltage response in frequency domain at98% SoC and40°C at5A RMS
current. It can be seen that the system behaviour is dominantly linearly.

In this test, for the SoC levels between0% —10% and90% –100%, the input and output

data were collected at every2% change in the SoC level and for SoC between10% –90%,

the data were collected at every20% change in the SoC level at three different temperatures

i.e. at5°C, 25°C and40°C respectively. Although, below only the results of analysis at98%

and4% SoC at different temperatures are shown, similar observations were also made at

other settings of SoC levels between 0% –10% and 90% –100%.
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Fig. 5.12 Output voltage response in frequency domain at98% SoC and25°C at5A RMS
current. It can be seen that the system behaviour is dominantly linearly.

Fig. 5.13 Output voltage response in frequency domain at5A RMS current,98% SoC and
5°C. It can be seen that, both nonlinear distortions (even and odd) increase with the drop in
temperature and become signi�cant both inside and outside the frequency band of interest at
5°C
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Fig. 5.14 Output voltage response in frequency domain at4% SoC and40°C at5A RMS
current. It can be seen that the system behavior is dominantly linearly.

Fig. 5.15 Output voltage response in frequency domain at4% SoC and25°C at5A RMS
current. It can be seen that the system behaviour is dominantly linearly with slightly higher
even nonlinear distortions.
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It can easily be inferred from Figures 5.11 to 5.16, that the level of nonlinear distortions

increase with a decrease in the temperature. One of the possible causes for this phenomenon

can be attributed to fact that the internal resistance of the battery increases at lower tem-

peratures. These observations con�rm experimentally the coupling between thermal and

electrical dynamics at different levels of the SoC.

Fig. 5.16 Output voltage response in frequency domain at5A RMS current,4% SoC and
5°C. It can be seen that, both nonlinear distortions (even and odd) increase with the drop in
temperature and become signi�cant both inside and outside the frequency band of interest at
5°C

5.4.3 Observations: Moderate current

Based on the previous investigations, a RMS level of10A was selected for data collection at a

range of temperatures for model identi�cation and further investigation. The region between

0%SoC –10% SoC was selected, for which the models (both the best linear approximation

and the nonlinear) should be estimated. Figure 5.17 shows the operating points in terms of

SoC and temperature at which the experiments were conducted and the input-output data

were acquired. Blue balls represent the operating points, whose data were used for the

estimation and validation of the �nal model whereas the red dots represent the operating

point of the test dataset.



5.4 Frequency domain nonparametric characterisation 119

0 2 4 6 8 10 12
0

5

14

25

35

40

45

State of Charge (SoC) in %

Te
m

pe
ra

tu
re

in
°C

Fig. 5.17 Operating points for data acquisition: Blue balls = estimation dataset, red dots =
validation dataset.

For brevity, here the results obtained at a few different levels of SoC at different tem-

peratures are shown here, but the analysis was performed over a2–D grid spanning a range

of SoC between0%� 10%SoC with2%SoC step-size and temperatures operating points

ranging between 5°C and 40°C.

Fig. 5.18 Nonparametric analysis at5°C: Both odd and even NL have signi�cant contributions
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Fig. 5.19 Nonparametric analysis at14°C: Even NL have signi�cant contributions with
reduced level of odd NL

Fig. 5.20 Nonparametric analysis at 25°C: Even NL have signi�cant contributions

In this test, for a10A RMS current pro�le, the information about the nonlinear behaviour

of the battery over a temperature operating range between5°C and40°C w.r.t. different SoC
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Fig. 5.21 Nonparametric analysis at40°C: Even NL have signi�cant contributions although
the level has decreased as compared to 25°C

Fig. 5.22 Nonparametric analysis at35°C: The contribution of both even and odd NL is
almost at the noise �oor
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levels is extracted. Figures 5.18 to 5.22 show the output voltage response of the battery at

5°C,14°C,25°C,35°C and40°C to the applied multisine excitation current signal at different

SoC levels respectively. It can be clearly observed from Figures 5.18 to 5.19 that, at5°C and

14°C both within the frequency band of interest [0:1Hz� 5Hz] and beyond, the contributions

of odd and even nonlinear distortions become signi�cant but varies w.r.t. the level of SoC.

Simultaneously the level of in-band noise is also signi�cantly higher as compared to

25°C and at40°C respectively. With an increase in the temperature, only even nonlinear

distortions are dominant (See Fig. 5.20 and Fig. 5.21). A similar pattern of evolution of the

nonlinear distortions was also observed at the other SoC levels and temperatures, but to save

space, only a few of the analysed operating points are demonstrated.

5.4.4 Conclusion

From the results of the extensive nonparametric analysis performed above, it can be safely

concluded that at around 10% SoC level or below, the effect of nonlinear distortions (both

odd and even) become signi�cant therefore, a nonlinear model might be necessary to capture

accurately the battery dynamics. In addition to that, lower temperatures also have an in�uence

on the levels of nonlinear distortions.

The need for differentiating between odd and even frequencies during the nonparametric

tests is an essential step in order ascertain the effect of the contributions of nonlinear

distortions on the FRF (linear) . This preliminary analysis, also gives an early indication that

both even and odd degree monomials will be required in the Polynomial nonlinear state-space

model (PNLSS) model to capture the nonlinear effects of the battery dynamics (see Chapter

7 for further details). In the next chapter, a data-driven methodology to estimate the best

linear approximation of the battery dynamics is proposed.



Chapter 6

The best linear approximation of the

battery's electrical response

A theory has only the alternative of being right or wrong. A model has a third

possibility: it may be right, but irrelevant.

Manfred Eigen

Battery short-term electrical impedance varies between linear, linearly time-varying

or nonlinear at different operating conditions. Data based electrical impedance modelling

techniques often model the battery as a linear time-invariant system at all operating conditions.

In this chapter, a local polynomial method based approach to estimate nonparametrically the

best linear approximation of the electrical impedance from input current and output voltage

data at operating conditions, where its dynamic response is effected by nonlinear distortion is

proposed. The method is validated on the data from a single and multiple experiments. The

advantage of method lies in its capability to handle the transients (leakage) errors ef�ciently.

Once these nonparametric best linear approximation is estimated, a nonlinear weighted least

squares approach is used to estimate the parametric model.

6.1 Introduction

Nonparametric analysis described in the previous chapter, is the �rst step in this modelling

approach in order to detect and to quantify the presence ofNon-linearitiese.g. in terms of

the SoC level, temperature and current rate, over its full regime of operation. Information

extracted from the nonparametric characterisation methodology is used here to develop an

accurate dynamic model of the battery's electrical response in its nonlinear operating regime.
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Electrical impedance measurements provide useful information about the characteristics

of a Li-ion battery [248, 249] . Linear models based on electrical impedance measurements

are used very often to describe the battery's dynamics at different operating conditions.

The classical method of measurement consists of performing electrochemical impedance

spectroscopy (EIS). Its general concept consists in the application of an electrical stimulus to

the working electrode and monitoring the corresponding response.

Many EIS experiments are performed by a stepwise change of frequency in an applied

sinusoidal current, measuring the corresponding sinusoidal voltage and calculating at each

frequency the electro-chemical impedance. Although robust, it is considered as an expensive,

complex, and very time-consuming method.

The authors in [250, 251] have performed galvanic EIS and measured impedance, when

the DC current with different levels is added to the AC perturbation. In the case of testing

with high current levels, the impedance is distorted due to signi�cant nonlinear distortions.

In order to avoid signi�cant SoC changes during the test, the frequency range is limited

to a rather small range of high frequency components. The effect of rest duration before

measurement on impedance was investigated by [249], while they did not consider transient

effects on the measurement during the experiment. In addition, these techniques require

extensive and time consuming experimentation.

It has been shown in chapter 5, that the operating conditions have a signi�cant impact on

the output of the batteries and there is strong interaction between the electrical and thermal

dynamics. It has been shown in Section 5.4, that the level of the nonlinear distortions increase

at lower SoC levels and colder temperatures. Hence, the estimate of the electrical impedance

based on the input-output data acquired at different operating conditions will differ.

In addition, as mentioned in Section 4.10, there are many situations in practice, that can

lead to multiple datasets of equal or unequal length during an experiment or where multiple

experiments need to be performed. For example during a long experiment, some parts in the

data may have extremely poor quality or it might be impossible to measure for a very long

time without interruption.

Additionally, the experimental set-ups required for the battery characterisation and

modelling are expensive as well as experiments are very time consuming. Therefore, to save

the experimental costs, sometimes it is advantageous to group the series of sub-records that

are collected under either similar or different operating conditions, to estimate the electrical

impedance of the battery.

So, if based on the nonparametric analysis and the experimental constraints, the decision

has been made to model battery as a linear-time invariant system. Then, there is a need to
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develop an identi�cation methodology, which can handle the data from multiple experiments

and can ensure that the best linear approximations of the battery electrical dynamics is made.

In this regard, a data-driven Local polynomial method (LPM) based methodology, to

estimate nonparametrically the best linear approximation (BLA) of the battery's electrical

impedance, from the measured input multisine current excitation and output voltage signals

is proposed below. The input-output datasets can be acquired either at the same operating

condition or at varying operating conditions e.g. different SoC levels, temperatures etc. with

varying level of noise and the nonlinear distortions. The advantage of this method over

the conventional single-sine excitation methods is the reduction in the measurement time,

explicit handling of nonlinear distortions and better handling of the leakage errors [252].

6.2 Best Linear Approximation

Before, we can actually de�ne the BLA, a certain assumptions about the system class and

noise need to be clearly stated. In the context of this chapter, we assume that the battery is

operating in the nonlinear regime of its operation at any given operating condition and it can

be modelled as a PISPO nonlinear system (see Section 5.4 for details).

Assumption 6.2.1: Noise framework

The output of the system is affected by an additive, coloured zero-mean noise source

v(t) with a �nite variances 2:

y(t) = y0(t) + v(t) (6.1)

This noisev(t) is assumed to be independent of the known inputu(t). y(t) is the actual

output signal and a subscript 0 denotes the exact (unknown) value.

Fig. 6.1 Time domain representation of the problem [11]
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De�nition 6.2.1: Best Linear Approximation

The BLA GBLA(q) of a discrete time single-input-single-output (SISO) model (see Fig.

6.1) of a nonlinear system, which is excited with signals belonging to the Riemann

equivalence class of asymptotically normally distributed excitation signals (see Section

5.3.1 and [11] for details), is de�ned as the modelG belonging to the set of linear

modelsG, such that

GBLA(q) = argmin
G(q)2G

Eu
�
jỹ(t) � G(q)ũ(t)j2

�
(6.2)

with q� 1 the backward shift operator(q� 1x(t) = x(t � 1)) andEu the expected value

with respect to the input realisation [50], while ˜u(t) andỹ(t) are de�ned as:

ũ(t) , u(t) � Ef u(t)g (6.3)

ỹ(t) , y(t) � Ef y(t)g (6.4)

Set Up For an in�nite length data recordt = � ¥ ; :::;N � 1; the input-output relationship

of a discrete-time single-input-single-output (SISO) nonlinear system (see Fig. 6.1), which is

excited with signals belonging to the Riemann equivalence class of asymptotically normally

distributed excitation signals [11] can be written as:

y(t) = GBLA(q)u0(t) + ys(t) + H0(q)e(t): (6.5)

with ys(t) the stochastic nonlinear contributions,u0(t) the exogenous input. The outputy0(t)

is disturbed with an additive noisev(t), hencey(t) = y0(t) + v(t). The noisev(t) is assumed

to be �ltered white noise,v(t) = H0(q)e(t), whereH0(q) represents the noise model. For a

�nite length data recordt = 0; :::;N � 1, (6.5) must be extended with the initial conditions,

or in other words, the transient effectstG, tH of the dynamic system and the noise �lter

respectively:

y(t) = GBLA(q)u0(t) + ys(t) + H0(q)e(t)+ tG(t) + tH(t): (6.6)

Using the de�nition of discrete Fourier transform (DFT)

X(k) =
1

p
N

N� 1

å
t= 0

x(t)e� j2pkt=N; (6.7)
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an exact frequency domain formulation [253, 11] of (6.6) is obtained as:

Y(k) = GBLA(wk)U0(k)+ Ys(k)+ H0(wk)E(k)+ TG(wk) + TH(wk) (6.8)

where the indexk points to the frequencyk fs=N , with fs the sampling frequency, and

wk = ej2pk fs=N. The time-domain termstG(t);tH(t) are described by rational forms inq� 1

applied to a delta-input and frequency domain termsTG(k);TH(k) are rational functions in

z� 1, hence they are smooth functions of the frequency.

Here, the LPM is utilised to estimate the nonparametric BLA because it makes an optimal

use of the smooth behavior ofGBLA andTG to reduce the leakage errors [245] signi�cantly.

As compared to the classical windowing methods it provides a good estimation of the BLA

as well as its variance (s 2
BLA) [245]. Other alternatives to estimate the nonparametric BLA

are the Fast method, the Robust method [11] and the recently developed TRansient Impulse

response Modeling Method (TRIMM)[254].

6.3 Nonparametric BLA: The local polynomial method

In this section, an introduction to the LPM method, which is used to estimate nonparamet-

rically the BLA from the input current and the output voltage data is given. A detailed

description and full analysis is also given in [255, 256], The basic idea of the LPM method is

quite simple: as stated above the transfer functionGBLA, and the transient termTG are smooth

functions of the frequency, therefore they can be easily approximated by a complex polyno-

mial in a narrow band of frequency, around a user speci�ed frequencyk. The parameters of

the complex polynomial are directly estimated from the measured input-output data.

Next the estimation of theGBLA(k), at any central frequencyk, is retrieved from this

local polynomial model as the measurement of the frequency response function (FRF) at that

frequency. This procedure is then repeated for all DFT frequencies in the band of interest by

shifting the sliding window over one DFT bin. In that way, a local estimate of the FRF is

obtained at every frequency.

The output error expression described by (6.6), and an equivalent relation for the DFT-

spectra (6.8), applied to both the plantGBLA(q)u0(t) as well as the noise termv(t) = H0(q)e(t)

results in the following expression of output spectrum:

Y(k) = GBLA(wk)U0(k)+ T(wk) + V0(k)+ Ys(k) (6.9)

whereT(wk) = TG(wk) + TH(wk), the generalized transient term now accounts both for

the leakage of the plant and the noise dynamics. The remaining noise term isV0(k) =
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H0(wk)E(k). It is shown in [11] that the contributionsU, E, Y in (6.9) are anO(N0), while

the transient termsTG andTH are anO(N� 1=2), whereX = O(Np) means that forp < 0,

limN! ¥

�
�
� X

Nj pj

�
�
� < ¥ .

The smoothness of bothGBLA andT can be exploited to write the following Taylor series

representation, which holds true for the frequency linesk+ r, with r = 0; � 1; :::; � n:

GBLA(wk+ r ) = GBLA(wk) +
R

å
s= 1

gs(k)rs+ O
� r

N

� R+ 1
(6.10)

T(wk+ r ) = T(wk) +
R

å
s= 1

ts(k)rs+ N
� 1
2 O

� r
N

� R+ 1
(6.11)

All parameters ofGBLA(wk), T(wk) and the parameters of the Taylor seriesgs(k);ts(k);s=

1; :::;R, for each frequency linek can be collected into a2(R+ 1)-column vectorqk of

unknown complex coef�cients de�ned as

qk , [GBLA(wk) g1(k):::gR(k);T(wk) t1(k):::tR(k)]T ; (6.12)

whereas their respective coef�cients are collected in a row vectorK(k; r). This allows (6.9)

to be rewritten (after neglecting the higher order terms) as:

Y(k+ r) = K(R;k+ r)qk + V0(k+ r); (6.13)

whereK(R;k+ r) is a2(R+ 1) row-vector, which contains both the structural information,

i.e. the powers ofr in the polynomial expansions (6.11) and the information about the input

signal. Now,2n+ 1 equations (6.13) obtained forr = 0; � 1; :::; � n: are then collected into

one matrix equation by de�ning the(2n+ 1)-vectorsȲk;n andV̄k;n

Ȳk;n , [Yk� n Yk� n+ 1:::Yk::: Yk+ n� 1 Yk+ n]T (6.14)

V̄k;n , [Vk� n Vk� n+ 1:::Vk::: Vk+ n� 1 Vk+ n]T (6.15)

Ūk;n , [Uk� n Uk� n+ 1:::Uk::: Uk+ n� 1 Uk+ n]T (6.16)

This �nally results in the following expression

Ȳk;n = Kk;n(R;Ūk;n)qk + V̄k;n; (6.17)

where the matrixKk;n(R;Ūk;n) is a2(n+ 1) � 2(R+ 1) matrix. The structure of this matrix

is entirely determined by the indicesn andR and it contains the input signalsUk+ r which

appear in the input vector̄Uk;n de�ned in (6.16). Finally, an estimate of the parameterq̂k is
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then obtained by solving the following linear least-squares problem:

min
qk

[Ȳk;n � Kk;n(R;Ūk;n)]H [Ȳk;n � Kk;n(R;Ūk;n)] (6.18)

where for any complex vector or matrixA, AH denotes its Hermitian (conjugate) transpose

[255]. From (6.12), it follows that an estimate of the FRF at the frequencywk is obtained as

the �rst component of the parameter estimateq̂k : ĜBLA(wk) = q̂k(1). The conditionn � R+ 1

is required between the number of spectral lines in the frequency window aroundwk and

the order of the polynomial approximation, to ensure a full column rank matrixKk;n(R;Ūk;n)

[11].

To reduce the variance of the parameter estimate a larger number of frequencies in the

frequency window are taken. In this way, the noise will be averaged over a larger amount

of data. Similarly the leakage error decreases with increasingR. On the downside, a larger

window size results in the larger bias error (or the interpolation error). This is caused by

the fact that the transfer function varies over the interval. The smallest interpolation error is

obtained forn = R+ 1. A detailed error analysis and the bias-variance trade-off of the LPM

is presented in [255, 256].

6.4 Effect of temperature on the BLA

As observed in Section 5.4 for different RMS value of the multisine current signal, the levels

of nonlinear distortions differs at different operating condition. Similarly, the temperature

has an effect on the estimation of the BLA (see Section 6.1 for details of experimental

investigations.).

Although the BLA was estimated on the data acquired from whole range of operating

conditions (see �g. 5.17) and similar observations were made at different operating conditions,

here for the sake of brevity, only the results of the estimation of BLA at different temperatures

at 6% SoC w.r.t two multisine current signal realisations of 10A RMS are demonstrated.

Figures 6.2 and 6.3 show the effect of temperature on the nonparametric BLA calculated

using two different realizations of a multisine signal. It can been clearly seen that the BLA

and variance of the BLA changes at different operating conditions only as a scaling factor.

This observation and the smooth nature of BLA is further exploited to calculate the common

BLA (CBLA) for all the datasets acquired at different operating conditions.
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Fig. 6.2 BLA and the variance of the BLA at (6% SoC, 10A RMS, 25°C, 40°C)

Fig. 6.3 BLA and the variance of the BLA at (6% SoC,10A RMS, 5°C, 14°C, 35°C). It can
be clearly see that the BLA is very smooth in nature and differs only by a scaling factor at
different temperature.
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6.5 BLA from multiple datasets

Sometimes due to various experimental circumstances such as sensor failures during an

experiment, constraints in data acquisition hardware, slow dynamics of the battery and

continuously varying operating conditions, it is not possible to acquire data in one single

experiment. Hence the data from multiple experiments must be acquired. In this section, we

describe two different approaches to use the LPM method described above to estimate the

BLA from multiple datasets.

During the data acquisition process, the set of exited and non-excited frequency lines

were different from one set of temperatures i.e. [5°C, 14°C and35°C] at to other set of

temperatures i.e. [25°C and40°C]. In Figs. 6.2 and 6.3, it can be clearly observed that the

BLA obtained from each set of experiments is rather smooth in nature and differs only by

a scaling factor at6% SoC. Similar observations were made as with the other SoC levels.

Hence before calculating a common BLA for all datasets, the smooth nature of the FRFs is

exploited and the FRF obtained for each experiment is interpolated over a set of common

frequency points within the band of excitation.

6.5.1 Common BLA by averaging over individual BLAs

Once the estimate ofGBLAi (using the nonparametric identi�cation procedures described in

Section 6.3 above) for each experiment at a particular setting, where only one of the physical

variables (SoC, temperature or SoH) is changing or each sub-record of data acquired at a

�xed operating condition is available, then the estimate of a common BLA and its variance

can be obtained as explained below.

Suppose we carry outM independent experiments either at the same operating condition

or at different settings of either SoC or temperature etc., then the common BLA (CBLA) of

the battery dynamics is estimated (by exploiting its smooth nature) from the set of individual

BLAs i.e. GBLAi for i = 1;2; � � � M, by calculating the sample mean (calculated at each

frequency linek in the set of excited frequency lines) of all the nonparametric BLAs. In a

similar way the variance ofCBLA can be obtained by calculating the sample variance of the

individual BLAs:

CBLA1(k) =
1
M

M

å
i= 1

GBLAi (k) (6.19)

s 2
CBLA1

(k) =
1

M � 1

M

å
i= 1

jGBLAi (k) � CBLA1(k)j2 (6.20)
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6.5.2 Common BLA from multiple operating conditions

Now suppose,m independent experiments at different levels of SoC andJ independent

experiments at different settings of temperature for each SoC level are performed, then

similarly the nonparametric BLA at a particular setting of SoC and temperature can be

calculated individually using the Fast, Robust or the LPM nonparametric identi�cation

procedure [11, 252] as described in Section 6.2. After the linear interpolation step, theCBLA2

of the battery dynamics from the data acquired from multiple experiments can be calculated

from the set of individual BLAs by calculating the mean and the variance as below:

BLAAvg;i(k) =
1
m

m

å
r= 1

BLAir (k)

BLAVar;i(k) =
1

m� 1

m

å
r= 1

jBLAir (k) � BLAAvg;i(k)j2

CBLA2(k) =
1
J

J

å
i= 1

BLAAvg;i(k)

s 2
CBLA2

(k) =
1
J

J

å
i= 1

BLAVar;i(k) (6.21)

6.5.3 Common BLA using Multi-Input Multi-Output LPM

Another way of estimating a common BLA of the concatenated data records is by utilizing

the multi-input multi-output (MIMO) setting of LPM [233].

Assumption 6.5.1: Nonlinear Distortions

It is assumed that the level of nonlinear distortions are the same at different tempera-

tures or levels of SoC w.r.t the same realization of the input current load pro�le.

Remark 6.5.1

The nonlinear distortions are different at different operating conditions (see Section

5.4). Nevertheless, the extended method without loss of generality on the concatenation

of two records in the absence of disturbing noise and nonlinear distortions is introduced

here; the results apply to an arbitrary number of concatenated sub-records in the

presence of disturbing noise and nonlinear distortions.

Here, for pedagogical reason only two data records with lengthsN1 andN2 are considered,

but the extension to more datasets is straightforward. For example, fork0= 1;2, we can write
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u[k0](t) andy[k0](t) with t = 0;1; :::;Nk0� 1. Consequently, the concatenated data input and

output records are then expressed asu0 = [ u[1]
0 ;u[2]

0 ] andy0 = [ y[1]
0 ;y[2]

0 ] respectively. Using

(6.6) and Assumption 6.5.1, we can write that,

y0(t) = [ y[1]
0 ;y[2]

0 ]

= GBLA(q)u[1]
0 (t) + t [1]

G (t) + GBLA(q)u[2]
0 (t) + t [2]

G (t)

= GBLA(q)[u[1]
0 (t);u[2]

0 (t)] + tG(t) + tG(t � N1)

= GBLA(q)[u0(t)] + tG(t) + tG(t � N1) (6.22)

For t < 0, the transient termt [k0]
G (t) = 0. Similar to (6.9), an equivalent relationship between

the input and the output DFT's becomes,

Y0(k) = GBLA(wk)U0(k)+ TG(wk) + TG(wk)w
� N1
k (6.23)

where nowwk = ej(2pk=(N1+ N2)) . It follows from (6.22) and (6.23), that an additional transient

in the concatenation point is added to the output. Another way to write (6.22) is:

y0(t) = GBLA(q)u0(t) + GTG(q)d(t)+ GTG(q)d(t � N1) (6.24)

with d(t) being a Dirac impulse:d(0) = 1, andd(t) 6= 0 if t 6= 0. In (6.24), the transients

are modelled as the response of a linear system to a Dirac impulse int = 0 and in the

concatenation pointt = N1. The transfer functionsGTG andGBLA have equal denominator.

Consequently, (6.24) can be written as the output of a multiple-input system, that is excited

with the concatenated input records at one of inputs of the system and with Dirac impulses at

the beginning of each record that is concatenated (t = 0 andt = N1) at the remaining inputs.

Hence, the MIMO LPM described in [255] to measure the FRF using concatenated records

can be used without any change.

The major difference in this formulation with the SISO formulation is that, in this

particular formulation, the number of combined frequencies2n+ 1 in (6.17) will grow

with the number of transients. For obtaining an interpolation of orderR, the number of

complex parameters/transient terms which need to be estimated isR+ 1. Hence, at least

2n+ 1� (R+ 1)(1+ Nc) lines should be combined, withNc being the number of concatenated

subrecords. If the estimation of the variance of the disturbing noise is also required then

a strict inequality2n+ 1 > (R+ 1)(1+ Nc) is needed to have residuals different from zero

[233].
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6.5.4 Observation: BLA multiple datasets

The comparison of the BLA estimation using two methodologies described in Section 6.5 is

presented here. Here, two different case studies for estimating theCBLA are discussed:

• By using multiple datasets acquired at the same operating condition,

• and by using the multiple datasets at varying operating conditions of temperature

and/or SoC.

CBLA at the same operating condition

Fig. 6.4 Comparison of the BLAs using LPM averaged (green curve) approach and LPM
MIMO approach (red curve) at (6% SoC, 10A RMS, 5°C)

Figure 6.4 shows a comparison between the estimate of BLA using the approaches

discussed in Sections 6.5.1 and 6.5.3 respectively, using the data acquired from multiple

experiments performed at a �xed operating condition of6% SoC,10A RMS, 5°C. It can be

clearly seen that both approaches result in the estimate of the BLA, that is quite similar in

magnitude but the variation of the BLA estimated using the MIMO setting of the LPM is bit

larger on the excited frequencies.
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CBLA using data from different temperature

Here we present the result of the BLA estimation using the data acquired at different settings

of temperatures at a �xed SoC level. It is evident from Section 5.4 that the level of nonlinear

distortions (both even and odd) changes w.r.t. the operating conditions. Hence Assumption

6.5.1, made in Section 6.5 is not satis�ed.

Fig. 6.5 BLA at (10% SoC,10A RMS, [5°C, 14°C, 35°C]), Comparison between Red: BLA
with LPM MIMO settings, Green: LPM averaged

It can be clearly seen from the Fig. 6.5 that, due to varying levels of nonlinear distortions

between different datasets acquired at different temperatures, the BLA estimate using the two

approaches discussed in Sections 6.5.1 and 6.5.3 respectively is quite similar in magnitude

but the smooth nature of the estimate is lost because the uncertainty of the estimate using the

LPM MIMO approach is too large.
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Remark 6.5.2

• The nonparametric estimate of the BLA using the LPM MIMO case may be

used to identify a parametric BLA, in case averaging over different experiments

is not feasible at all. Because the parametric �t will eventually smooth out the

BLA estimate further (see Section 6.6 for details).

• The use of MIMO LPM technique is however not advisable for the systems with

varying dynamics, because using the averaged approach, the dynamics of the

system at different operating condition is captured in a better way.

CBLA using data from multiple operating conditions

Fig. 6.6CBLA and individual BLAs at different operating conditions (10% SoC,5°C) and
(4% SoC, 40°C)

Fig.6.6 shows theCBLA estimated using (6.21). The �nal estimate of theCBLA was

calculated using the data acquired at all operating condition, but to avoid the overcrowding

of Fig.6.6,CBLA is plotted against the individual BLAs estimated at a few different operating

conditions of battery operating regime, where the data was acquired (see �g. 5.17). It can

be seen thatCBLA is a reasonable approximation of the individual BLAs estimated at these

extreme operating conditions. Similar observations were made at other operating conditions.
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A parametric �t on this estimatedCBLA can be used as a starting point for the initialisation of

nonlinear model structure discussed in the next chapter.

6.6 Parametric BLA

In this step, a parametric model is �tted to the nonparametric BLA. The parametric model

can be used to better understand the system behaviour using the pole-zero representation.

Thus, depending on the application and requirements, using the nonparametric FRF estimate

(CBLAs) and its variance (s 2
CBLAs

), which is found in the previous steps (see Sections 6.5.1 and

6.5.2), wheres= 1;2, we estimate a parametric model of our system by solving a nonlinear

weighted least squares (NLWLS) problem [11, 257]. This model (discrete-time) describes

the system as a rational transfer function. The model considered here is a rational function in

the backward shift operatorq� 1:

ĜCBLA(q;qt f ) =
b0 + b1q� 1 + b2q� 2 + :::::: + bnbq

� nb

a0 + a1q� 1 + a2q� 2 + :::::: + anaq� na
; (6.25)

The parameter vectorqt f 2 R(nb+ na+ 2)� 1 contains the parameters[a0;a1; : : : ;ana;b0;b1; : : : ;bnb]
T .

Since one parameter can be chosen freely because of the scaling invariance of the transfer

function, onlynb + na + 1 independent parameters need to be estimated by minimizing the

following NLWLS cost function:

Vt f (qt f ) =
F

å
k= 1

jCBLAs(e
jwk) � ĜCBLA(ejwk;qt f )j2

s 2
CBLAs

(ejwk)
; (6.26)

whereCBLAs(e
jwk) is the frequency domain representation of(6.25)ands 2

CBLAs
includes both

noise and the nonlinear distortions. The order of the parametric model in (6.25) can for

example be determined using a signal theoretic measure such as the minimum description

length (MDL) criterion (see page no.439of [11]). This NLWLS framework also guarantees

the lowest possible uncertainty on the model parameters [11].

Thereafter, a balanced state-space realisationGss = ( ÂBLA; B̂BLA;ĈBLA; D̂BLA) for the

stable portion of the linear system̂GCBLA(q;qt f ) can be calculated ([258]), where the subscript

ssstands for the state-space. This representation is an equivalent realization for stable systems,

for which the controllability and observability Gramians are equal and diagonal [259, 260].

Other ways to convert the nonparametric model into a linear parametric state-space model

using the frequency domain subspace identi�cation method are detailed in [261, 262].
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Parametric model at different temperatures

Fig. 6.7 Comparison of the BLAs using LPM averaged (green curve) approach and LPM
MIMO approach (red curve) at (6% SoC, 10A RMS, 5°C)

See blue curve in the Fig. 6.7, a3rd � order discrete-time transfer function �tted on

the BLA estimated using MIMO LPM setting at different temperatures. Individual BLAs

estimated at varying operating points can be used to develop black-box linear time-varying or

parameter-varying models or the CBLA can be used as initialization for the nonlinear model

structure proposed in [78].

Parametric model at multiple operating conditions

Figure 6.8 shows the5th� order parametric BLA �tted to theCBLA calculated using (6.21)

and using the data acquired at all operating condition. It can be seen that parametric BLA

is a very good �t to theCBLA. Here a5th� order model was required because the level of

nonlinear distortions change drastically at various different operating temperatures and SoC

levels (see Chapter 5 for the details on the characterisation experiments).

6.7 Conclusion

In this chapter, the LPM based approaches to estimate nonparametrically the BLA of the

battery's short term electrical dynamics is proposed. It has been demonstrated that both single
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Fig. 6.8 A 5th� order parametric BLA (blue curve) �tted to the CBLA2 estimated using LPM
averaged (red curve) approach (see Section 6.5.2)

and multiple datasets can be handled ef�ciently. The proposed framework paves the way

for handling data records of arbitrary lengths acquired under similar or different conditions

and dealing with nonlinear distortions ef�ciently. This gives a practical advantage when

performing longer experiments is either not feasible or rather expensive and time consuming.

Similarly, the data of extremely poor quality can also be handled.

This whole process can be carried out in relatively short measurement time due to the

use of broadband excitation signals for identi�cation. The �nal values of the parameters of

the parametric linear model can be used as an initialisation for the data-driven identi�cation

of a nonlinear model (see chapter 7), which is valid at varying operating conditions or

the individual BLA at varying operating points can be used to develop black-box linear

time-varying or parameter-varying models.





Chapter 7

Nonlinear modelling of Li-ion battery's

Short-term response

As it is shown in the previous chapters, the short-term response of the battery varies at

different operating conditions. Consequently the BLA is only valid in a small neighbourhood

of the operating point at which the BLA is estimated. It is evident that in order to fully capture

the nonlinear effects arising due to a change in the SoC level and the temperature, there is a

need for more �exible yet easily identi�able nonlinear model structure. Therefore, in this

dissertation, the Polynomial Nonlinear State-Space (PNLSS) model structure is proposed

to simulate the short-term dynamics at varying operating conditions with varying levels of

nonlinear distortions and noise.

In the sections below, a formal mathematical de�nition of the PNLSS model structure

is given. Thereafter, its identi�cation procedure is detailed, which is followed by a short

summary of the advantages and drawbacks of the PNLSS model structure. The capability of

the PNLSS model structure is demonstrated on the battery data acquired at a �xed as well as

at varying operating conditions.

7.1 Polynomial Nonlinear State-Space Models

A nonlinear state-space model described in Section 1.3.3, where the functionsf (� );g(� ) are

approximated by polynomial basis functions can also be used to represent a MIMO system.

In that case, the nonlinear state-space model structure is known as the PNLSS model [54].

The PNLSS model structure is very �exible to capture both nonlinear feed-forward and

feedback (e.g. the shifting resonances) dynamics. For the �nal optimisation, the initialisation
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of the linear part of the PNLSS model structure can be done very easily via the estimate of

the BLA [11].

De�nition 7.1.1: Model Structure

The PNLSS model can be described as:

x(t + 1) = Ax(t)+ Bu(t)+ Ez(t)

y(t) = Cx(t)+ Du(t)+ Fx(t)+ e(t) (7.1)

The coef�cients of the linear terms inx(t) 2 Rna andu(t) 2 Rnu are given by the

matricesA 2 Rna� na andB 2 Rna� nu in the state equation,C 2 Rny� na andD 2 Rny� nu

in the output equation. The vectorsz(t) 2 Rnz andx(t) 2 Rnx contain nonlinear

monomials inx(t) andu(t) of degree two up to a chosen degreePd . The coef�cients

of the nonlinear terms are given by the matricesE 2 Rna� nz andF 2 Rny� nx .

As stated before, in practice, the nonlinear degree of the monomials inz andx is limited

to a valuePd 2 N and usually a user-speci�ed parameter, which is chosen depending on the

application. The nonlinear degree can be set to any chosen set of combinations of monomials

in both states and inputs of the model structure as below:

xa1
1 xa2

2 � � � xan
na

ub1
1 ub2

2 � � � ubnu
nu

with a1; � � � an;b1 � � � bnu 2 N and 2� å j a j + å i bi � Pd.

Due to this �exibility the PNLSS model has the capability to describe a very large class

of nonlinear dynamical systems, such as bilinear systems, af�ne systems, nonlinear systems

with nonlinearities either only in the states or nonlinearities only in the input.

In the past, the PNLSS model structure was successfully applied to describe with rea-

sonable accuracy various nonlinear block-structured systems such as Wiener, Hammerstein,

Wiener-Hammerstein and nonlinear feedback system [25, 263]. In addition, the PNLSS

model structure has been successfully applied to identify a nonlinear model of several real-

world systems in various domains ranging from the nonlinear vibrations to the hydrostatic

drives and the hysteresis phenomenon [264–266, 58, 57].

Despite having good approximation capabilities and a generic black-box model structure

to capture the dynamics of many nonlinear systems, one of the major drawbacks associated

with the identi�cation the PNLSS model structure (7.1) is, the combinatorial growth of

the number of parameters, when a fully parametrised PNLSS model with a high nonlinear
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degree is used in practice. One of the simplest ways to deal with this issue is by keeping

the nonlinear degree (of the multivariate polynomials) low, and the number of parameters

reasonable compared to the number of data in practice. Recent advances to decouple the

multivariate polynomials using the techniques from multi-linear algebra have shown great

promise to deal with this problem, even with a higher nonlinear degree [267–269].

Before proceeding towards the identi�cation procedure, in the section below, some of the

assumptions related to the identi�cation of the PNLSS model structure are stated:

Assumption 7.1.1: Exogenous Input

The inputu(t) is considered to be persistently exciting, noiseless and is assumed to be

known exactly. In addition, it is assumed that the model structure is able to describe

the system output exactly in the absence of noise. This implies that there exists a

setting of the parameter vectorq0 for which the true model output is equal to the

system outputy(t) = y(t;q0). The output measurementsym are related to the system

outputy(t;q0):

ym(t) = y(t;q0) + v(t) (7.2)

with q0 the true parameter values, andv(t), the additive output measurement noise,

Gaussian (possibly coloured), zero mean and with a �nite variance.

Under Assumption 7.1.1, it can be shown that the least-squares estimator is asymptotically

consistent, ef�cient and normally distributed [16, 11]. Furthermore, under these settings,

the least-squares estimate corresponds to the maximum-likelihood estimate [270]. In some

cases, it is possible to relax the assumption on the noise characteristics to the coloured

noise (non-Gaussian) provided, the existence of second and fourth order moments can be

guaranteed.

Remark 7.1.1

It should be noted that, if these assumptions do not hold, the PNLSS model structure

and its associated identi�cation procedure can still be used, but at the expense of losing

the maximum-likelihood properties of the estimate. In case of a noisy input or an

input signal with a low signal-to-noise ratio (SNR), the input induced bias will be

non-negligible. Particularly in the case of periodic inputs, the SNR can be improved

by averaging over several periods to decrease the bias.
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Assumption 7.1.2: Model stability

The system output response to the bounded inputs is also bounded.

Remark 7.1.2

This need for this assumption is due to the fact that the model output response is

calculated by applying the state transition/recursion. Although in certain cases, this

assumption may be relaxed. An approach to deal with model instabilities is proposed

in [271].

7.1.1 Parametrisation of the PNLSS model structure

The PNLSS model (7.1) structure can be parametrised by de�ning a vector of its parameters

qNL such that

qNL = [ vecT(A);vecT(B);vecT(C);vecT(D);vecT(E);vecT(F)]T (7.3)

with vecan operator, which stacks the columns of a matrix onto each other. Due to the

inclusion of all model parameters or in other words due to similarity transforms on the

states that do not in�uence the input-output behaviour, this representation of the model is

over-parametrised. In this parametrisation, both linear and nonlinear transforms can exist.

By using the pseudo-inverse during the estimation process, this problem is avoided [271].

Other ways of parametrisation such as the use of canonical forms or Data Driven Local

Coordinates (DDLC) also exist in literature. [272] proposed an approach using the DDLC

approach in case of a canonical parametrisation to avoid the numerical ill-conditioning of the

estimation problem. Authors in [273] proved an equivalence between the DDLC approach

and the pseudo-inverse, which in fact can be implemented easily in the software. Furthermore,

[274] showed that the stochastic properties of the estimates of the invariants of the system

(i.e. the minimum variance bounds) is not affected by the the choice of parameterisation.

7.1.2 Identi�cation procedure of the PNLSS

The PNLSS model given in (7.1) can be ef�ciently identi�ed in mean-square sense in three

major steps identi�cation procedure.

• First, a nonparametric estimate of the system's frequency response function (FRF) is

determined in mean square sense. This is called the BLA (please refer to Section 6.3

of Chapter 6 for an overview of the BLA and its estimation using the LPM method).
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• Then, a parametric transfer function linear model is �tted to this nonparametric average

BLA. Thereafter the state-space (linear sub-spaceA;B;C andD matrices) estimate is

obtained. (please refer to Section 6.6 of Chapter 6 for further details)

• Finally the full nonlinear model is estimated with a Levenberg-Marquardt nonlinear

optimisation routine [275].

The whole identi�cation procedure is performed in the frequency domain, which provides

the additional possibility to apply user-de�ned (noise) weighting functions in the speci�c

frequency bands of interest.

7.1.3 The cost function

For the identi�cation of the full PNLSS, a weighted least-squares approach is employed. The

Weighted Least Squares (WLS) cost function that needs to be minimized with respect to the

parameterqNL = [ vecT(A);vecT(B);vecT(C);vecT(D);vecT(E); vecT(F)]T is given by:

VWLS(qNL) =
bN

2 c+ 1

å
k= 0

ẽH
NL( jwk;qNL)WNL( jwk)ẽNL( jwk;qNL) (7.4)

whereN represents the number of time samples,ẽNL( jwk;qNL) 2 Cny� 1 the error, which is

de�ned as

ẽNL( jwk;qNL) = Ymod( jwk;qNL) � Y( jwk) (7.5)

SuperscriptH means that the Hermitian transpose is taken and the notationbN
2 c implies that

the application of the �oor function to the real numberN
2 . VectorYmod( jwk) 2 Cny� 1;Y( jwk) 2

Cny� 1 are the DFTs of the modelled and the measured output, respectively. Similarly

U( jwk) 2 Cnu� 1 represents the DFT of the inputu.

This formulation also yields equivalent results in the time domain [54]. Formulating the

weighted least-squares cost function in the frequency domain simpli�es the implementation

of nonparametric user-de�ned frequency dependent weightingWNL( jwk) 2 Cny� ny due to its

block-diagonal structure. The cost function in (7.4) can be rewritten as the product de�ned

below:

VWLS(qNL) = ẽH
wt(qNL)Wwtẽwt(qNL) (7.6)

whereẽwt(qNL)T = [ ẽwt(0;qNL)T � � � ẽwt(bN
2 c+ 1;qNL)T ] and the weighting matrixWwt can

be de�ned as
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Wwt =

2

6
4

W(0) : : : 0
...

...

0 W(bN
2 c+ 1)

3

7
5

Remark 7.1.3

• Wwt can contains the inverse of the frequency domain noise covariancesn
2( jwk),

which can be estimated from repeated experiments, when using periodic excita-

tion. If the estimation of noise covariance is not available, then the structure of

Wwt can be used to put more weight on a speci�c frequency band of interest, or

it can simply be chosen equal to identity.

• Because in nonlinear systems, model errors often dominate the disturbing noise,

we put the weighting factorWwt = 1. Only if the model errors are below the

noise level,Wwt should be put equal to the noise variancesn
2( jwk).

Remark 7.1.4

It is important to consider the effect of transients (which result from a mismatch

between the true and assumed initial statesx(0) during the model estimation) on the

�nal model output. Due to this mismatch, sometimes there exists a big difference (a

number of transient pointsNtrans) between the modelled and measured output which

diminishes eventually. This can be handled rather effectively during the nonlinear

optimisation step (see Appendix A for details).

7.1.4 The �nal optimisation

As weighting matrixWwt is a positive semi-de�nite matrix [276], the cost function in (7.6)

can be reformulated as below:

VWLS(qNL) = eHe (7.7)

wheree = W1=2
wt ẽwt and the parameter estimateq̂NL minimises the cost function

q̂NL = argmin
qNL

VWLS(qNL) (7.8)

The minimisation of the non-convex cost functionVWLS(qNL) (7.8) with respect to the model

parametersqNL is tackled via the Levenberg-Marquardt scheme [277] and a (local) minimum
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is found in an iterative manner:

(J(i)TJ(i) + l (i)2
LM InqNL

)dq(i)
NL = � J(i)Te(i) (7.9)

wherel (i)
LM 2 R+ represents the Levenberg-Marquardt factor andJ(i) 2 RN� nqNL is the Jaco-

bian matrix calculated at iterationi:

J(i) =
¶e

¶qNL

�
�
�
�
q (i)

NL

(7.10)

The parameters are updated at every iteration by addingdqNL to the previous value ofqNL:

q (i+ 1)
NL = q (i)

NL + dq(i)
NL (7.11)

In order to improve the numerical conditioning and reduce the numerical errors, the pa-

rameters updatedq(i)
NL is calculated by performing a singular value decomposition (SVD)

J(i) = U (i)
j S(i)

j V(i)T
J [11] of the Jacobian matrixJ(i) such that:

dq(i)
NL = � V(i)

J

�
S(i)2

j + l (i)2
LM InqNL

� � 1
S(i)

j U (i)T
J e(i) (7.12)

whereU (i);V(i) are the left and right eigenvectors and the diagonal entries ofS(i) are the

singular values respectively.

Based on the value of cost function, the Levenberg-Marquardt factorl LM is adapted

during the iterations. When the cost decreases during an iteration i.e.VWLS(q
(i+ 1)
NL ) <

VWLS(q
(i)
NL), then its value is typically decreased by a factor of2, which makes the method

tending more towards a Gauss-Newton step; similarly when the cost increases, then it is

typically increased by a factor
p

10, such that the method tends more towards a gradient

method [25].

Stability of the PNLSS model

It is often the case that on the experimental data, the estimated PNLSS model becomes

unstable on the validation set. To overcome this problem, a heuristic approach can be

employed, where the input signal of the validation set is also passed as an argument to the

nonlinear optimization algorithm.

By passing on the input of the validation set, the validation output of the updated model

w.r.t the parameters (see page135 in [54]) can be computed at every iteration. When the

output of the updated model is unstable on the validation input, the optimisation algorithm
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consider that as increase in the cost function. By following this approach stability of the

model can be guaranteed for the validation set. This heuristic approach prevents the iterative

search to traverse through an unstable (validation) region before ending up in a stable region

again.

Remark 7.1.5

The heuristic approach discussed above should only be applied when it is absolutely

necessary. For the identi�cation of the battery model the dataset was split into an

estimation set, a validation set, and the test set. Only the estimation data is used to

�t the parameters. The validation data is used for model order selection and to check

stability heuristically. The test set is not used in any way for estimation purposes.

Initialisation of the method

Before starting the �nal optimisation, the initial estimates for the linear parametersA;B;C;

andD in (7.1) are found by the two-step procedure described in Section 6.2.

Remark 7.1.6

To ensure good initial values, theGss estimated in Section 6.6 is used to initialise the

nonlinear model structure. Hence, the identi�ed full PNLSS model cannot perform

worse than the BLA in least squares sense on the estimation (training) dataset. Other

ways of estimating the full nonlinear model with different initialisation schemes are

proposed in [278, 279].

7.1.5 Pros and Cons of PNLSS Model

There are various advantages and disadvantages associated with the use of the discrete time

PNLSS model structure to identify a nonlinear model for the dynamical systems. Some of

these pros and cons, are summarised below. The main advantages of the PNLSS model are:

• As stated above, the PNLSS model structure is quite �exible to model nonlinear

feedback phenomena including e.g. dynamic nonlinearity like hysteresis, amplitude-

dependent resonances, sub-harmonics and chaotic behaviour. It can also be used to

describe many block structures with polynomial nonlinearity,

• the initial estimates to start the �nal numerical optimisation procedure can be obtained

very easily via the estimate of the BLA,
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• the ease of computation of the polynomial basis functions,

• the ease of the extension and the application of the PNLSS model structure in a

multivariable framework,

• the ease of differentiability of the polynomials basis functions, which implies that,

during the nonlinear optimisation step the Jacobian matrix need not be approximated.

The cons associated with the PNLSS model structure are listed below:

• its combinatorial increase in the number of parameters for high nonlinear degree of

polynomials, inputs and states,

• the lack of physical interpretation in comparison with physical (white-box) models and

grey-box models (such as the block-structured model),

• the stability of the PNLSS model is not always guaranteed,

• the low accuracy of the PNLSS model outside the region in which it is estimated due

to poor extrapolation property of the polynomials .

Remark 7.1.7

To avoid the extrapolation problem, well conditioned basis functions (e.g. saturating)

can be used (see [279] for details), but it is not advisable to extrapolate an estimated

model outside its domain, even for well behaving basis functions. There is a big

chance that the optimisation might get stuck at the boundary of stability, which will

yield a suboptimal model [271].

7.2 Nonlinear model of the battery

In this section, the PNLSS model structure described above will be used to identify the

nonlinear model of the battery short-term electrical response. Two different case studies will

be used to demonstrate the capability of the PNLSS model structure.

Assumption 7.2.1: Type of nonlinearity

The nonlinearity is assumed to be smooth and can be approximated well using the

polynomial basis functions.
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Remark 7.2.1

Note that a uniformly convergent polynomial approximation of a continuous nonlin-

earity is always possible on a closed interval due to the Weierstrass approximation

theorem [280]. The type of convergence can be relaxed to mean-square convergence,

thus allowing for some discontinuous nonlinearities as well. Furthermore, the method-

ology is not only restriced to polynomial basis functions but is �exible enough to

accommodate other user-de�ned basis functions [279].

Assumption 7.2.2: Model Input

It is assumed that the inputu(t) of the model in Section 7.1 is noiseless or the noise

level is very low so that it can be neglected. In addition it assumed to be independent

of the output noise.

Remark 7.2.2

It should be understood that the model errors will not be independent ofu(t). In

addition, the assumption of the input being noiseless is not valid as in any real

measurements scenario, the measurements are always corrupted by the measurement

noise.

7.2.1 PNLSS: Fixed operating condition

For this case study, the data acquired with20A RMS high current pro�le at25°C was

used. The data were acquired using two different (independent) realisations of the multisine

excitation signal. The data from the �rst realisation were used for the estimation and the

validation of the model whereas the data from the second realisation was used as the test

dataset (see Section 5.4.1 for details about data acquisition). For the identi�cation of a

nonlinear model at a �xed operating condition, the PNLSS model structure is initialised with

an estimate ofGSS. A 3rd � order parametric modelGsswas selected on the basis of the MDL

principle [11] using the procedure described in Section 6.6.

By evaluating the model performance on the validation set at different degrees of the

monomials; all the monomials up-to-the degree3 were selected for both the state and the

output equations in the model structure described by de�nition 7.1.1. Hence, the order of

the linear terms (Aopt;Bopt;Copt;Dopt) in the �nal optimised PNLSS model is3, and all the

combinations of the monomials up-to-the degree 3 are present in theE andF matrices.

The battery can be considered as a dynamic system with an integrating effect [281]

and a systematic shift in the data can result from sensor drift, non-ideal behaviour of data
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acquisition system etc. Signal drift is considered to be a low-frequency disturbance and

can result in unstable models. Therefore before the �nal optimisation step, to remove the

non-stationary effects from the data as well as to improve the model performance at the

low frequencies, the underlying trend is removed using the`1� regularized trend removal

technique developed in [282]. The trend estimatemas the minimizer of the weighted sum

objective function can be de�ned as:

1
2

ky� mk2
2 + l kD mk1 (7.13)

where the trend estimatem= ( m1;m2; :::::::::mN) 2 Rn, the battery outputy= ( y1;y2; :::::::::yN)

2 RN;kcki = å i jci j denotes thè1� norm of the vectorc andD 2 R(N� 2)� N is the second-

order difference matrix (which is Toeplitz in nature)[282]. The �rst term in the objective

function measures the size of the residual whereas the second term measures the smoothness

of the estimated trend. The`1� trend method produces trend estimates that are piecewise

linear, and therefore it is well suited to analyse battery time series data, which can be thought

of having a slowly time-varying system with underlying piecewise linear trend. To ensure

smoothness, a balance between the trend estimate and the residuals must be maintained.

Observation: Nonlinear modelling at �xed operating condition

As stated above, although the PNLSS structure is capable of capturing the in�uence of the

SoC, the current level and the temperature in its MIMO settings, its usability is �rst tested at

one particular operating condition of 25°C, 20A RMS current input, and 10% SoC.

Fig.7.1 and Fig.7.2 show the comparison between the output responses of a linear model

and the PNLSS model in the frequency and the time domain, on estimation and test datasets

respectively. The advantage of using the PNLSS becomes more clear after zooming in to

the time domain response as shown in the Fig.7.3. It can be clearly observed both from the

frequency and the time domain plots that the PNLSS model structure is powerful and �exible

enough to capture the dynamics of the battery. It outperforms the linear model by a factor of

10 ( ' 20 dB difference in the frequency band of interest) on the output error side.

7.2.2 PNLSS: Multiple operating conditions

In this case study, a multi-input single-output (MISO) PNLSS model is developed and

validated for the battery's short-term electrical response, starting from the input-output data

acquired from multiple operating conditions w.r.t. SoC levels and temperature using a10A

RMS current pro�le. It has been shown that the level of noise and the nonlinear distortions
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Fig. 7.1 Errors at 10% SoC w.r.t the output (frequency domain)

Fig. 7.2 Errors w.r.t the output (time domain) at10%SoC, RMSE PNLSS= 2:8591� 10� 4,
RMSE Linear= 0:0072

varies at different operating condition (see Section 5.4.3 for details), which makes this

problem challenging. The developed model is especially suited for simulating the battery's

short-term electrical response at the operating points lying in the nonlinear regime of an

almost depleted battery in terms of the state of charge (SoC), i.e. between2%� 10% at

temperatures between 5°C� 40°C.
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Fig. 7.3 Model responses (zoomed Time domain) at 10%SoC

Fig. 7.4 Mathematical Model for the short-term voltage response

The main idea here is to capture the effect of the SoC and the temperature by including

these physical variables, as two extra inputs into the proposed model structure (see Fig. 7.4).

Furthermore, the ability to combine data from multiple experiments requires estimation

of the initial conditions, or in other words handling transients accurately. Hence, here, a

framework to handle the transients arising due to the concatenation of the data from multiple

experiments is proposed. The main use of this model will be in the calibration of the battery

cell or as an auxiliary lower level model for a higher level model present in the BMS, to



154 Nonlinear modelling of Li-ion battery's Short-term response

simulate or estimate the battery's voltage response accurately, at very low levels of SoC at

varying temperatures.

In order to achieve this goal, the model structure in(7.1) is extended to accommodate

the effect of the temperature and the SoC as extra inputs to the model. This model structure

gives a �exibility to test the model performance at any setting of SoC and temperature. To

initialise the optimisation procedure, the linear part of the model structure i.e.A;B;C and

D matrices are initialised with an estimate ofGSS= ( ÂBLA; B̂BLA;ĈBLA; D̂BLA) obtained by

transforming the5th� order parametric model (described in Section 6.6) into the state-space

model form.

The coef�cients for the temperature and SoC are put to zero in the input and feed-through

matrix in (7.14). Finally, the coef�cients of both the linear and the nonlinear terms in this

extended model structure (as shown in (7.14)) are identi�ed.

x(t + 1) = ÂBLAx(t)+ [ B̂BLA 0 0]u(t)+ Ez(t)

y(t) = ĈBLAx(t)+ [ D̂BLA 0 0]u(t)+ Fx(t)+ e(t) (7.14)

where now the dimensions ofB andD matrices areRna� (nu+ 2) in the state equation and

Rny� (nu+ 2) in the output equation respectively. The vectorsz andx contain the monomials

starting from degree0 (but not including the linear terms) up to a chosen degreePd, to also

estimate explicitly the contribution of the mean value or the any underlying trend in the data.

Figure 5.17 in Chapter 5 shows the operating points in terms of SoC and temperature, the

input-output data of which were used for the model identi�cation, validation and test. Blue

balls represent the operating points, whose data were used for the estimation and validation

of the �nal model whereas the red dots represent the operating point of the test dataset.

The degree of the monomials in the state and the output equations were selected by

validating the PNLSS model at the various levels of SoC at5°C, 14°C, 35°C and40°C

respectively to a different (an unseen acquired period of) input load current pro�le. For this

case study all the monomials up-to-the degree3 both in the state and the output equations

(7.1)were selected. Please note that the contribution of the linear terms is already captured

in the BLA. The data acquired at6% SoC at all temperatures ranging from5°C� 40°C and

25°C for all other levels of SoC (the red dots) was kept as an additional test dataset (see page

118) to judge the performance of the PNLSS model in capturing the in�uence of SoC and

temperature.
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Remark 7.2.3

Furthermore, to test the robustness of the proposed methodology and to represent the

uncertainties in the additional inputs of SoC and temperature, these inputs were also

corrupted by additive white Gaussian noise.

The actual inputsu(t)�
i to the model structure at timet, is the sum of the simulated

inputsu(t) (e.g. i = SoC, Temp in this present case) and noise,Z(t) respectively,

whereZ(t) is independent and identically distributed and drawn from a zero-mean

normal distribution with variances 2
N (the noise). TheZ(t) are further assumed to not

be correlated with theu(t).

Z(t) � N (0;s 2
N)

u(t)�
i = u(t)+ Z(t) � N (0;s 2

N) (7.15)

7.2.3 Transient Handling in Multiple Experiments

The two main aspects which need to be carefully handled during the optimisation step in

order to identify the nonlinear battery model from multiple experiments are:

1. Calculation of the Jacobian in state update step

2. Handling of the transients due to concatenation of the data

As mentioned, when computing the state sequencex(t), the initial statex0 of the model

should be carefully taken into account. During the nonlinear optimization step, the simulated

states from the previous Levenberg-Marquardt iteration are used to calculate the Jacobian

J(k;qNL) of the modelled output with respect to the model parameters.

J(k;qNL) =
¶e(k;qNL)

¶qNL
=

¶Ymod(k;qNL)
¶qNL

(7.16)

Therefore when calculating the state sequencex(t) of the model from concatenated data

from multiple experiments, we need to clearly de�ne how the Jacobian should be calculated.

The concatenated data sequence contains different blocks of periodic data obtained from

multiple experiments. Suppose we conductM independent experiments withN steady state

data samples, then the concatenated data sequence looks like:

[[1; ::::;N]1; [1; ::::N; ]2; [1; ::::;N]3; ::::::::::[1; ::::;N]M]
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Fig. 7.5 Schematic representation of the concatenation of the data ofM experiments, each
containingN samples

This concatenation will result in transients effect at each transition. For this speci�c

study using the periodic input and output data, to calculate the Jacobian and handle transients

accurately, at the start of each new block in the data sequence i.e.[1;N+ 1;2� N+ 1::::(M �

1) � N + 1] see Fig.7.5, we make use of the second case which is detailed in [54, 56] (see

Appendix A for further details) for calculation and handling of the Jacobian information

during nonlinear optimization step.

The model is simulated for multiple periods at each transition (based on the initial

guess of the number of transient samples e.g.the number of transient samplesNtrans can

be approximated by calculating the impulse response of the linear model estimated in the

previous steps) before selecting the Jacobian where the effect of transients is considered

negligible. For this case studyNtrans was equal to2000samples and the model was simulated

for 2000samples at each concatenation point to mitigate the effect of transients before the

stead state condition was assumed. This methodology equally holds when the number of

steady state data samplesN is different for each individual experiment.

Observation: Nonlinear modelling at multiple operating condition

Fig. 7.6 shows the concatenated data records of the input load current and the output

voltage response of the battery used as the estimation dataset. Different colours represents

data acquired at different settings of temperature for different levels of SoC. Red, blue,

magenta and black colours correspond to5°C, 14°C, 35°C and40°C respectively. Within

each segment, the data has been arranged according to input temperature and SoC pro�les

shown in Figs. 7.7 and 7.8 respectively.

The additional input pro�les represent a realistic discharge in the levels of SoC going from

10% SoC to2% SoC, and a random change in the temperature between5°C-40°C respectively.

It should be noted that, the order of concatenation is irrelevant for this methodology, and one

is free to adapt any ordering of the data. Although this temperature pro�le is not realistic

in nature as the temperature of a battery will not suddenly jump from5°C to 14°C and so

on, in the physical world, rather it is a worst case scenario to test the validity of the PNLSS

model as it contains sudden step changes in the temperature. The PNLSS model handles
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Fig. 7.6 The concatenated input and the output data record at different temperatures (see
Fig.7.7) and different SoC levels (see Fig. 7.8) used as the estimation dataset.

the problem by eliminating the transients effects through the proposed methodology. Figure

7.6 clearly shows the output voltage response data of the battery at different level of SoC
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Fig. 7.7 Input temperature pro�le with added white Gaussian noise with standard deviation
of 0:1.

and temperatures to a multisine signal of same RMS value is very different and is very

heterogeneous in nature.

Fig. 7.9 shows the performance of the PNLSS model in time domain on the estimation

data. It can be clearly observed that the PNLSS model is �exible enough to accommodate

the effect of different levels of the noise as well as the nonlinear distortion arising due to

variations in the levels of SoC and temperature.

Fig. 7.10 compares the performance of the PNLSS model at a particular operating point

of 4% SoC at25°C from the validation dataset. Similar observations were also made at

other levels of SoC which were included in the estimation dataset. Figures 7.10 to 7.15 show

the comparison between the output responses of the best linear modelCBLA and the PNLSS

model at different levels of SoC in the frequency domain on a validation dataset at5°C, 25°C,

35°C and40°C respectively. It can be clearly observed that the performance of the PNLSS

model is approximately15–20dB better in the frequency band of interest at5°C, 14°C and

40°C.

The advantage of estimating the PNLSS model become even more evident by looking

at Fig.7.15, which shows the validation results at (6% SoC,25°C). During the estimation

step the PNLSS model was only estimated at5°C, 14°C, 35°C and40°C. The data acquired

at (6% SoC,25°C) was therefore a completely unseen data record used in the test step. It
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Fig. 7.8 Input SoC pro�le with added white Gaussian noise with standard deviation of 0:2.

Fig. 7.9 Comparison of the PNLSS model with Linear model on the concatenated estimation
dataset

can be seen that the performance of PNLSS model at (6% SoC,25°C) is also approximately

10–15 dB better than the linear model.
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Fig. 7.10 Model test at 4% SoC 25°C

Fig. 7.11 Model validation at 4% SoC 14°C

It can be concluded that the PNLSS model outperforms the linear model by a factor of10,

i.e. approximately20dB difference in the frequency band of interest at the seen temperatures,

and by a factor of3 � 4 i.e. approximately10–15 dB difference in the frequency band

of interest at the unseen temperature on the output error side, which is quite a signi�cant
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Fig. 7.12 Model validation at 2% SoC 35°C

Fig. 7.13 Model test at 6% SoC 5°C

achievement considering the fact the battery operates at a very low level of SoC and deep

inside its nonlinear regime as per theOpen circuit voltageOCV–SoC behavioral curve of the

battery [247]. These observations reinstate the fact that a nonlinear model is indeed a better
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Fig. 7.14 Model test at 6% SoC 40°C

Fig. 7.15 Model test at 6% SoC 25°C

choice to capture the nonlinear dynamics of the battery at such low SoC levels at varying

temperatures.
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7.3 Conclusion

In this chapter, a data driven methodology to identify a nonlinear model for modeling the

battery's nonlinear dynamics at a �xed operating condition or over a range of operating

conditions is proposed. The PNLSS model structure can accommodate the effects arising due

to a signi�cant increase in the level of nonlinear distortion due to low SoC levels and varying

temperatures. It is demonstrated within the proposed data-driven framework, that it is easy

to deal with the practical challenge of estimating a nonlinear model from the data acquired

from multiple experiments done at different operating conditions by ef�ciently handling the

transients arising due to concatenation of data records.

This eventually means a saving in data acquisition time as well as the hardware resources

required for data acquisition. The PNLSS model structure outperformed the linear model

at all settings and is powerful yet �exible. This generic approach can easily be extended to

include the in�uence of SoH. The validation of this methodology was performed at extremely

low levels of SoC, which is quite a signi�cant achievement as the future aim of the battery

manufacturers and consumer industries is to push battery operation much deeper into its

operational regime.





Chapter 8

Final conclusions and the future research

We are afraid of ideas, of experimenting, of change. We shrink from thinking a

problem through to a logical conclusion.

Anne Sullivan

During the course of this research, both the theoretical and the applied side of the

research spectrum has been explored.The main goals of this thesis were twofold: Firstly, to

develop an understanding of approximation errors due to the discrete-time representation

of the continuous time linear and nonlinear systems. Secondly, to develop a data-driven

methodology to characterise, and to identify a black-box nonlinear model for battery's short

term electrical response. Final conclusions about the proposed solutions for both parts of the

research are summarised below, together with some ideas for the future research.

8.1 Part-I: Data-driven discrete time identi�cation of con-

tinuous time nonlinear systems

One major fundamental question, which has been answered in this part of the research is:

How to develop discrete-time models with output error bounds for

continuous-time systems (both linear and nonlinear) under band-limited

conditions?

ZOH assumptions are most widely used for developing the discrete time models of

dynamic systems. In order to develop real-time compliant discrete-time models, often one

has to work under bandlimited assumptions as the ZOH assumptions does not hold e.g. inside

a dynamic network or at the output of the actuator that is driving the system. Continuous
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time nonlinear feedback systems represent a very important class of dynamics systems in

many �elds. One of the major hurdles in simulating these class of systems using discrete

time nonlinear models on a computer is the nonlinear algebraic loop, which has to be solved

at each time step. Presence of a delay in the loop facilitates the development of fast recursive

simulation models and resolves the problem of solving the DAE.

In Chapter 2 of Part-I of the thesis, a discrete time modelling approach for the linear

systems is proposed to model such kind of continuous time systems under bandlimited

assumptions, where the direct term of the model is forced to zero or in other words an explicit

delay is present in the loop. A comprehensive theoretical analysis which builds on a classical

result of "one step ahead prediction of bandlimited signals" is extended to calculate the error

bounds for such kind of approximated models. Furthermore, a measurement methodology is

proposed for quantifying and validating the output error bounds experimentally. It has been

shown that to develop good recursive discrete time models and to quantify the errors, the

choice of a good hardware generator �lter is necessary. During the identi�cation process, it

is important to explicitly place this �lter before the continuous time plant to be identi�ed. To

achieve low errors, suf�ciently high sampling rates should be chosen, e.g. at least10 times

the cut-off frequency of the chosen hardware generator �lter.

This methodology can also be used to estimate suf�ciently accurate model by upsampling

the data virtually, even if the data-acquisition setup has limited capabilities. Furthermore,

the error introduced by explicitly forcing the direct term of the identi�ed model equal to

0 can be reduced by increasing the complexity of the model. The proposed measurement

approach, and the theoretical analysis is quite generic and can easily be applied to a wide

class of dynamical systems.

Building on the insights gained from the analysis done in Chapter 2, the framework is

further extended to develop discrete time nonlinear state space representation for continuous

time nonlinear state space models in Chapter 3. A more general concept of low pass (LP)

signals with a relative degreed is introduced. It has been shown that this LP-property is

maintained for a wide class of nonlinear systems, including cascaded and closed loop systems

and this idea is generalised to the discrete time integration of LP-signals.

Ideas of one-step ahead prediction of bandlimited signals and discrete time integration of

LP-signals are then combined to bound the approximation errors of an explicit discrete time

nonlinear state space representation for a continuous time nonlinear state-space model. It has

been shown that these are tighter error bounds, as the dominating part of the error is set by

that part of the signal that is not sampled fast enough (aliasing).
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8.2 Part-II: Data-driven nonlinear modelling of batteries

For the sustainable future and large-scale use of electrical energy storage elements, reliable

models are essential therefore on the applied research front, Part-II of the research contributed

towards

The development of data-driven characterisation and nonlinear modelling

framework for the battery's short-term dynamics.

The data driven framework presented in Part-II of this thesis consists of several steps.

The stepwise approach has the advantage that it provides an early insight into the behaviour

and the dynamics of the battery at different operating conditions. This insight let the

battery modeller decide at an early stage, on the usefulness of using a particular modelling

methodology to model the short term response of the battery. It also helps in choosing the

most optimal model structure, based on the performance-costs trade-off. Moreover, in this

part of the thesis, it has been shown that a one-step solution is not the most optimal way to

tackle this highly complex nonlinear identi�cation problem.

In Chapter 5, a user-friendly, data driven frequency domain nonparametric character-

isation is proposed to characterise the battery's short term electrical response at different

operating conditions. Based on the extensive analysis, it was concluded that the battery's

short term dynamics between90% SoC –10% SoC can easily be modelled by using linear

identi�cation techniques. It is only between10% SoC –0% SoC, that the nonlinear distortions

become signi�cant, which necessitates the use of a nonlinear modelling and identi�cation

framework. It has been observed that the low temperatures also have signi�cant in�uence on

the level of nonlinear distortions.

Based on the information gained from the nonparametric characterisation, a number of

practical algorithms have been implemented in order to estimate the BLA of the battery's

short term electrical response from multiple datasets. The algorithms and the identi�ed

models were successfully tested using the data acquired using a real-world experimental

set-up. In Chapter 7, a �exible yet very powerful PNLSS nonlinear modelling structure is

proposed and its identi�cation procedure is detailed, once the decision has been made to

identify a nonlinear model for the battery's short term dynamics between10% SoC –0%

SoC. It has been shown that PNLSS model structure is quite powerful to capture the battery's

nonlinear dynamics at a �xed operating condition or over a range of operating conditions.

It is demonstrated that the practical limitation of the data acquisition systems can be

overcome easily, and an ef�cient nonlinear model can be identi�ed. This can be done by

combining the data acquired from multiple experiments done at different operating conditions.
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This eventually gives a signi�cant advantage during the experimentation stage and helps

in minimising the hardware resources required for data acquisition. The PNLSS model

structure is quite �exible and can be easily extended to include the in�uence of SoH and

other important parameters affect the battery's short term dynamics.

As discussed above it has been demonstrated that the battery's short-term electrical re-

sponse is nonlinear at the SoCs levels below10% and above90% mainly at low temperatures.

Hence, the methodology described to develop the best linear models in Chapter 6 can be used

to develop models which can then be directly used to simulate voltage response between10%

–90% SoC. The PNLSS model will only be useful if there is a need to simulate the voltage

response very accurately to avoid any damage to the battery below10% or above90% SoC

levels.

An estimation of the SoC level and the average temperature is needed to implement the

PNLSS model in practice. This can be done using the estimator based on the BLA. The

PNLSS model can be used in situations where a meta-model or supervisory model is used

for predicting/simulating all the important parameters of the battery and switches between

different models depending on the regime in which battery is operating. Once the PNLSS

model is switched on based on the observed regime or parameters, then the output voltage

response of the model can be used to improve the SoC estimation further.

8.3 Ideas for the future research

Here, some suggestions and possible directions for the future research are listed.

8.3.1 Part-I

In this list below, some ideas relevant to the �rst part of the thesis are mentioned. These ideas

build on the theme of sampling and reconstruction of continuous time signals.

• Non-uniform , Beyond bandlimited and compressed sampling :In the �rst part of the

thesis, one of the main underlying assumptions was, that the data (both inputu(t) and

outputy(t) signals of the plants to be identi�ed) can be sampled at the Shannon-Nyquist

rate, corresponding to at least twice or way beyond the signal bandwidth. In many

sampling processes, it is not always easy to sample regularly and only irregular samples

are available. Moreover, practical analog-to-digital converters (ADCs) introduce a

(nonlinear) distortion that should be accounted for in the reconstruction process.

Furthermore, as it is shown that the bandlimited assumption is often only approximately

met in practice, but many real-world signals can be more adequately modelled in
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alternative bases other than the Fourier basis [283, 240], or might possess further

structure in the Fourier domain, which can be exploited more ef�ciently during the

reconstruction stage. Hence the theoretical analysis to calculate the output error bounds

can be extended beyond bandlimited signals [284], for sub-Nyquist sampling [285] as

well as the compressed sampling [286] cases.

8.3.2 Part-II

In this list below, some ideas relevant to the second part of the thesis are mentioned. These

ideas propose some future research directions both for theoretical extensions of PNLSS

models and its application to battery's modelling.

• Better initialisation of the PNLSS model:During the identi�cation of PNLSS model,

the starting values are linear state-space parameters of a parametric �t on the nonpara-

metric BLA. It would be bene�cial to explore some more advanced starting values (e.g.

a bi(non)-linear model), which may help to avoid local minima. Think for instance

of the subspace techniques, which have also been applied successfully to identify the

bilinear state-space models [287].

• Study of the in�uence of the noise on the PNLSS model structure:To tackle the in�u-

ence of noise, in the identi�cation of the PNLSS model structure, an output error

framework is utilised i.e. it is considered that the noise only impacts at the output of

the model. This assumption might fail in most of the realistic environments, where the

process noise can also become very signi�cant. Consider for example biomedical and

biochemical systems. Hence, a thorough analysis of the impact of the process noise

on the performance must be explored in the future. Some recent contributions have

started to look into this direction [288].

• Stability of initial estimate and the overall nonlinear model:

The output of PNLSS model is calculated using a recursion approach and the calcula-

tion of the Jacobian for a nonlinear state space model eventually boils down to actually

computing the output of another nonlinear model. Therefore, a direct simulation of the

output of an unstable model will generally result in an unbounded response. For certain

classes of systems and problems, estimation of the BLA does not necessarily result

in a stable model. Hence, a stable initial model is required for simulating the PNLSS

model. A way to impose stability on the transfer function of a linear model is described

in [289]. Apart from this stability of PNLSS is also not guaranteed. A method to

deal with the unstable models or to avoid unstable regions during the estimation of



170 Final conclusions and the future research

the PNLSS model, is detailed in [271]. Recent approaches using the sum of squares

polynomial and contraction theory [290–292] might be useful for getting the deeper

insights and for the further development of theory needed to guaranty the asymptotic

global stability of PNLSS model, hence it can be further explored.

• Different basis functions:As mentioned above, the PNLSS model can suffer from

instability issues and extrapolation problems, if it is validated or utilised outside the

domain it is meant for, due to nature of polynomial approximations. Hence, use of

non-polynomial basis functions must be explored and evaluated.

• Parameter reductions or decoupling:Another drawback of PNLSS model structure in

its present form, which was pointed out earlier, is the combinatorial rise in the number

of parameters with an increase in the input and state dimension. One of the ways to

tackle this problem is by using the decoupling approach presented in [267].

The basic idea behind this approach is that, after the identi�cation of a full PNLSS

model, a parsimonious representation can be obtained by decoupling the multivariate

polynomials both in state and output equations. This decoupling is done by separating

the multivariate polynomial from the PNLSS structure and treating it as a static

multivatiate function for decoupling. Once the decoupled representation (approximate)

is obtained, then it is plugged back into the PNLSS structure again for a �nal nonlinear

optimisation.

• Varying temperature and SoC levels:The nonlinear model developed in this thesis is

able to perform well on a range of operating conditions, using the data acquired at

a constant setting of SoC and temperature during each experiment. But in practice,

this is not the case, therefore it is important as well as bene�cial to carry forward the

analysis as well as the modelling work, in a non-stationary setting i.e. when either

temperature or SoC or both are changing during the experiment.

• Extension to Meta model using SoH and capacity estimation:This work focussed on

modelling the short term electrical response of the battery, but in reality a battery model

should also consider the effect of SoH, capacity fade and ageing on the dynamics of the

battery. As mentioned in the conclusions, the PNLSS model structure is quite �exible,

so it will be useful to explore and extend the model to accommodate the effects of

above mentioned quantities.

• SoC Estimation using observers:In the second part of the thesis, it has been shown

that either the BLA or the PNLSS model is very capable to describe the short term
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dynamics of the battery. It would be interesting to explore the possibility of developing

a SoC estimation algorithm based on linear or nonlinear observers for both the cases.

• Data driven approach to ECM modelling:The BLAs estimated at different operating

conditions can be further utilised to develop an ECM model for the battery. The

information in the parameters of BLA can be exploited and a map between these

parameters and the physical elements of an ECM (for lower order models) can be

found using symbolic computation techniques.
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Appendix A

Nonlinear optimization

J(k;qNL) =
¶e(k;qNL)

¶qNL
=

¶Ymod(k;qNL)
¶qNL

(A-1)

It is impractical to calculateYmod(k;qNL) andJ(k;qNL) in the frequency domain, therefore the

calculations are performed in the time domain, and it is followed by a DFT for an equivalent

frequency domain representation. It is a well known fact that the calculation of the Jacobian

for a nonlinear state space model eventually boils down to actually computing the output of

another nonlinear model.

The dynamics of this new nonlinear model are very closely related to the dynamics of the

original nonlinear model (e.g., see [293]; [53]). The equations for the derivatives (Jacobian)

of the model in Section 7.1, with respect toqNL are computed below explicitly. Although

these calculations are already presented in [54], it is repeated here for completeness. First

the matricesz0(t) 2 Rnz � na andx0(t) 2 Rnx � na are de�ned as

z0(t) =
¶z(t)
¶x(t)

=

"
¶z(t)
¶x1(t)

::::::
¶z(t)

¶xna(t)

#

(A-2)

x0(t) =
¶x(t)
¶x(t)

=

"
¶x(t)
¶x1(t)

::::::
¶x(t)

¶xna(t)

#

(A-3)
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Im� n
i j 2 Rm� n represent the zero matrix with a single element equal to one at entry(i; j),

wherei and j are the row and column index respectively:

Im� n
i j =

0

B
B
B
B
B
B
B
@

0 � � � 0 � � � 0
...

...
...

0 � � � 1 � � � 0
...

...
...

0 � � � 0 � � � 0

1

C
C
C
C
C
C
C
A

(A-4)

Thereafter, the Jacobian is computed w.r.t the elementsAi j of the state-space matrixA. The

derivative of the output equation with respect to elementsAi j is given by

¶y(t)
¶Ai j

=
¶(Cx(t)+ Du(t)+ Fx(t))

¶Ai j

= C
¶x(t)
¶Ai j

+ Fx0(t)
¶x(t)
¶Ai j

(A-5)

It is evident that in order to determine the right hand side of (A-5), the derivatives of the state

equation are needed. This can be calculated from

¶x(t + 1)
¶Ai j

=
¶(Ax(t)+ Bu(t)+ Ez(t))

¶Ai j
(A-6)

Furthermore,xAi j 2 Rna is de�ned as

xAi j (t) =
¶x(t)
¶Ai j

(A-7)

Then, Eq.(A-6) can be rewritten as

xAi j (t + 1) = Ina� na
i j x(t)+ ( A+ Ez(t)0)xAi j (t) (A-8)

Combining Eqs.(A-5) and (A-8), we get

xAi j (t + 1) = Ina� na
i j x(t)+ ( A+ Ez(t)0)xAi j (t)

JAi j (t) =( C+ Fx0(t))xAi j (t) (A-9)

whereJAi j (t) 2 Rny is de�ned as

JAi j (t) =
¶y(t)
¶Ai j

(A-10)
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Similarly, the Jacobian of the other model parameters is computed and results are summarized

below:

xBi j (t + 1) = Ina� nu
i j u(t)+ ( A+ Ez(t)0)xBi j (t)

JBi j (t) =( C+ Fx0(t))xBi j (t)

xEi j (t + 1) = I
na� nz
i j z(t)+ ( A+ Ez(t)0)xEi j (t)

JEi j (t) =( C+ Fx0(t))xEi j (t) (A-11)

and

JCi j (t) = Iny� na
i j x(t)

JDi j (t) = Iny� nu
i j u(t)

JFi j (t) = I
ny� nx
i j h(t) (A-12)

The model is over-parameterized due to the presence of a non-singular state transformation.

Numerical problems are overcome by taking the pseudo-inverse during the parameter update

step.

Calculation of the Jacobian

When computing the state sequencex(t) , the initial statex0 of the model in Section 7.1

should be taken into account. For this, three possible approaches are distinguished.

Jacobian of Full Data

The easiest, but rather inept way, is to calculate the Jacobian for the full data set, and then to

discard/neglect the �rstN samples of both the Jacobian and the model error, in this way a

part of the data is not used for the model estimation. The number of transient samples can be

determined approximately by analysing the impulse response of the linear model.

Periodic Case

In the case of periodic excitation signals, It is suf�cient to calculate the Jacobian for several

periods, and to select a period for which the transients can be considered negligible (see Fig.

A.1). This can even be done for highly damped systems, or when the number of samples per

period is high.
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Fig. A.1 Transient handling in case of periodic data

Explicit Estimation of Initial State x0

Finally, the last method, which is suitable for both periodic and non-periodic excitation signals

(and especially for the cases where the transients are very long), is to estimate the initial con-

ditionsx0 as an ordinary model parameter, e.g.qNL = [ vecT(A);vecT(B);vecT(C);vecT(D);

vecT(E); vecT(F);x0]T . Note that, something similar can also be done by estimating an extra

column in the state space matrix B when adding an extra value1 in the input vector [59, 112].
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Data Driven Discrete Time Identi�cation of the Continuous Time
Nonlinear Systems and Nonlinear Modelling of Li-ion Batteries

Rishi Relan

Nowadays, due to the environmental concerns, increasing demand for cleaner
energy and energy e�cient systems, lithium-ion batteries are used in many
systems due to their high speci�c energy and energy density. Hence, the em-
phasis of this presented work is towards the development of a mathematical
model for lithium-ion batteries. System identi�cation is the process of deriv-
ing these mathematical models from measured data or observations system-
atically. The dynamical response of lithium-ion battery evolves continuously
in time but discrete-time models are very convenient to simulate a dynami-
cal system on a computer. Therefore both linear and nonlinear discrete-time
models are often used to approximate such kind of dynamical systems.In
this thesis, a measurement methodology is proposed to acquire data in or-
der to develop such discrete-time representation. Furthermore, theoretical
foundations are laid out to control the errors of such kind of approximated
discrete-time representation for continuous time systems.

The presented work also proposesa data-driven methodology for char-
acterising the battery's short term electrical response at varying operating
conditions in terms of its linear and nonlinear behaviour. A decision can
be made by the battery modeller at this stage to develop either a linear
or nonlinear model based on the information and knowledge gained from
the chracterisation step. Based on the choice made, this work proposes a
novel data-driven methodology to estimate eithera discrete-time best linear
approximation of the nonlinear battery responseat di�erent operating con-
ditions, or to develop a �exible discrete-time nonlinear model (Polynomial
nonlinear state-space model (PNLSS)), which is valid for the complete oper-
ating range, starting from the data acquired at multiple operating conditions
with varying levels of noise and nonlinear distortions. The developed models
are especially suited for operating points lying in the nonlinear regime of the
battery's electrical operation of almost depleted battery in terms of state of
charge (SoC) at a low temperature.
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