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Chapter 3

Introduction

This thesis situates itself in the �eld of nonlinear system identi�cation where
we build mathematical models of systems starting from experimental data.

The speci�c �eld of study is black-box modelling techniques. In black-box
identi�cation there is a very few prior knowledge about the system, except the
data. Four important categories of black box modelling approaches are:

3. Volterra approach (It is not covered here. )

4. NARX models (It is not covered here. )

5. Block oriented model identi�cation

6. Nonlinear state space models.

Here the last two aforementioned categories are studied in detail and some
problems are referred. The solution to these problems are applied in practice.
In block oriented model identi�cation, the main question is: �Which block-
oriented structure can be used to explain the input/output behaviour of the
system?� There are many e�orts on wrong structures, for example, applying
a Hammerstein model to a distillation column. Therefore we need tools to
distinguish which block structure can explain the structure of the system from
input/output data. The proposed design of experiment approach can reveal the
structure of the system in the best way. The realizability of the identi�ed model
for the feedback structure is studied as well.
Not only the input/output block-oriented structure, but also the problem of
internal state space identi�cation is covered. A polynomial nonlinear state
space model (PNLSS) algorithm which is developed by Johan Paduart [Paduart,
4229] is used to identify a hysteretic system [Noºl et al.,4239]. The main issue
of the PNLSS is the number of parameters. This makes the calculations harder,
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Chapter 3: Introduction

especially for higher orders of nonlinearity in the model. In [Dreesen et al.,4237]
a decoupling method is developed for the system of polynomials. This method
is adopted for the polynomial nonlinear state space in this work to simplify the
hysteresis system’s identi�ed model.

The main contributions in this thesis are

ˆ the proposal of a design of experiments to extract the structure of
some block-oriented systems

ˆ the modelling of hysteresis phenomena using a black-box polynomial
nonlinear state space approach

ˆ reduction of the number of parameters in thenonlinear state space
model

ˆ the determination of uniqueness conditions for the sub-blocks in a non-
linear feedback model structure.

The above mentioned problems and contribution are brie�y explained in the fol-
lowing sections. Each section points towards the chapter in which more detailed
explanation is provided. It also points to the publications where the chapters
are based on. The text should be conceived as a collection of published research
papers, rather than a self-contained PhD text.

3.3 Design of experiment
The best linear approximation (BLA) is made up of the underlying linear system
and the linearized contribution of the nonlinearity of the system. The quality of
the BLA depends on the experiments. It varies by changing the amplitude and
the DC content of the signal. By highlighting this behaviour of the system, the
structure of the system can be recognized very well. The state of the art, for
the Chapter 4 is to �nd the best input strategy, by varying the DC and STD of
the input signal, to keep the nonlinear distortion of the system in a low level.
So the linear contribution of the nonlinearity, which has the information about
the structure of the system, is signi�cant. Brie�y speaking, it is desirable to
have a set of high quality BLAs. The best linear approximation of the system
also changes by varying the bandwidth of the excitation [Lauwers et al.,422: ].
In all the former studies, the input excitation was not optimized experimentally
to �nd the most informative output for structure of the system.

In Chapter 4 a design of experiments is proposed to set the mean value (DC
value) and the standard deviation (STD) of the input excitation signal of the
system. The DC and STD levels of the input signal are calculated based on a set
of experiments that were done on the system. The e�ect of selecting these two
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3.4 Hysteresis identi�cation using nonlinear state space

values is studied in detail for a real system. It is shown how to select the input
DC and STD levels so that the total distortion (= noise + nonlinear distortion)
of the output is minimal. This helps to decide, with a higher reliability about
the internal structure of the system under study.

The method is like baking a pizza in an optimal way, for which you need to
have a temperature and time for the oven. So the target would be to optimize the
quality y of the pizza based on selection of temperaturex1 and time duration x2

of baking the pizza in the oven. By building a full quadratic model, it is possible
to �nd an optimal selection of temperature and time. This method is explained
and applied to a real system (Silverbox is a benchmark system, which emulates
the behavior of nonlinear mass-spring-damper system [Marconato et al.,4234].).
Results show that the method reduces signi�cantly the total distortions of the
output.

3.3.3 Publications
In the following conference paper the results of independently varying the DC
and STD level of the input signal is studied.

ˆ Fakhrizadeh Esfahani, A. , Schoukens, J., and Vanbeylen, L. (4237).
Design of excitations for structure discrimination of nonlinear systems,
using the best linear approximation. In Instrumentation and Measurement
Technology Conference (I4MTC) , pages456� 45; . IEEE.

The results of optimal selection of the set of DC and STD levels are published
in the following journal paper

ˆ Fakhrizadeh Esfahani, A. , Schoukens, J., and Vanbeylen, L. (4238).
Using the best linear approximation with varying excitation signals for
nonlinear system characterization. IEEE Transactions on Instrumenta-
tion and Measurement, 87(7):3493� 34:2 .

This part focuses on the internal block structure of the system. The problem
of internal state identi�cation is addressed in Chapter 5 and Chapter 6.

3.4 Hysteresis identi�cation using nonlinear state
space

Another issue in system identi�cation is to identify the system, in a way to be
able to predict its behaviour. If the system under study is nonlinear, for more
precise models, we need to go to nonlinear system identi�cation. If we don’t
consider any prior knowledge about the physics and model of the system then
the black-box identi�cation approaches are employed.

5



Chapter 3: Introduction

Hysteresis is a highly nonlinear phenomenon, showing up in a wide variety of
science and engineering problems. In mechanical systems, hysteresis is usually
associated with friction, and it happens in mechanical joints. The identi�cation
of hysteretic systems from input-output data is a challenging task. Hysteretic
systems exhibit a nonlinear memory phenomenon, causing that e�ects of the
input to the output are delayed in time. Di�erent from a phase delay, which
is present in all linear dynamical systems but tends to zero for slowly varying
input signals, hysteresis is characterized by an input-output looping behaviour
that persists when the forcing frequency approaches zero [Bernstein,4229].

Identi�cation of hysteretic systems is important for estimation, modelling
and control purposes, but poses a challenge because dynamic nonlinearities are
governed by non-measurable internal state variables.

In this thesis, a black-box polynomial nonlinear state space approach is used
to model hysteresis phenomena. The motivations for using a discrete-time poly-
nomial nonlinear state-space models are the estimation of these discrete-time
models is computationally less involved than that of their continuous-time coun-
terparts, and for control applications, discrete-time models are more suitable
[Paduart, 4229]. This motivates the choice for discrete-time models. Polynomi-
als are straightforward to use in computations and it is easy to extend them for
multivariable applications [Paduart et al., 4232], which motivates the choice for
polynomials. Also polynomials have universal approximation properties [Fliess
and Normand-Cyrot, 3;:4 ].

In Chapter 5 a Bouc-Wen model data is generated. The Bouc-Wen model
is also tested for characterising the harmonics. It is shown that the Bouc-Wen
hysteretic data shows signi�cant odd nonlinear harmonics. Based on the data
which is generated from the Bouc-Wen model, a polynomial nonlinear state
space model is successfully identi�ed.

As it is mentioned in Chapter 3 the number of parameters explodes combi-
natorially by increasing the model’s polynomial order. A decoupling algorithm,
which is developed in the team [Dreesen et al.,4237], is used to decrease the
number of parameters. This decoupling approach is combined with the poly-
nomial nonlinear state space to make the model more simple. The method is
applied successfully to the hysteresis system.

The main contribution of the candidate is the development of the non-
parametric models either for odd and even nonlinearities distortion, and also
for initializing the polynomial nonlinear state space model. Also the polynomial
nonlinear state space model is developed for the decoupling approach, indepen-
dently in Chapter 6.

3.4.3 Publications

The results of Chapter 5 are based on the following journal paper
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3.5 Reduced nonlinear state space

ˆ Noºl, J.-P., Fakhrizadeh Esfahani, A. , Kerschen, G., and Schoukens,
J. (4239). A nonlinear state-space approach to hysteresis identi�cation.
Mechanical Systems and Signal Processing, :6 :393� 3:6 .

3.5 Reduced nonlinear state space
Black-box procedures provide powerful models, but they lack to provide physical
intuition, and they often require a (very) large number of parameters. Therefore
any method which can decrease the number of parameters is of interest.

The identi�ed polynomial nonlinear state space (PNLSS) model is simpli-
�ed by tensorizing the system of polynomials in a number of random points in
PNLSS. The resulting tensor is then decoupled using the canonical polyadic de-
composition (CPD) which leads to a PNLSS model that is represented in terms
of univariate polynomials instead of multivariate polynomials. This reduces the
number of parameters signi�cantly, as shown on a Bouc-Wen hysteretic bench-
mark data set in Chapter 6, while keeping the same performance as a full PNLSS
model identi�ed according to the procedure mentioned in Chapter5.

3.5.3 Publications
The results of the Chapter 6 are based on the following papers

ˆ Fakhrizadeh Esfahani, A. , Dreesen, P., Noºl, J.-P., Tiels, K., and
Schoukens, J. (423: ) Parameter reduction in nonlinear state-space identi-
�cation of hysteresis. Mechanical Systems and Signal Processing, 326:::6 -
:;7 .

ˆ Fakhrizadeh Esfahani, A. , Dreesen, P., Tiels, K., Noºl, J.-P., and
Schoukens, J. (4239). Polynomial state-space model decoupling for the
identi�cation of hysteretic systems. IFAC World Congress, pages682�
687.

3.6 Uniqueness conditions
The last topic is along the block oriented model structure detection study (Chap-
ter 4). Chapter 7 is about the distinguishability between possible models. The
candidate illustrates this problem on a feedback structure. The problem state-
ment is as follows. If we have a system where we can’t get inside information
(black box). Can we say anything about the position of the nonlinear block? Is
it in the feedback or the feedforward path? Under general setting we can’t say
anything. However by imposing causality and stability conditions we can go to
a smaller set of candidate models for the input/output data.

7



Chapter 3: Introduction

Di�erent model structures can produce the same input�output behaviour.
After the identi�cation procedure, it is needed to choose between the possible
candidate models based on some criteria. Two criteria for a nonlinear feedback
system are stability and causality conditions of the sub-blocks. All the systems
we study, in the system identi�cation framework, are stable. It means their
response doesn’t approach in�nity. Also there is no system in nature whose
response starts before the excitation, which means the system should be causal.
The stability and causality conditions are studied in Chapter 7 of this work.

8



Chapter 4

Experiment design for
model structure detection

Structure detection of block oriented systems is a desirable way to interpret the
black box model of a dynamic system. Finding the block oriented structure of
a dynamic system tends to a less complex parameter estimation process. Struc-
ture detection can be done with a higher accuracy, if the experimental results
have less uncertainty. In this chapter an experimental approach is presented to
achieve this goal using the best linear approximation. Two signals characteris-
tics (DC level and standard deviation (STD)) are optimized to have minimum
uncertainty. The uncertainty which is used here is the total distortion which
is explained in more details later. The total distortion is used to build a cost
function, and a central composite design (CCD) is adopted to �nd the best
experiment strategy for extracting a frequency response function with mini-
mum amount of distortion. This chapter is mainly based on the author’s works,
[Fakhrizadeh Esfahani et al.,4238] and [Fakhrizadeh Esfahani et al.,4237].

For a long time, varying the STD level of the signal was a very popular
way to detect the structure of the system. But by varying the input STD
level, the nonlinear distortion is often increased, and the quality of the best
linear approximation is reduced. In [Lauwers et al.,422: ] the authors use the
rms and the bandwidth of the input excitation for structure detection. In this
chapter, �rstly, the DC varying strategy is introduced. Secondly, an optimal
strategy by combining the DC and the STD level of the excitation signal is
introduced. And thirdly, it is shown that the optimal strategy is mostly along
the DC varying strategy. It is tried to obtain the highest quality best linear
approximation in order to determine the model structure.

9



Chapter 4: Experiment design for model structure detection

4.3 Classi�cation of dynamic systems
According to [Pearson,3;;; ] the responsey(t) of a nonlinear dynamic system
to a sinusoidal input u(t) can be classi�ed in one of the following classes:

3. Superharmonic response
4. Subharmonic response
5. Nonperiodic response

The �rst class is called Superharmonic because the response contains higher
harmonics than that of u(t). For example assume the square-law nonlinearity
y(t) = u2(t) and u(t) = A cos!t then

y(t) = ( A cos(!t ))2 = A2(cos (!t ))2 =
A2

2
(1 + cos (2!t )) (4.3)

The name of the second class (Subharmonic) comes from the presence of har-
monics less than the input frequency. The Du�ng oscillator (Equation ( 4.4))
can create a subharmonic response to the sinusoidal input.

d2y
dt2 + ! 2

0y(t) + sy3(t) = u(t) (4.4)

where s and ! 0 are model parameters. Foru(t) = r cos(!t ), and the amplitude
of the output response (A) with the following values

A = 2
�

r
2s

� 1=3 (4.5)

! = 3

r

! 2
0 +

3sA2

4
(4.6)

where r is the input amplitude and A is the amplitude of the output response.
The response isy(t) = A cos (!t3 ) which clearly shows subharmonic behaviour
[Pearson,3;;; ]. Subharmonic response can be seen as lengthening of the period
of the input ( T ) to an integer multiple ( nT with n > 1). If n ! 1 the response
of the system would be nonperiodic. Bifurcation and chaotic behaviour are
happening in this class of systems. From now on we just focus on the �rst class
namely superharmonic response systems. Memoryless nonlinearities, such as
y(t) = u2(t), that preserve periodicity or fading memory nonlinearities are in
the �rst class. Period in same period out (PISPO) systems are also in this class.

4.4 The best linear approximation (BLA)
In this section, the best linear approximation (BLA) is introduced. This concept
is referred in many points in this thesis. The best linear approximation (BLA)

:



4.4 The best linear approximation (BLA)

is a tool to measure the frequency response function [Pintelon and Schoukens,
4234], [Bendat and Piersol, 3;:2 ], [Schoukens et al.,4227a] of a nonlinear
dynamic system (assuming that the response to a periodic input is periodic
with the same period as the input (PISPO)) [Pintelon and Schoukens,4234].

4.4.3 De�nition
The BLA is de�ned as follows [Pintelon and Schoukens,4234; Schoukens et al.,
4227a; Enqvist and Ljung, 4227; Pintelon and Schoukens,4235; Schoukens
et al., 3;;: ]

GBLA = arg min
G

Eu
�

kY (j! ) � G(j! )U(j! )k2
2

	
(4.7)

where Y(j! ), G(j! ), and U(j! ) are the real output of the system, the model,
and the input of the system respectively. GBLA (j! ) is the BLA of the system.
Eu denotes the mathematical expectation with respect to the random input.
Here, the input class consists of random-phase multisine signals, as explained
in Section 4.4.4. Equation (4.7) means, of all linear systems, the BLA is the
one whose output approximates the system output best in mean square sense
for a selected class of input signalsu.

The output of the nonlinear dynamic system is replaced by the BLA response
plus a nonlinear distortion term ys(t) (see Figure4.3). ys(t) is uncorrelated with
u(t), but not independent (for a detailed discussion see Sec.5.6 of [Pintelon and
Schoukens,4234] or [Pintelon and Schoukens,4224; Schoukens et al.,3;;: ]).
The following equations hold (see Section4.5) in the time and frequency domain,
respectively:

Ryu = gBLA ? Ruu ; (4.8)
Syu = GBLA Suu : (4.9)

where Ryu and Ruu are input-output cross correlation and input auto-
correlation, respectively. ? stands for the convolution operation, and gBLA

is the BLA in the time domain (the inverse Fourier transform of GBLA ). The
gBLA and GBLA are the impulse response and frequency response function re-
spectively. Syu , and Suu are input-output cross power, and input auto-power
spectra, respectively.

In [Schoukens et al.,3;;: ] and [Pintelon and Schoukens,4224] it is shown
that the response of the BLA is composed of two partsG0 and GB as follows
Equation (4.: )

Y = GBLA U + Ys + Ny = ( G0 + GB )U + Ys + Ny (4.: )

;
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Nonlinear
System

u(k) +

ny (k)

y(k)

m

GBLAu(k) +

ys(k)

+

ny (k)

y(k)

Figure 4.3: Schematic representation of the output-error model. The nonlinear sys-
tem can be replaced by its best linear approximation GBLA and a nonlinear distortion
term ys . The noise ny only acts on the output of the system.

where G0 is the underlying linear system, GB is the �linear contribution� of
nonlinear part of the system, Ys is the stochastic nonlinear distortion, Ny is
the output noise (see Figure4.3). GB will depend on u. The stochastic non-
linear distortion provides a valuable measure about the level of nonlinearity in
the system and shows if the user needs a nonlinear model. The estimation of
the GBLA , Ys, and Ny is addressed in Section4.4.5. The trend of the BLA by
varying input excitation characteristics such as the mean value [Fakhrizadeh Es-
fahani et al., 4237] using for example the" � linearization approach [Schoukens
et al., 4237], standard deviation, or the frequency band of input excitation sig-
nal [Lauwers et al., 422: ] can reveal the internal block oriented structure of the
system under study.

In the following sections varying the mean value of the signal (DC) and
standard deviation of the signal (STD) are studied and compared, and an op-
timization method is introduced to combine both mentioned characteristics of
the signal (DC and STD). The upper part of Figure 4.4 shows the e�ect of
varying the set point (DC value) of the input excitation to a static nonlinearity.
This is the " � linearization of the static nonlinear function which is equal to
the derivative of the function. The bottom part of this �gure shows the e�ect of
varying the input standard deviation (rms) value of the input. As the input rms
level is increased the input signal sweeps the nonlinearity more. It is expected
to see more nonlinear distortion.
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� 2 � 1 0 1 2
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x

f
(x

)

(b)

Figure 4.4: Comparison of the " � linearization Figure 4.4a and the varying am-
plitude Figure 4.4b. The red curve is a typical static nonlinearity function. In the
lower �gure, the black tangent line is for the amplitude of 2.7, the brown line is for
amplitude of 3, and the green one is for the amplitude of 4.
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4.4.4 Multisine signals
Multisine signals are de�ned as follows

u(t) =
N= 2X

k= � N= 2+1

Uk e( j 2� k
N t + � k ) for t = 0 ;

1
f s

; : : : ;
N � 1

f s
; (4.; )

where � k � U(0; 2� ), and � � k = � � k , N is the number of samples, andf s is
the sampling frequency. As the frequency resolution of the multisine signal ap-
proaches zero (f s

N = f 0 ! 0) the time distribution of the multisine approaches
the normal distribution. Therefore random phase multisines are asymptotically
Gaussian distributed (see Figure4.5). By using the periodic random phase
multisine there is no need to use windowing in cross-correlation. All excited
frequency lines of the considered multisines will be chosen to have the same
power. So the frequency spectrum is �at. By exciting the system with this
excitation, the BLA is calculated as in Equations (4.37) and (4.38) (see Fig-
ure 4.6).

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

u

f U
(u

)

Figure 4.5: The probability distribution of a typical random phase multisine (blue),
and the normal distribution function (red).

4.4.5 Estimation
To estimate the BLA easily, it is proposed to excite the system with Gaussian
distributed excitations (see Section4.5) for example, random phase multisine
signals (Section4.4.4). More precisely, with random phase multisines [Pintelon
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4.4 The best linear approximation (BLA)

and Schoukens,4234], the calculated BLA has less uncertainty, compared with
many other random excitations [Pintelon and Schoukens,4234], [Schoukens
et al., 4234]. Two methods to analyse the NL distortion with the BLA spectrum,
are called the robust method and the fast method [Pintelon and Schoukens,
4234], [Schoukens et al.,4234]. These methods allow one to separate the noise
and the nonlinear distortion ys(t). Hence from the multisine measurement, the
FRF of the BLA, the noise, and the nonlinear contributions can be quanti�ed
non-parametrically in the frequency domain [Pintelon and Schoukens,4234],
[Schoukens et al.,4234]. In this work the robust method is adopted [Schoukens
et al., 4234; Pintelon and Schoukens,4234].

The total distortion �̂ 2
ĜBLA

, includes the stochastic nonlinear distortion �̂ 2
Ĝ s

on the BLA, and the noise contribution �̂ 2
ĜBLA;n

. By exciting the system with a
periodic excitation, the user is able to estimate the noise contribution�̂ 2

ĜBLA;n
.

By subtracting the noise contribution from the total distortion, the nonlinear
distortion is calculated. The mentioned quantities are calculated as follows:

P periods

Transient p = 1 p = 2 � � � p = P
m = 1 � � � Ĝ[1] ; �̂ 2[1]

n

m = 2 � � � Ĝ[2] ; �̂ 2[2]
n

M m = 3 � � � Ĝ[3] ; �̂ 2[3]
n

realizations m = 4 � � � Ĝ[4] ; �̂ 2[4]
n

...
...

...
...

...
...

m = M � � � Ĝ[M ]; �̂ 2[M ]
n

Ĝ[m ] =

1
P

PP

p =1

Y [m;p ]

1
P

PP

p =1

U [m;p ]

ĜBLA = 1
M

MP

m =1
Ĝ[m ] ĜBLA ; �̂ 2

n

Figure 4.6: Robust method for estimating the BLA.

35



Chapter 4: Experiment design for model structure detection

Û [m ](j! k ) =
1
P

PX

p=1

U [m;p ](j! k ) (4.32)

Ŷ [m ](j! k ) =
1
P

PX

p=1

Y [m;p ](j! k ) (4.33)

�̂ 2
Û [m ] (j! k ) =

PX

p=1

�
�
�U [m;p ](j! k ) � Û [m ](j! k )

�
�
�
2

P(P � 1)
(4.34)

�̂ 2
Ŷ [m ] (j! k ) =

PX

p=1

�
�
�Y [m;p ](j! k ) � Ŷ [m ](j! k )

�
�
�
2

P(P � 1)
(4.35)

�̂ 2
Ŷ [m ] Û [m ] (j! k ) =

PX

p=1

(Y [m;p ](j! k ) � Ŷ [m ](j! k ))( U [m;p ](j! k ) � Û [m ](j! k ))
P(P � 1)

(4.36)

Ĝ[m ](j! k ) =
Ŷ [m ](j! k )

Û [m ](j! k )
(4.37)

ĜBLA (j! k ) =
MX

m =1

Ĝ[m ](j! k )
M

(4.38)

�̂ 2
ĜBLA

(j! k ) =
MX

m =1

�
�
�G[m ](j! k ) � ĜBLA (j! k )

�
�
�
2

M (M � 1)
(4.39)

�̂ 2
Û;n

(j! k ) =
1

M

MX

m =1

�̂ 2
Û [m ] (j! k ) (4.3: )

�̂ 2
Ŷ;n

(j! k ) =
1

M

MX

m =1

�̂ 2
Ŷ [m ] (j! k ) (4.3; )

�̂ 2
Ŷ Û;n

(j! k ) =
1

M

MX

m =1

�̂ 2
Ŷ [m ] Û [m ] (j! k ) (4.42)

ŜU0 U0 (j! k ) =
1

M

MX

m =1

(
�
�
�Û [m ](j! k )

�
�
�
2

� �̂ 2
Û;n

(j! k )) (4.43)

ŜY0 Y0 (j! k ) =
1

M

MX

m =1

(
�
�
�Ŷ [m ](j! k )

�
�
�
2

� �̂ 2
Ŷ;n

(j! k )) (4.44)
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ŜY0 U0 (j! k ) =
1

M

MX

m =1

(Ŷ [m ]Û [m ](j! k ) � �̂ 2
Ŷ Û;n

(j! k )) (4.45)

�̂ 2
ĜBLA;n

(j! k ) =

�
�
�ĜBLA (j! k )

�
�
�
2

M
� (

�̂ 2
Ŷ;n

(j! k )

ŜY0 Y0 (j! k )
+

�̂ 2
Û;n

(j! k )

ŜU0 U0 (j! k )
(4.46)

� 2Re(
�̂ 2

Ŷ Û;n
(j! k )

ŜY0 U0 (j! k )
))

�̂ 2
Ĝ s

(j! k ) = M (�̂ 2
ĜBLA

(j! k ) � �̂ 2
ĜBLA;n

(j! k )) (4.47)

where M is the number of experiments, P is the number of periods (see
Figure 4.6), and U [m;p ](j! k ) and Y [m;p ](j! k ) are the Fourier transform of one
period of the input and output signals in one experiment respectively. The
subscript 0 stands for the true value. The input excitation is a multisine. This is
a periodic signal with a �xed amplitude spectrum, therefore in Equation (4.38),
the equation for the BLA doesn’t need windowing and cross-power spectra and
auto-power spectra. The�̂ 2

Û [m ] (j! k ) and �̂ 2
Ŷ [m ] (j! k ) in (4.34) and (4.35) are the

sample variance of the sample meanŝU [m ](j! k ) and Ŷ [m ](j! k ) respectively. It
explains the extra P [Pintelon and Schoukens,4234]. This equation is just the
ratio of output to input in frequency domain. In Equations ( 4.43) and (4.45),
ŜU0 U0 (j! k ) and ŜY0 U0 (j! k ) are unbiased estimates ofjU0(j! k )j2 and

�
�Y0 �U0

�
�

respectively (for a detailed discussion see Sec.8.3 of [Schoukens et al.,4234]).

4.5 Bussgang’s theorem for non-zero mean ex-
citations

Structure detection, based on the BLA of block oriented models, needs to study
the BLA of the static nonlinearity (SNL), a memoryless function block. It can be
done through the Bussgang’s theorem, which simply stated, means that a SNL
system excited with Gaussian signals has a constant BLA (static, frequency-
independent). However, Bussgang did not provide the proof in case the input
has non-zero mean. Here, it is needed to analyse the BLAs at di�erent DC
levels (non-zero mean input).

According to Bussgang’s theorem, [Bussgang,3;74 ] if the input signal of a
SNL system, is a stationary (colored) zero mean Gaussian process, the BLA of
a SNL block is a constant. The static nonlinearity should ful�ll the following
property:

Z 1

�1
xgx (x)e� x 2

2 dx < 1 (4.48)
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This condition covers a large class of functions such as, functions with a �nite
number of discontinuities, and functions with a �nite number of discontinuous
derivatives.

Here we will show, that Bussgang’s theorem is also valid for non-zero mean
input.

Proposition 3. Assumep(t) to be a stationary (colored) non-zero mean Gaus-
sian process, andq(t) = gp(p(t)) , then

Rpq(� ) = kRpp(� ) (4.49)

here, Ruv and Ruu are the cross- and auto-covariance respectively.

Proof: It is assumed, that the input processp(t) is a Gaussian process,
with a non-zero meanE f pt g = � p = pDC

p(t) = � p + x(t) (4.4: )

where � p is the mean value ofp(t), and x(t) is a stationary zero-mean Gaussian
process (See Figure4.7). It can be remarked that the SNL gp(� ) can be rede�ned
in terms of an o�set and a function gx (� ):

gp(p) = gx (p � � p) (4.4; )

or equivalently:

gx (x) = gp(x + � p) (4.52)

SinceEf x(t)g = 0 , Bussgang’s theorem applies togx (� ) [Bussgang,3;74 ]:

Rxq (� ) = kRxx (� ) (4.53)

Using the equations corresponding to the block diagram in Figure4.7, a
result similar to Equation ( 4.53) can be obtained in terms of the signalp:

Rpq(� ) = kRpp(� ) (4.54)

This fact is the simple consequence of

Rpq(� ) = E f (p(t + � ) � E f p(t + � )g)(q(t) � E f q(t)g)g

= Ef (x(t + � ) + � p � Ef x(t + � ) + � pg)

(q(t) � Ef q(t)g)g

= Ef (x(t + � ) � Ef x(t + � )g)(q(t) � Ef q(t)g)g

38



4.5 Bussgang’s theorem for non-zero mean excitations

= Rxq (� ) (4.55)

and

Rpp(� ) = Ef (p(t + � ) � Ef p(t + � )g)(p(t) � Ef p(t)g)g

= Ef (p(t + � ) � � p)(p(t) � � p)g

= Ef x(t + � )x(t)g

= Ef (x(t + � ) � Ef x(t + � )g)(x(t) � Ef x(t)g)g

= Rxx (� ) (4.56)

�L�½�¼L �ä�ã

�L�:�P�; E
F

�C�ë�:�	�;
�M�:�P�;

�C�ã�:�	�;

�T�:�P�;

Figure 4.7: Block diagram of a SNL system with non-zero mean input.

In this work random phase multisine excitations are used. These multisines
are among the class of extended Gaussian signals [Pintelon and Schoukens,
4234] (as the number of excited frequencies approaches to in�nity). Gaussian
signals are separable, for separable processes, and Bussgang’s theorem, also
known as the invariance property holds [Billings and Fakhouri, 3;:4 ], [Nuttall,
3;7: ]. From Proposition 3, it follows that Bussgang’s theorem is valid also for
non-zero mean excitations. So the best linear approximation of an SNL system,
even with non-zero mean inputs is a constant gaink (see also Equations (4.8)
and (4.9)) depending on the mean (DC) and the standard deviation (STD) of
p(t). This fact will be used in the sequel to detect the internal structure of block
oriented models (see Section4.8).
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Chapter 4: Experiment design for model structure detection

4.6 Block oriented model identi�cation
In [?], [Giri and Bai, 4232], and [?] a few number of applications for block
oriented structure detection such as distillation column, physiological systems,
and biological systems are reported. By calculating the BLA and analysing its
trends for di�erent input characteristics, valuable information can be exploited
such as the internal structure of the system. There are many works in this �eld
such as Chapter35 of [Giri and Bai, 4232] where the trend of the nonparamet-
ric BLA is studied for di�erent structures and a Wiener-Hammerstein system
is identi�ed. Nonlinear system identi�cation is a time-consuming procedure.
So, the selection of an appropriate model structure is highly desirable prior to
the actual identi�cation. In this chapter the block-oriented systems [Billings
and Fakhouri, 3;:4 ], [Giri and Bai, 4232], consisting of interconnected dynamic
linear blocks and static NL (SNL) blocks are studied. Di�erent block-oriented
structure systems, such as Wiener-Hammerstein (WH), parallel WH, and NL
unity feedback systems, are studied in [Billings and Fakhouri,3;:4 ] using the
time domain. By using spectral analysis of Volterra series expansion of the
block structured NL system these structures can be analysed (see [Billings and
Tsang, 3;;2 ]). Both approaches are reviewed in [Giri and Bai,4232] and [Haber
and Unbehauen,3;;2 ]. Here, the internal structure of block-oriented systems
is explored, for which already a large number of possible internal structures
can be present. The focus is on the detection of the NL structure using the
best linear approximation (BLA), such as the presence of NL feedback. The
FRF of the BLA [Pintelon and Schoukens, 4234] is measured for the di�erent
excitation signal’s properties. In [Billings and Fakhouri, 3;9: ], it is proposed
to use non-zero-mean Gaussian distributed signals in combination with a cor-
relation analysis, for recognizing a NL system with a unity feedback structure.
In [Lauwers et al., 422: ], the standard deviation (STD) and bandwidth of the
excitation signals are changed to study the internal structure of the system us-
ing the BLA analysis [Schoukens et al.,4237]. In this chapter the DC and STD
level of the input excitation signal is optimized to make the input BLAs the
most informative to detect the internal block-oriented structure of the system.
It is shown the optimal path is oriented dominantly along the DC direction.

4.7 Considered block oriented nonlinear models
Interconnection of static nonlinear (SNL) and linear time invariant blocks makes
block oriented nonlinear models [Billings and Tsang,3;;2 ], [Giri and Bai, 4232].
Three types of block oriented systems that are considered in this thesis are:

ˆ A Wiener-Hammerstein (WH) system: Is de�ned as the cascade connec-
tion of two linear dynamic systems and a static nonlinearity in between.
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4.7 Considered block oriented nonlinear models

ˆ A parallel WH system: Parallel branches of di�erent WH systems, whose
outputs are summed together.

ˆ A nonlinear feedback system: A branch of a WH system at the feedback
and a linear time invariant block at the feedforward path. The WH system
can be located either in the feedforward or in the feedback path [Schoukens
et al., 422: ].

The three di�erent block oriented systems, which are considered in this
thesis, are shown in Figure4.8.
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Nonlinear Feedback

Figure 4.8: A few examples of block oriented nonlinear structures. The blocks G1 ,
G2 , G11 , G12 , G21 , and G22 are linear time-invariant systems. The blocks f , f 1 , and
f 2 are static nonlinear functions.
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4.8 Structure detection
By analysing the BLA variations that take place, for varying DC and STD levels
of the excitation signal u(t), the internal structure of the system is detected.
Applying Bussgang’s theorem to the structures in Figure4.8, the BLA is given
below.

It is possible to select one out of5 candidate model structures by varying
the excitation signal’s characteristic values. For Gaussian distributed excitation
signal for all structures in Figure 4.8, and changing the DC and STD of the
signal [Lauwers et al.,422: ] for each mentioned structure, we have the following
results

ˆ Wiener-Hammerstein (WH) systems:

GBLA (j! ) = kG1(j! )G2(j! ) (4.57)

In this structure

G1 =
N1

D1
; G2 =

N2

D2
! GBLA = k

N1N2

D1D2
(4.58)

where, according to Bussgang’s theorem,k is the best linear approximation
of the static nonlinearity q = f (p). In the above equationsN and D are the
numerator and the denominator of the transfer functions of the linear blocks.
For example N1 is the numerator of the transfer function of the G1 block. By
changing the DC and STD of the excitation signal, k changes, but poles and
zeros of theGBLA don’t change.

ˆ Parallel Wiener-Hammerstein systems (example with4 branches):

GBLA = G1BLA + G2BLA (4.59)

Here the following equations hold
(

G11 = N 11
D 11

; G12 = N 12
D 12

! G1BLA = k1G11(j! )G12(j! )
G21 = N 21

D 21
; G22 = N 22

D 22
! G2BLA = k2G21(j! )G22(j! )

(4.5: )

GBLA = k1G11(j! )G12(j! ) + k2G21(j! )G22(j! ) (4.5; )

= k1
N11

D11

N12

D12
+ k2

N21

D21

N22

D22
(4.62)

=
k1N11N12D21D22 + k2N21N22D11D12

D11D12D21D22
(4.63)

where k1 and k2 are the BLAs of the static nonlinearity in the �rst and second
branches, respectively. Here it can be seen that the overall BLA has a pole set
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of the union of pole sets of each branch. But the zeros are di�erent from the
zeros of the branches. So by changing the DC and STD levels, zeros move but
poles don’t. The detailed identi�cation procedure can be found in [Schoukens
et al., 4236].

ˆ Nonlinear feedback:

As a �rst approximation 3 we have that:

GBLA
�=

G1(j! )
1 + G1(j! )GBLA Fb

(4.64)

In this case the relations are

(
G1 = N 1

D 1

G21 = N 21
D 21

; G22 = N 22
D 22

! GBLA Fb = kG21(j! )G22(j! )
(4.65)

GBLA
�=

G1(j! )
1 + G1(j! )kG21(j! )G22(j! )

(4.66)

=
N 1
D 1

1 + k N 1
D 1

N 21
D 21

N 22
D 22

(4.67)

=
N1D21D22

D1D21D22 + kN1N21N22
: (4.68)

Herek is the BLA of the static nonlinearity in the feedback path. It is seen that
the overall BLA has zeros of the union of the zero set of feedforward path and the
pole set of the feedback path. By varying the excitation signal’s characteristics
(e.g. DC and STD) the overall zeros don’t change, but the poles change. In the
special case whereG21 = G22 = 1 the zeros of the closed loop system are the
same as the zeros of feedforward path.

The results of this section are collected in Table4.3. This table allows to
obtain an idea of a possible internal NL structure in an early phase (prior to
the actual modelling) starting from BLAs. E.g., if the estimated poles of the
BLA are depending on DC or STD, it can readily be determined that nonlinear
feedback is present.

The reader should be aware that the mentioned pole-zero behaviours are
necessary conditions for the presence of the related structure, in other words
there are di�erent structures other than above with the same behaviour of pole-
zero. This is discussed in [Schoukens et al.,4237] and [Schoukens and Tiels,
4239].

3It should be noted, that the input of the SNL in the NL feedback case is not Gaussian
anymore. As long as the input's amplitude is small, the input of the SNL block tends to be
Gaussian. In this case the BLA is the same as the � -approximation [Schoukens et al., 4237].
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TABLE 4.3: Pole zero behaviour of considered structures.

Zeros Poles
WH Don’t change Don’t change

WH. Parallel Change Don’t Change
NL Feedback Don’t change Change

4.9 Design of experiment
In this section the experiment strategy, which is used in this work, is introduced.
The so-calledCentral Composite Design (CCD) method is used to design
the DC and STD level of the experiment. The DC and STD level are called the
e�ectors in this method.

4.9.3 Central composite design

In the following, a pattern of experimental conditions which gives the most
informative response in the region of interest to build up a simple and a complete
second order response is presented.

4.9.3.3 First order experiment design

The 2N factorial design (pattern of experimental conditions) is proposed to
build up a linear model. With two e�ectors the 2N factorial design would be22

factorial design. The following linear model can be built up with the 22 factorial
design.

ŷ = A11x1x2 + A10x1 + A01x2 + A00 (4.69)

with parameters A11, A10, A01, A00, and where x1 and x2 are normalised ef-
fectors (see Equation (4.6; )). If the center point is also added to this pattern
the uncertainty of parameters can be estimated. The22 factorial design with
center point experiments is plotted in Figure 4.9.

4.9.3.4 Second order experiment design

For a complete second order model

ŷ = A20x2
1 + A11x1x2 + A02x2

2 + A10x1 + A01x2 + A00 (4.6: )

the central composite design is proposed (Figure4.: ). This experiment is the
combination of the 2N factorial design with center points and one variable (fac-
tor) at a time. The procedure is as follows [Box et al.,4227].
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Figure 4.9: The 22 factorial design of experiment with center points.
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Figure 4.: : The CCD design of experiment with center points.

3. Transform the e�ectors X 1 and X 2 into coded variables

x i =
X i � �X i

� i =2
(4.6; )

where i = 1 ; 2, �X i is the mean value ofX i , and � i is the di�erence
between the maximum and minimum of values of measurement data in
X i .
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4. Build the 4nd order model equation

y = A20x2
1 + A11x1x2 + A02x2

2 + A10x1 + A01x2 + A00 (4.72)

where ys are the measurements of output variable, andx i s are the mea-
sured value of control variables in the experiment.

5. Estimate the covariance matrix of the parameters from the residual sum
of squares (RSS)

RSS =
nX

i =1

(yi � ŷi )
2 (4.73)

Var(y) = RSS=(n � p) (4.74)
Cov(Â i ) = ( X T X ) � 1Var(y) (4.75)

whereyi s are the measured output of the experiment,̂yi s are the estimated
value of the output of the model (Equation (4.6: )).

6. Measure the uncertainty of the coe�cients of the model

t i =
Â i

STDÂ i
(4.76)

where Â i is the estimated coe�cient and STD A i is the square root of the
i th element on the main diagonal of the covariance matrix.

7. Select the most important factors in the model by dropping the terms
with the absolute value of t i less than5.

At the end the complete 2nd order model is reliable, and can be used for opti-
mization or response prediction.

4.: Optimizing signal’s characteristics
In this section the above mentioned experimental algorithm is used to build up
a complete 2nd order model (Equation (4.72)) on the mean square error, this
model is used to �nd a set of DC and STD levels of the input signal to have
less distorted BLAs. The �rst part of the proposed method uses the Central
Composite Design (CCD) [Box et al., 4227] approach 4 Then on the saddle
point of the quadratic model the eigen-path gives the set of experiments, in
which both the DC and STD levels are simultaneously varied.

4 Standard CCD method is explained through steps 3-8.
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4.: Optimizing signal’s characteristics

It is expected, that the behaviour of a nonlinear system is changed with
varying DC and STD (amplitude) of the signal. Also, by exciting the system
with low-amplitude signals (STD), the noise distortion is typically more signif-
icant in the BLA. This gives either a hyperboloid, convex, or concave surface
to the MSEs of BLAs, which can be approximated by a quadratic model. This
quadratic model for MSEs is controlled by the DC and STD level. The eigen-
path on the extremum point of the surface gives the set of experimental points.
This gives a set of BLAs with less distortion levels. The algorithm is as follows:

3. Normalize the DC and STD according to their range � DC (or DC max �
DCmin ) and � STD (or STD max � STDmin ):

x1= DC � DC C
� DC =2

(4.77)

x2= STD � STD C
� STD =2

(4.78)

where DCC and STDC are the center points of the CCD experiment.
Make the following experiment plan, where each row corresponds to the
settings of an experiment:

x1 x2

X plan =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

+1 � 1
+1 +1
� 1 � 1
� 1 +1p

2 0
�

p
2 0

0
p

2
0 �

p
2

0 0
...

...
0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

9
=

;
l times

(4.79)

4. The BLA and its MSE (Mean Square Error which is de�ned on the total
distortion �̂ 2

ĜBLA
) are estimated at each experimental point for the DC

and STD level of the excitation:

MSE =
1

Nex

N exX

k=1

�̂ 2
ĜBLA

(k) (4.7: )

where, ks, are the excited frequency lines in the multisine signal, andNex

is the number of excited frequencies.
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5. A full quadratic model for MSEs is built, by using a linear least square �t
(regression with X plan as regressor and the MSEs as dependent vector):

^MSE = A20x2
1 + A11x1x2 + A02x2

2 + A10x1 + A01x2 + A00 (4.7; )

6. Multiple experiments ( l) at the center point, gives the ability to measure
the noise level in MSEs. The larger the number of experimentsl , the lower
the variance on the estimated noise level. Based on that, the uncertainty
of the estimated parameters can also be estimated:

RSS =
nX

i =1

(MSEm i � ^MSEi )2 (4.82)

Var(MSE) = RSS=(n � p) (4.83)
Cov(Â i ) = ( X T

m X m ) � 1Var(MSE) (4.84)

where RSS is the residual sum of squares, ^MSE is the vector of predicted
MSEs, the subscriptm represents the measured values of each variable,n
is the number of all experiments, andp is the degree of freedom (number of
unknown parametersA i ), that here is equal to the number of parameters
in the model.

7. The signal to noise ratio (t i ) for each coe�cient can be calculated accord-
ing to:

t i =
Â i

STDÂ i
(4.85)

where Â i is the estimated coe�cients and STDÂ i is:

STD(Â i ) =
q

diag(Cov(Â i )) (4.86)

8. Drop the coe�cients with low absolute signal to noise ratio ( jt i j). As a
rule of thumb, it is recommended to drop the coe�cients with t-values
less than5,

9. Find the extremum point (x �
1; x �

2) of the surface by solving:

�
2A20 A11

A11 2A02

� �
x �

1
x �

2

�
+

�
A10

A01

�
=

�
0
0

�
(4.87)
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4.; Systems under study

: . Transfer Equation (4.7; ) to the new point (x �
1; x �

2) The MSE in this new
coordinate transformation can be written as (see Appendix4.A)

Q

MSEex =
�
~x1 ~x2

�
z }| {�

A20 A11=2

A11=2 A02

� �
~x1

~x2

�
(4.88)

= A20 ~x2
1 + A11 ~x1 ~x2 + A02 ~x2

2 (4.89)

where ~x i = x i � x �
i (i = 1 ; 2) is a new transferred variable and MSEex =

^MSE � MSE� where MSE� is the ^MSE evaluated in the extremum point
(x �

1; x �
2).

; . The eigenvector of the matrix Q corresponding to the lowest eigenvalue
determines the line (through x � ) along which the MSE varies the least,
and therefore delivers di�erent BLAs of high quality (low MSE). This
gives the best strategy for doing the experiments.

4.; Systems under study
In this section, two nonlinear feedback systems are studied, a nonlinear mass
spring damper (NL-MSD) system (see Figure4.; and Figure 4.32(a)), and a
linear system with a multiplication operation in the feedback path (NL-XFB)
(Figure 4.32(b)). Both systems are implemented as electronic circuits. The DC
and STD characteristic of the input is varied and the e�ect of them is studied
for both systems. The propsed methodology is applied to measurements of the
NL-MSD system (see Section4.32).

4.; .3 The nonlinear mass spring damper system (NL-MSD)
This system has a spring with a nonlinear cubic termk3y3 to model a mechanical
hardening spring e�ect. For this system we have

m•y + d _y + k1y + k3y3 = r (t) (4.8: )
m•y + d _y + k1y = r (t) � k3y3 (4.8; )

The equivalent block diagram of this system is shown in Figure4.32(a) (also
known as the Silverbox) [Schoukens et al.,4225].

4.; .4 The nonlinear system with a multiplication in the
feedback path (NL-XFB)

The second system, shown in Figure4.32(b) is composed of a dual ampli�er
bandpass �lter [Zumbahlen, 4233] in the forward path with a multiplication
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Figure 4.; : Nonlinear mass spring damper with a cubic term as hardening e�ect.

at the feedback which is fed by an independent branch from the input with a
squaring device (AD:57 ) followed by a generalized impedance converter (GIC)-
derived dual-ampli�er biquad as a low-pass �lter [Chen, 4224].

4.32 Measurement results

Two systems under study are excited with random phase multisine signals. The
settings for the excitation signal are written in Table 4.4. The measurements
are done with Agilent/HP E 3652A data acquisition cards. Both systems are
excited by an Agilent/HP E 3667A arbitrary waveform generator (AWG).

4.32.3 Structure detection

The FRFs (BLAs) of the NL-MSD are plotted in Figure 4.33. In the left of
this �gure, FRFs with di�erent DC level of the excitation signals are shown,
while in the right, FRFs are plotted for di�erent STD levels. It is seen that by
increasing the input amplitude (STD), the resonance frequency shifts and also
the damping changes. This behaviour points to pole movements, hence to the
presence of a nonlinear feedback [Schoukens et al.,4227b]. It is seen (in the
left) that the total standard deviation ( �̂ ĜBLA

) and the noise level (̂� ĜBLA;n
)

decrease, by increasing the DC level of the input signal. As the STD level is
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Figure 4.32: Block diagram of systems under study.

increased (see right side of the Figure4.33), the stochastic nonlinear distortion
( �̂ ĜBLA;n

) increases, (as expected, high amplitude hits the nonlinearities more).
Figure 4.34 shows a similar picture for the NL-XFB system. In the left side

of this �gure there are plots of the FRFs with varying the DC level. At the
right side, the FRFs are calculated with the di�erent STD levels of the excita-
tion signal. In the varying DC level experiment, the total distortion decreases
by increasing the DC level, while in the STD sweeping experiment the total
distortion has an increasing trend for increasing STD levels. Therefore it is
recommended to use rather the DC sweeping than the varying STD, to detect
the internal structure. In the next section, an optimal combination of varying
DC and STD levels is discussed.

TABLE 4.4: Experiment parameters.

NL-MSD NL-XFB
Number of points (per period) (N ) 6::5 3;753
Number of realizations (M ) 86 38
Number of periods (P) 6 6
Sampling frequency(f s) 4.66 KHz ; .99 KHz
Excited harmonics kex [5:4:5;; ] [3:4:6;;; ]
Number of excited frequencies (Nex ) 3;; 4722
Frequency resolution (f 0) 2.7Hz 2.7Hz

Through parametric �tting in continuous-time on frequency response func-
tions, by using the Matlabr FDIDENT toolbox [KollÆr et al., 4225], the move-
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Chapter 4: Experiment design for model structure detection

Figure 4.33: FRFs of the NL-MSD (Silverbox). Bold line: ĜBLA , light grey: �̂ Ĝ BLA
,

and dark grey: �̂ Ĝ BLA;n
. Arrows point from low to high DC or STD levels.

ment of poles and zeros can be followed. It is assumed that the NL-MSD system
has second order dynamics (without zeros), and the NL-XFB is a second order
system with a zero (see the deep antiresonance in Figure4.34 at the frequency
2Hz). In Figure 4.35 and Figure 4.36 the pole-zero locus of the systems under
study is illustrated.

In Figure 4.35 the pole-zero map of the NL-MSD system by a DC sweep
(left), and a STD sweep (right) show pole movements of the system. This be-
haviour suggests again the existence of the feedback branch. Also in Figure4.36,
in both cases (STD and DC sweep), the poles are shifting, while the zeros don’t
change. This behaviour allows again one to easily detect the existence of the
feedback branch.

4.32.4 Input optimization

In this part the results of the proposed method for selecting the DC and STD
level of the signal are shown. These results are based on the experiments carried
out on the NL-MSD system.
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Figure 4.34: FRFs of the NL-XFB. Arrows point from low to high DC or STD levels.
Bold line: ĜBLA , light grey: �̂ Ĝ BLA

, and dark grey: �̂ Ĝ BLA;n
.

4.32.4.3 Experiments on a grid in the DC-STD plane

The 33DC and 38 STD levels are selected according to Table4.5. For this set
of experiments the sampling frequency, number of excited frequencies, and the
frequency resolution are selected according to the NL-MSD column of Table4.4.
Figure 4.37shows the MSEs (in dB) of all signals with permissible DC and STD
levels of the excitation signal. The results agree with the fact that, by decreasing
the STD level, the MSE is decreased because, the noise has more contribution in
the total distortion. There is a point from which, if the STD level is decreased
lower than that point, the MSE level is increased. The reason is that the noise
contribution is more dominant in the response than nonlinear distortion. But by
increasing the STD level, the MSEs (dB) are increased, because of the nonlinear
contribution of the system. It is clear that varying the DC level of the input
signal at a �xed STD level, doesn’t have a signi�cant impact on MSE levels.

4.32.4.4 Proposed method

The CCD method explained in Section4.: is applied to �nd the best strategy
to reach to the minimum value of MSEs, based on only32 di�erent values
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Figure 4.35: Pole-Zero map of varying DC (left) and varying STD (right) experi-
ments on the NL-MSD system. Labels 3 to 6 correspond to DC and STD levels shown
in Figure 4.33(low to high).

of (DC, STD). Figure 4.38 shows the contour plot of all the experiments grid
(Figure 4.37). In this �gure squares and the star show the designed experiments
according to the matrix in Item 3. The quadratic surface which is built according
to these experiments is plotted in Figure 4.39. The dash-line in Figure 4.38
shows the best strategy we should select to reach to an FRF with a minimum
distortion level. Also this line is shown in Figure 4.39, as a white line.

The designed DC and STD levels according to this line are in Table4.6. Fig-
ure 4.3: shows the FRFs of the designed experiment. By comparing this �gure
with the Figure 4.33(the left side, FRFs for varying DC), the noise contribution
is slightly increased but the total and stochastic nonlinear distortions decrease
signi�cantly. Moreover, the maximum of the total distortion only varies very
slightly, corresponding to slight changes of the MSE on the optimal line. By
�tting a parametric model on each FRFs in the optimal experiment we have the
poles-zeros of transfer functions. Figure4.3; shows the pole-zero trend of the
new experiment.

TABLE 4.5: Settings for full grid measurement.

DC Levels 2, 32, 42, 52, 62, 72, 82, 92, :2 , ;2 , 322 mV

STD Levels 3, 4, 6, 8, : , 32, 42, 52, 62, 72, 82, 92, :2 , ;2 , 322,
332mV
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Figure 4.36: Pole-Zero map of varying DC (left) and varying STD experiments
on the NL-XFB system. Labels 3 to 7 correspond to DC and STD levels shown in
Figure 4.34 (low to high).

Table 4.6: The designed experiment values (results of CCD method).

DC Levels (in mV) 39 79 ;9 359 399
STD Levels (in mV) 6 7 8 9 :

4.33 Conclusions
Multiple results are obtained in this chapter.

3) Bussgang’s theorem is still valid for non-zero mean excitation signals.

4) By computing/estimating the BLA of a system for varying input signal
properties (DC and STD level), and studying the pole/zero behaviour of
the BLA, we are able to select a block oriented structure out of the5 dif-
ferent types of internal structures i.e. series, parallel Wiener-Hammerstein
systems, and nonlinear feedback structure (see Table4.3).

5) By changing the DC and STD levels, it is possible to in�uence the level of
the nonlinear and noise distortions. Varying the DC level is preferable to
varying the STD, since it delivers much higher quality (lower distortion)
BLA measurements.
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Figure 4.37: Surface MSE(DC; STD) for the NL-MSD system (DC and STD levels
according to Table 4.5): MSE in dB as function of the DC value and the STD.

6) An optimal experimental design procedure is proposed, where DC and
STD values are varied jointly.
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points. The circle ( � ) at the far left bottom of the �gure is the calculated extremum
point of the quadratic model. The dash-line is the eigen-path which is selected as the
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4.33Conclusions

Figure 4.3: : FRFs of the designed excitation signal. Arrows point from the lowest
value of DC and STD levels to the highest. Bold line: ĜBLA , light grey: �̂ Ĝ BLA

, dark
grey: �̂ Ĝ BLA;n

, and medium grey is the stochastic nonlinear distortion �̂ Ĝ s
.
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Figure 4.3; : Pole-Zero map of the designed experiment for the NL-MSD system.
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4.A Quadratic forms

Appendix

4.A Quadratic forms
A 2nd order multivariable function is called a quadratic form. In this thesis, the
focus is on2-variable quadratic forms (see Equation (4.92)).

y = A20x2
1 + A11x1x2 + A02x2

2 + A10x1 + A01x2 + A00 (4.92)

This equation can be rewritten in matrix form as

y =
�
x1 x2

�
�
A20

A 11
2

A 11
2 A02

� �
x1

x2

�
+

�
A10 A01

�
�
x1

x2

�
+ A00 (4.93)

By transforming the coordinates system in (4.93) to a new origin ((x �
1; x �

2) ; y� ),
in this case the extremum point in (4.92), we have:

y = A20(~x1 + x �
1)2 + A11(~x1 + x �

1)(~x2 + x �
2) + A02(~x2

2 + x �
2)2

+ A10(~x1 + x �
1) + A01(~x2 + x �

2) + A00 (4.94)
= A20 ~x2

1 + A11 ~x1 ~x2 + A02 ~x2
2 (4.95a)

+ A20x �
1

2 + A11x �
1x �

2 + A02x �
2

2 + A10x �
1 + A01x �

2 + A00 (4.95b)
+ 2A20 ~x1x �

1 + A11 ~x1x �
2 + A10 ~x1 (4.95c)

+ 2A02 ~x2x �
2 + A11 ~x2x �

1 + A01 ~x2 (4.95d)

= ~y + y� (4.96)

where~y = y� y� and ~x i = x i � x �
i ; i = 1 ; 2; x �

i ; i = 1 ; 2; y� is the extremum point
of Equation (4.92) and the origin of the new coordinates system;~x i ; i = 1 ; 2; ~y
are the variables in the new coordinates system. According to Equation (4.87),
the two terms in (4.95c) and (4.95d) are zero. Also the term in (4.95b) is y� .
Therefore

~y = A20 ~x2
1 + A11 ~x1 ~x2 + A02 ~x2

2 (4.97)

=
�

~x1 ~x2
�

�
A20

A 11
2

A 11
2 A02

� �
~x1

~x2

�
(4.98)

This shows that Equations (4.88) and (4.89) hold.
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Chapter 5

Identifying hysteresis using
polynomial nonlinear state
space

In this chapter a black-box nonlinear model class is presented. This model class
represents the internal states of the system by a nonlinear relationship. In this
thesis the relationship between states are polynomials. The model is called
polynomial nonlinear state space (PNLSS). In the �rst part a hysteresis sys-
tem is presented and a Bouc-Wen model is introduced for generating hysteretic
data. The PNLSS model is de�ned and the identi�cation algorithm is explained
brie�y. Next the character of nonlinear behaviour of the hysteresis system is
studied. Eventually, a nonlinear state space model is identi�ed. The odd and
even harmonics which are generated by the Bouc-Wen model are also studied.
This chapter is mainly based on the paper [Noºl et al.,4239].

Till now nobody checked in full detail, if full PNLSS models could be used
to identify hysteretic systems. In this chapter, a case study is made on a Bouc-
Wen system to see if this is possible. It is also studied, if the identi�ed model,
trained on multisine data, can be used to simulate swept-sine experiments. The
nature of the nonlinearity is checked using a non-parametric analysis. This gives
information that all even terms can be put to zero. The nonparametric model
is developed by the candidate. The full PNLSS model is also developed by the
candidate in the Chapter 6 for simplifying the PNLSS model. The polynomial
nonlinear state space identi�cation is also applied on identi�cation of Li-ion bat-
teries [Relan, 4239], on an oscillating cylinder in a �uid �ow [Decuyper, 4239],
on Silverbox (Du�ng oscillator) [Paduart, 4229], and on a crystal detector [Van
Mulders, 4234].
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5.3 Introduction

Hysteresis is a phenomenology commonly encountered in a wide variety of engi-
neering and science disciplines, ranging from solid mechanics, electromagnetism
and aerodynamics [Morrison et al.,4223; Bertotti, 3;;: ; Mueller, 3;:7 ] to bi-
ology, ecology and psychology [Angeli et al.,4226; Beisner et al., 4225; Ra-
machandran and Anstis, 3;:7 ]. In structural dynamics, hysteresis is mostly
featured in joints, where it results from friction between assembled parts [Gaul
and Nitsche, 4223]. The de�ning property of a hysteretic system is the persis-
tence of an input�output loop as the input frequency approaches zero [Bernstein,
4229]. Hysteretic systems are inherently nonlinear, as the quasi-static existence
of a loop requires an input�output phase shift di�erent from 2 and 3:2 degrees,
which are the only two options o�ered by linear theory. The root cause of hys-
teresis is multistability [Oh et al., 422; ]. A hysteretic system possesses multiple
stable equilibria, attracting the output depending on the input history. In this
sense, it is appropriate to refer hysteresis as system nonlinear memory.

The identi�cation of hysteresis is challenging, primarily because it is a dy-
namic kind of nonlinearity governed by internal variables, which are not measur-
able. Most studies in the technical literature tackling hysteresis identi�cation
follow white-box approaches, i.e. they rely on the assumption that measured
data obey a speci�c hysteretic model [Hassani et al.,4236]. The Bouc�Wen
model was identi�ed in numerous works, in particular using optimisation tech-
niques such as evolutionary [Charalampakis and Koumousis,422: ; Worden and
Barthorpe, 4234] and particle swarm [Charalampakis and Dimou,4232] algo-
rithms. In [Worden and Becker, 4234; Worden and Hensman,4234; Ortiz et al.,
4237], a Bayesian framework was exploited to quantify uncertainty in Bouc�Wen
identi�cation. Specialised NARX [Worden and Barthorpe, 4234], neural net-
work [Xie et al., 4235] and Hammerstein [Radouane et al.,4236] models were
also developed to address Bouc�Wen systems. The experimental identi�cation
of other hysteresis models, like the Preisach equations and a stochastic Iwan
description of friction, is reported in [Ktena et al., 4223] and [Mignolet et al.,
4237], respectively. Assuming a speci�c model structure in a white-box philos-
ophy may however be a hard requirement to handle in real applications, since
hysteresis is a highly individualistic nonlinear behaviour.

In this chapter, a black-box approach based on nonlinear state-space mod-
els is adopted to identify hysteresis dynamics. State-space identi�cation is a
powerful way to experimentally model nonlinear systems. A literature survey
shows that systems as diverse as a magneto-rheological damper [Paduart et al.,
4232], a wet-clutch device [Widanage et al.,4233], a glucoregulatory system
[Marconato et al., 4236], or a Li-ion battery [Relan et al., 4237] were success-
fully identi�ed using nonlinear state-space models. The approach proposed in
this chapter exploits the great �exibility of a state-space representation to es-
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tablish a general framework to hysteresis identi�cation, which makes no use of
a priori assumptions. Physical insight into the system behaviour can also be re-
trieved, ensuring a reasonable parsimony of the derived model. Nonlinear model
terms are constructed as a multivariate polynomial in the state variables, and
parameter estimation is performed by minimising weighted least-squares cost
functions in the frequency domain. Technical issues, including the selection of
the model order and the polynomial degree, are discussed, and model validation
is achieved in both broadband and sine conditions. The present study is car-
ried out numerically by exploiting synthetic data generated via the Bouc�Wen
equations. However, it is emphasised that the Bouc�Wen nature of the data
will not be exploited in the identi�cation process.

This chapter is organised as follows. The hysteresis phenomenon is de�ned
in Section 5.4. The Bouc-Wen model of hysteresis is explained in Section5.5.
In Section 5.6 the simulation of the Bouc-Wen model is introduced. A non-
parametric study of the nonlinear distortions a�ecting the generated data is
conducted in Section 5.7, and parametric modelling in state space is carried
out in Section 5.8. Model validation is eventually achieved in Section5.9, and
concluding remarks are formulated in Section5.: .

5.4 Hysteresis phenomenon in mechanical sys-
tems

The hysteresis behaviour can be de�ned from two di�erent points of view: phys-
ical and control points of view. In this work the control de�nition is consid-
ered. The so-calledhysteresis is de�ned as the persistent presence of a force-
displacement loop (see Figure5.3) as the excitation frequency approaches zero.
In other words, when a system is excited with a sinusoidal input, and a loop
is still recognizable in a plot of the steady-state output vs. the input as the
excitation frequency is reduced, then the system is supposed to have hysteretic
nonlinearity [Bernstein, 4229].

The loop in Figure 5.3 consists of an upper (red) and a lower (blue) curve.
The upper curve is called the loading curve and the lower curve is called the
unloading curve.

5.5 Bouc-Wen model of hysteresis
In this section, the Bouc-Wen model is introduced, which is used to model the
behaviour of a hysteretic system. For the identi�cation procedure this model
is used to generate data. The Bouc-Wen model is a grey box model. Because
there is not a universal and physical relationship for the hysteresis loop. But
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Figure 5.3: A typical hysteresis loop. The upper curve (in red) is loading and the
lower curve (in blue) is unloading curve.

the linear part has physical component.
The equation of motion from Newton’s second law is

mL •y(t) + r (y; _y) + z(y; _y) = u(t) (5.3)

where mL is the mass constant,y the displacement, u the external force, and
the over-dot (_) stands for the derivative with respect to the time variable t.
The total restoring force in the system is composed of a polynomial partr (y; _y)
[Worden and Barthorpe, 4234], and of the hysteretic part z(y; _y). The polyno-
mial part is assumed to be linear i.e.

r (y; _y) = kL y + cL _y (5.4)

where kL and cL are the linear sti�ness and viscous damping coe�cients, re-
spectively. The hysteretic part is de�ned by the following di�erential equation

_z(y; _y) = � _y � �
�
 j _yj jzj � � 1 z + � _y jzj �

�
(5.5)

where the �ve Bouc�Wen parameters �; �; ; � and � are for tuning the shape
and the smoothness of the system’s hysteresis loop. Note that the variablez
is an internal state that is not measurable, which may make the formulation
of the identi�cation problem, harder. Another issue is that Equation ( 5.5) is
a nonlinear relation with respect to the parameter � . These two problems are
addressed in Section5.8.5 through a black-box state-space modelling approach.
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5.6 Bouc-Wen model simulation

The values of the Bouc-Wen model parameters selected in this work are
listed in Table 5.3. The linear modal parameters deduced frommL , cL and kL

are the natural frequency ! 0 and the damping ratio � :

! 0 =
1

2�

r
kL + � L

mL
(5.6)

� =
cL

2
p

2kL mL
(5.7)

Their numerical values are given in Table5.4. Figure 5.4a illustrates the exis-
tence of a non-degenerate loop in the system input�output plane for quasi-static
forcing conditions. In comparison, by setting the � parameter to 0, a linear be-
haviour is retrieved in Figure 5.4b. The excitation u(t) in these two �gures is
a sine wave with a frequency of1 Hz and an amplitude of 120 N. The response
exhibits no initial condition transients as it is depicted over 10 cycles in steady
state.

TABLE 5.3: The values of the parameters of the Bouc-Wen model.

Parameter mL cL kL � �  � �
Value (in SI unit) 2 10 5� 104 5 � 104 1 � 103 0:8 � 1:1 3

TABLE 5.4: Linear modal parameters of the Bouc�Wen system.

Parameter Natural frequency ! 0 (Hz) Damping ratio � (%)
Value 35:59 1:12

5.6 Bouc-Wen model simulation
The Newmark integration method on the Bouc-Wen model in Equations5.3and
5.5 is used to simulate the hysteresis system. Newmark integration works based
on one-step-ahead approximations of the velocity and displacement obtained by
applying a Taylor expansion and numerical quadrature techniques [GØradin and
Rixen, 4236]. If the integration time step is h the approximations would be

_y(t + h) = _y(t) + (1 � a)h•y(t) + ah•y(t + h)
y(t + h) = y(t) + h _y(t) + ( 1

2 � b)h2 •y(t) + bh2 •y(t + h)
(5.8)

where a and b are typically 0:5 and 0:25 respectively. By using Equation (5.8)
the integration of z will be

z(t + h) = z(t) + (1 � c)h _z(t) + ch_z(t + h) (5.9)
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Figure 5.4: Hysteresis loop in the system input�output plane for quasi-static forcing
conditions. (a) Non-degenerate loop obtained for the parameters in Table 5.3 and (b)
linear behaviour retrieved when setting the � parameter to 0.
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where c is 0:5. Based on Equations (5.8) and (5.9), Newmark integration can
be done in two steps. First, the prediction of _y(t), y(t + h) and z(t + h),
by assuming •y(t + h) = 0 and _z(t + h) = 0 . Second, the initial predictors are
corrected via Newton�Raphson iterations so as to satisfy the dynamic equilibria
in Equations (5.3) and (5.5).

The sampling rate during integration, i.e. 1=h, is set to 15000 Hz. For
identi�cation use, synthesised time histories are low-pass �ltered and downsam-
pled to 750 Hz. Figure 5.5a displays the system output calculated in response
to a multisine input for which 8192 frequency lines in the5� 150 Hz band are
excited. The root-mean-square (RMS) amplitude of the input is 50 N and 5
output periods are simulated. The exponential decay of the system transient
response is plotted in Figure5.5b by subtracting the last synthesised period
from the entire time record. This graph indicates that transients due to initial
conditions only a�ect the �rst period of measurement, and that the applied
periodic input results in a periodic output. It also demonstrates the high accu-
racy of the Newmark integration, as the transient response reaches the Matlab
precision of � 313 dB in steady state.

5.7 Nonparametric analysis of nonlinear distor-
tions

In this section, a simple testing procedure is employed to gain rapid insight
into the nonlinear distortions observed in the output data. The procedure re-
quires no user interaction, and no parametric modelling e�ort. It allows an
objective, i.e. a quantitative, detection of nonlinear behaviour and separates
distortions originating from odd and even nonlinearities. The basic idea of the
approach is to design a multisine excitation signal comprising odd frequencies
only, called measurement lines, and to assess nonlinear distortions by measuring
the output level at the nonexcited frequencies, called detection lines [Schoukens
et al., 4227b]. More speci�cally, Figure 5.6 shows that the adopted input am-
plitude spectrum possesses no even frequencies, serving as even detection lines.
In addition, odd excited frequencies are grouped into sets of successive lines
(for instance, 1� 3� 5 and 7� 9� 11), and one frequency is randomly rejected
from each group to function as an odd detection line (for instance,5 and 9)
[Schoukens et al.,4234]. This speci�c choice of input spectrum permits the
following classi�cation of the output spectrum contributions in Figure 5.6, as-
suming steady-state conditions [Schoukens et al.,4227a]:

ˆ at the measurement lines, linear dynamics (in black) and odd nonlinear
distortions (in red) appear;

ˆ at the odd detection lines, only odd nonlinear distortions (in red) are
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Figure 5.5: System output calculated in response to a multisine input band-limited
in 5� 150 Hz. (a) Output over 5 periods, with one speci�c period highlighted in grey
and (b) output in logarithmic scaling (in black) and decay of the transient response
(in blue).
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5.8 Nonlinear state-space identi�cation

visible;

ˆ at the even detection lines, only even nonlinear distortions (in blue) emerge.

It should be noted that, in practice, interactions between the actuator and
the system can disturb the desired input spectrum, and hence jeopardize this
nonparametric distortion analysis. This situation is addressed in [Pintelon and
Schoukens,4235] by taking advantage of the knowledge of the reference input
signal, and in [Vanhoenacker and Schoukens,4225] where �rst-order corrections
to the distortion analysis are calculated. Moreover, Figure5.6 shows that, at
the excited frequencies (1� 3� 7� 11), it is not possible to separate the linear
contributions from the odd nonlinear distortions. This makes odd nonlinear
distortions potentially more harmful than even distortions. However, the level
of observed distortions at the unexcited frequencies can be extrapolated to the
excited frequencies if a randomized frequency grid is adopted, as explained in
[Pintelon et al., 4233; Schoukens et al.,422; ].

The nonparametric analysis procedure is applied in Figure5.7 to the Bouc
�Wen system of Section 5.5. The excitation signal is a multisine with odd
excited frequencies in5� 150 Hz, and a frequency resolution f 0 = f s=N �=
0:09Hz, givenN = 8192. Odd detection lines are created by randomly excluding
one frequency in each group of3 successive measurement lines. The RMS input
amplitude is equal to 1, 10, 25 and 50N in Figures 5.7a - 5.7d, respectively. The
noise level displayed in black is obtained by averaging the measurements over
4 periods in steady state. Figure5.7 shows that the system features no even
nonlinearity. Conversely, substantial odd distortions are detected, including at
low forcing level in Figure 5.7a, where they lie 20 dB below the output level
in the resonance vicinity. At higher forcing levels in Figure 5.7b - 5.7d, odd
distortions a�ect the system response throughout the input band, in particular
in the resonance frequency and the third harmonic regions.

In summary, this section indicates that identifying the Bouc�Wen system
of Section 5.5 solely requires odd nonlinear model terms, which was retrieved
by making exclusive use of output data. This is coherent with Equation (5.5)
which writes, given the choice� = 1 in Table 5.3,

_z(y; _y) = � _y � � j _yj z � �� _y jzj (5.: )

where the expressionsj _yj z and _y jzj are quadratic odd nonlinearities.

5.8 Nonlinear state-space identi�cation
A nonlinear state-space model can be generally expressed in discrete-time form
as
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Figure 5.6: Multisine input spectrum with well-selected measurement (in black) and
detection (in grey) lines, and corresponding output spectrum where odd (in red) and
even (in blue) nonlinear distortions are quanti�ed and separated.

x(t + 1) = g(x(t); u(t); � )
y(t) = h(x(t); u(t); � )

(5.; )

where x(t) 2 Rn is the state vector at time t, u 2 Rq the input vector
at time t, y(t) 2 R` the output vector at time t, g : Rn � q� n � ! Rn and
h : Rn � q� n � ! R` two nonlinear functions, and n is the model order. The
vector � 2 Rn � contains the parameters of the model to be estimated. The
�rst relation in Equation ( 5.; ) is known as the state equation, and dictates the
dynamic evolution of the system. The second relation is the output equation,
which translates the current system state and input into measurable output
information.

5.8.3 The polynomial nonlinear state-space model struc-
ture

The nonlinear functions g, and h in Equation ( 5.; ) can, in principle, be ex-
panded using any basis functions. In this chapter, a polynomial representation
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Figure 5.7: Nonparametric analysis of the nonlinear distortions a�ecting the
Bouc�Wen system of Section 4.3. The RMS input amplitude is equal to (a) 1, (b)
10, (c) 25 and (d) 50 N. Output level at the measurement lines (in grey); odd distor-
tions (in red); even distortions (in blue); noise level (in black).

is adopted, following the original idea of [Paduart et al., 4232]. Polynomial ex-
pansions are attractive because they are simple, linear in their parameters, can
be easily extended to the multivariate case, and possess universal approximation
properties [Fliess and Normand-Cyrot,3;:4 ]. The large number of terms in the
polynomial nonlinear state space (PNLSS) models is one of their disadvantages.
The other one is that it is hard to �t PNLSS model to non-smooth functions of
saturation functions. Equation (5.; ) becomes

x(t + 1) = Ax (t) + Bu(t) + E� (x(t); u(t))
y(t) = Cx(t) + Du(t) + F � (x(t); u(t))

(5.32)

where A 2 Rn � n , B 2 Rn � q, C 2 R` � n and D 2 R` � q are the linear state,
input, output and feedthrough matrices, respectively. The vectors� 2 Rn � and
� 2 Rn � include all monomial combinations of the state and input variables up
to degreed. The associated coe�cients are arranged in the matricesE 2 Rn � n �

and F 2 R` � n � .
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The number of nonlinear terms in Equation (5.32) is [Paduart et al., 4232]
�

(n + q + d)!
d!(n + q)!

� 1
�

� (n + `) (5.33)

This number can be reduced by probing the signi�cance of each term in the de-
crease of the model error �t evaluated on validation data. In this respect, [Pad-
uart, 4229] introduced several parsimonious alternatives to Equation (5.32).
This includes considering nonlinear terms in the state equation only, disregard-
ing input variables in the monomial combinations, or selecting non-consecutive
polynomial degrees. These modelling strategies will be exploited in Section5.8.5
to avoid over�tting issues.

5.8.4 Identi�cation methodology
A two-step methodology was proposed in [Paduart et al.,4232] to identify the
parameters of the model structure in Equation (5.32). First, initial estimates of
the linear system matrices(A; B; C; D ) are calculated by measuring and �tting
the best linear approximation (BLA) of the system under test. Second, assuming
zero initial values for the nonlinear coe�cients in (E; F ), a full nonlinear model
is built using optimization.

5.8.4.3 Initial linear model

The BLA of a nonlinear system is de�ned as the linear modelGBLA (j! k )
which approximates best the system output in least-squares sense [Pintelon
and Schoukens,4234]. In general, it varies with the input frequency content
and RMS value. The BLA can be measured by conductingM experiments,
consisting each in applying a multisine excitation and collectingP steady-state
periods of input�output data [Schoukens et al., 4234]. In the single-input, single-
output case, the frequency response function (FRF) associated with them-th
experiment is obtained as the ratio

Gm (j! k ) =

1
P

PP

p=1
Ym;p (k)

1
P

PP

p=1
Um;p (k)

(5.34)

where Um;p (k), and Ym;p (k), are the discrete Fourier transforms (DFTs) of the
input u(t) and output y(t) acquired during the p-th period of the m-th exper-
iment, respectively. The BLA is calculated as an averaged FRF over experi-
ments, so that

GBLA (j! k ) =
1

M

MX

m =1

Gm (j! k ) (5.35)
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5.8 Nonlinear state-space identi�cation

A linear state-space model(A; B; C; D ) is �tted to the nonparametric mea-
surement ofGBLA (j! k ) in Equation ( 5.35) using a frequency-domain subspace
identi�cation method [McKelvey et al., 3;;8 ; Pintelon, 4224]. The quality of
the subspace model is evaluated through the weighted least-squares cost func-
tion

VL =
FX

k=1

� H
L (k)WL (k)� L (k) (5.36)

whereF is the number of processed frequencies,H denotes the Hermitian trans-
pose, andWL (k) is a weighting function. Note that the proper selection ofWL

is studied in Section 5.8.5. The model �tting error � L (k) is de�ned as the
di�erence

� L (k) = GL (j! k ) � GBLA (j! k ): (5.37)

The transfer function of the linear subspace model is constructed as

GL (j! k ) = C (zk I n � A) � 1 B + D (5.38)

where zk = ej (2 �k=N ) is the z-transform variable and I n 2 Rn � n an identity
matrix.

The subspace method of [McKelvey et al.,3;;8 ] generally yields a reason-
ably low value of the cost function VL . Minimising VL with respect to all
parameters in (A; B; C; D ) further improves the quality of the obtained linear
model. As shown in Section5.8.5, this also reduces its dependence upon an
algorithmic dimensioning parameter i , which sizes the data matrices processed
in the subspace identi�cation [Pintelon, 4224]. Moreover, the model order n
is, in practice, determined by carrying out the cost function minimization for
multiple n values, and retaining the model with the lowest validation �tting
error.

5.8.4.4 Full nonlinear model

The second step of the identi�cation methodology involves minimising a second
weighted least-squares cost function

VNL =
FX

k=1

� H
NL (k)WNL (k)� NL (k) (5.39)

where WNL (k) is a weighting function discussed in Section5.8.5. In Equa-
tion ( 5.39), the error measure� NL (k) is de�ned as

� NL (k) = YNL (k) � Y (k) (5.3: )

where YNL (k) and Y(k) are the modelled and measured output DFT spectra,
respectively. All parameters of the full nonlinear model (A; B; C; D; E; F ) are
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estimated by minimising VNL , starting from the linear system matrices obtained
in Section 5.8.4.3 (section Initial linear model) and zero initial values for the
nonlinear coe�cients.

Note that the minimization of the two cost functions in Equations 5.36
and 5.39 is performed in this work using a Levenberg�Marquardt optimization
routine, which combines the large convergence region of the gradient descent
method with the fast convergence of the Gauss�Newton method [Levenberg,
3;66; Marquardt, 3;85 ]. In this regard, technicalities related to the calculation
of the Jacobian of Equations (5.36) and (5.39) are elaborated in [Paduart et al.,
4232].

5.8.5 Identi�cation results
This section identi�es the Bouc�Wen system of Section 5.5 using a polynomial
nonlinear state-space model. A multisine excitation with all odd and even fre-
quencies excited in the5� 150 Hz band is applied to synthesise4 steady-state
periods of measurement. The input amplitude level is �xed to50 N RMS, which
leads to severe nonlinear e�ects, as visible in Figure5.7d. We stress the delib-
erate choice to select two di�erent input signals to perform the nonparametric
analysis of output distortions and the parametric modelling of input�output
data. In particular, a force spectrum including measurement and detection
lines was required to distinguish odd from even nonlinearities in Section5.7
(see Figure5.7), whereas a fully excited spectrum is utilized herein to capture
the system dynamics over the complete band of interest.

To calculate the BLA of the Bouc�Wen system, 4 data sets are gener-
ated, i.e. M = 4 , considering di�erent realizations of the multisine phases
and noise disturbances. The nonparametric estimateGBLA (j! k ) calculated
through Equation ( 5.35) is transformed into a linear parametric state-space
model (A; B; C; D ) by applying subspace identi�cation and subsequently min-
imising the cost function in Equation (5.36). The weighting function WL (k) is
chosen as the inverse of the total variance ofGBLA (j! k ) , hence encompassing
the variability caused by nonlinear and noise distortions. This choice comes
down to setting [D’haene et al., 4227]

WL (k) =
1

M (M � 1)

MX

m =1

jGm (j! k ) � GBLA (j! k )j2 : (5.3; )

Figure 5.8 depicts the minimised cost function VL versus the subspace dimen-
sioning parameteri . The cost function is normalized by the number of processed
frequenciesF = 1585, and is plotted for model orders2, 3, 4 and 5 using star,
rectangular, circular and triangular labels, respectively. It is observed thatVL is
virtually insensitive to i, and that the order 3 corresponds to the best trade-o�
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5.8 Nonlinear state-space identi�cation

between model accuracy and parameter parsimony. Note that, forn = 3 , the
minimum value of the cost function is obtained for i = 4 .

The nonparametric and parametric BLA of the system are presented in
Figure 5.9 in grey and blue, respectively. An accurate �t based on a model
of order 2 is achieved in Figure5.9a, except for frequencies lower than15 Hz.
In this region, the modelling error level displayed in red becomes substantially
larger than the total distortions level plotted in black. By contrast, selecting
n = 3 , as in Figure 5.9b, results in a perfect �tting throughout the input
band, con�rming the analysis of Figure 5.8. The need for a model of order3
is substantiated by recasting the Bouc-Wen dynamics of Equations (5.3) and
(5.: ) in the form
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Equation (5.42) shows that translating the Bouc-Wen equations in state space
requires the de�nition of 3 state variables. It should also be noted that the state
matrix A identi�ed for n = 3 possesses a pair of complex conjugate poles and
one real pole. The appearance in the �tted model of a real pole, i.e. pole with
zero frequency, is consistent with the de�nition of hysteresis as a quasi-static
phenomenon, as explained in Section5.3.

Final estimates of all nonlinear state-space parameters(A; B; C; D; E; F )
are obtained by minimizing the cost function VNL . A unit weighting WNL (k)
is applied in Equation (5.39), re�ecting that unmodelled dynamics, which are
assumed to be uniformly distributed in the frequency domain, dominate noise
disturbances. Figure 5.: plots the decrease of the RMS modelling error over
150 Levenberg-Marquardt iterations. This error is evaluated on a validation
data set generated considering the same excitation properties as for estimation
data. The converged value of the error for di�erent nonlinear models is given in
Table 5.5, together with their respective number of parameters. As a result of
the odd nature of the nonlinearities in Equations (5.: ) and (5.42), it is found
that introducing in the model even-degree monomials brings no decrease of the
validation error, con�rming the physical intuition gained in Section 5.7. The
most accurate state-space model reported in Table5.5 comprises odd monomials
up to degreed = 7 , for a total of 217 parameters. Note that all the models in
Figure 5.: and Table 5.5 do neither incorporate nonlinear terms in the output
equation, nor input variables in the monomial combinations, in accordance with
Equation (5.42).
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Figure 5.8: Cost function VL normalised by the number of processed frequencies F
and plotted versus the subspace dimensioning parameter i . Model order 2 (stars), 3
(rectangles), 4 (circles) and 5 (triangles).

The frequency-domain behaviour of the validation modelling error is studied
in Figure 5.; , where the output spectrum in grey is compared with linear and
nonlinear �tting error levels in orange and blue, respectively. Using monomials
of degrees2 and 3 in the state variables, as is the standard choice [Paduart
et al., 4232], reduces the linear error by a factor of20 dB, as visible in Fig-
ure 5.; a. A further decrease of10 dB is achieved by selecting monomials of
degrees3, 5 and 7, as in Figure 5.; b. It should be remarked that an exact
polynomial description of the nonlinearities j _yjz and _yjzj in Equation ( 5.: ) de-
mands, in principle, an in�nite series of terms, preventing the nonlinear errors
in Figure 5.; from reaching the noise level depicted in black. Increasing the
polynomial degreed to values higher than 7, though being manifestly possible,
was not attempted in this work to limit the computational burden involved in
the cost function minimization. Finally, the time-domain errors corresponding
to Figure 5.; b are depicted in Figure 5.32. The RMS values of the validation
output time history and of the linear and nonlinear errors are equal to0:66, 0:15
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Figure 5.9: Nonparametric (in grey) and parametric (in blue) BLA, modelling error
level (in red) and total distortions level (in black). (a) n = 2 and (b) n = 3 .
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Figure 5.: : Decrease of the RMS validation error over 150 Levenberg�Marquardt
iterations. Polynomial nonlinear state-space models of degree 2 (in orange), 2� 3
(in solid black), 2� 3� 4 (in dashed black), 2� 3� 4� 5 (in solid red), 2� 3� 4� 5� 6 (in
dashed red), 2� 3� 4� 5� 6� 7 (in solid blue), and 3� 5� 7 (in dashed blue).

and 0:01 mm, respectively. This graph nicely illustrates the important increase
of the identi�cation accuracy obtained by introducing nonlinear black-box terms
in the state-space modelling of hysteresis.

5.9 Model validation under sine-sweep excita-
tions

This �nal section investigates the domain of validity of the state-space models
�tted in Section 5.8.5 under sine excitation signals. In particular, a comparison
is made between the exact and reconstructed responses of the Bouc�Wen system
under various sine-sweep forcing levels. Figure5.33presents the relative error in
percent between the two responses for input amplitudes ranging from5 to 100N.
Four di�erent nonlinear state-space models are analyzed in this �gure, namely
comprising monomials of degree2 (in orange), 2� 3 (in black), 2� 3� 5 (in red)
and 2� 3� 5� 7 (in blue). The chosen input signals sweep the interval from20
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TABLE 5.5: RMS validation error for polynomial nonlinear state-space models of
various degrees together with their respective number of parameters.

Polynomial degree RMS validation error (dB) Number of parameters
2 � 85:32 34
2� 3 � 90:35 64
2� 3� 4 � 90:03 109
2� 3� 4� 5 � 94:87 172
2� 3� 4� 5� 6 � 94:85 256
2� 3� 4� 5� 6� 7 � 97:96 364
3� 5� 7 � 98:32 217

to 50 Hz at a linear rate of 10 Hz/min. Reconstructed outputs are simulated
in discrete time, with zero initial conditions, by evaluating Equation ( 5.32),
which are explicit relations in y(t). It is observed that, as the model complexity
increases, the prediction capabilities improve. The minimum relative error is
achieved for all tested models around40 N, reaching 2.9% in the case of the
2� 3� 5� 7 model. The model3� 5� 7 is more accurate than the more complex
model 2� 3� 4� 5� 6� 7 this is because of over-�tting. This e�ect that the more
(i.e. too) �exible model is less accurate is called over-�tting.

However, complex models are likely to become unstable when extrapolated
outside their �tting domain. This is visible for the blue and red models in
Figure 5.33, which do no longer predict bounded outputs for input levels higher
than 65 and 85 N, respectively. It is reminded that all models were estimated
using a multisine excitation with a RMS value equal to 50 N and all odd and
even frequencies excited in the5� 150 Hz band.

A frequency-domain error analysis is performed at40 N input level in Fig-
ure 5.34. The exact output spectrum is plotted in grey, and is compared with
the reconstruction error for the 2 (in red), 2� 3 (in black) and 2� 3� 5� 7 (in
blue) state-space models. The error is seen to decrease in the input band for in-
creasing model complexity. In the vicinity of the third harmonic around 120Hz,
the error similarly drops for higher polynomial degrees. Note that the cut-o�
frequency of 150 Hz of the multisine excitation under which the state-space
models were �tted is visible in the error plots of Figure 5.34.

5.: Conclusions
The purpose of the current chapter was to introduce a general framework to
identify hysteresis in dynamic systems. State-space models with polynomial
nonlinear terms were selected to support this framework. They are �tted to
data using a rigorous two-step methodology involving weighted least-squares
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Figure 5.; : Frequency-domain behaviour of the validation modelling error over the
input band, featuring the output spectrum (in grey), the linear (in red) and nonlinear
(in blue) �tting error levels, and the noise level (in black). (a) Monomials of degree 2
and 3 and (b) monomials of degree 3, 5 and 7.
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Figure 5.32: Time-domain behaviour of the validation modelling error for monomials
of degree3, 5 and 7, featuring the output time history (in black) and the linear (in
red) and nonlinear (in blue) �tting error levels.

minimisation. A numerical study was conducted to demonstrate the �tting ac-
curacy of the proposed approach. The identi�ed black-box models were also
found to be reasonably parsimonious, given that they require no a priori knowl-
edge about the observed hysteretic behaviour. This chapter paves the way for
addressing the experimental modelling of hysteresis featured in real applica-
tions, especially in the dynamics of jointed structures. However, in the case of
structures with multiple modes and multiple hysteretic components, the great
number of parameters involved in the construction of the multivariate polyno-
mials in Equation (5.32) may become a limitation. The recent contribution
by [Dreesen et al.,4237] proposes to prune the nonlinear model parameters in
state-space identi�cation by employing advanced tensor techniques. It speci�-
cally demonstrates that the functions � (x(t); u(t)) , and � (x(t); u(t)) , in Equa-
tion ( 5.32) can be replaced with decoupled polynomial representations. This
idea will be explained and applied in the next chapter. The idea is also applied
on benchmark data generated from the Bouc�Wen model.
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Figure 5.33: Relative error (in %) between the exact and reconstructed responses
of the Bouc�Wen system for sine-sweep forcing amplitudes ranging from 5 to 100 N.
Nonlinear state-space models with monomials of degree2 (in orange), 2� 3 (in black),
2� 3� 5 (in red), and 2� 3� 5� 7 (in blue).
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Figure 5.34: Exact output spectrum over 5� 200 Hz at 40 N sine-sweep level (in
grey) and reconstruction error for the 2 (in red), 2� 3 (in black) and 2� 3� 5� 7 (in
blue) nonlinear state-space models.

85





Chapter 6

Simplifying the nonlinear
state space structure using
decoupling method

Recent work on black-box polynomial nonlinear state-space modelling for hys-
teresis identi�cation has provided promising results, but struggles with a large
number of parameters due to the use of multivariate polynomials. This draw-
back is tackled in this chapter by applying a decoupling approach that results
in a more parsimonious representation involving univariate polynomials. This
work is carried out numerically on input-output data generated by a Bouc-Wen
hysteretic model. This chapter discusses the polynomial decoupling approach
and explores the selection of the number of univariate polynomials with the
polynomial degree. We have found that the presented decoupling approach is
able to reduce the number of parameters of the full nonlinear model up to about
72%, while maintaining a comparable output error level.

Starting from the previous chapter, a decoupling procedure is applied that
expresses the nonlinear part of the state-space model using univariate (one-to-
one) polynomials in linear combinations of states and inputs. The decoupling
method that is used here is adopted from [Dreesen et al.,4237] and uses the
canonical polyadic decomposition (CPD) of a three-way tensor [Carroll and
Chang, 3;92 ; Harshman, 3;92 ; Kolda and Bader, 422; ]. This decoupled repre-
sentation is able to reduce the number of parameters signi�cantly, and results
in an interpretable model [Fakhrizadeh Esfahani et al.,4239]. For the identi-
�cation of the model we use input and output data generated by a Bouc-Wen
hysteresis model [Bouc,3;89 ; Wen, 3;98 ; Noºl et al., 4239], which were pro-
vided in the recent nonlinear system identi�cation benchmark challenge [Noºl
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and Schoukens,4238]. In this chapter, an algorithm is presented that manages
to �nd decoupled models having a smaller rms error than that of the full PNLSS
model. Also an additional approach is presented to start from a lower degree
decoupled model and reach a higher degree decoupled model. The focus is solely
on parameter reduction and not on the interpretation of the decoupled models.

In Chapter 5 the PNLSS model is identi�ed successfully for a hysteresis
system, But the number of parameters in this model is large. So the user is
forced to keep the nonlinear degree low. Instead of increasing the degree of the
nonlinearity (fast growing number of parameters), followed by a pruning step, an
alternative approach is proposed that is based on the retrieval of the underlying
structure. We start with a PNLSS model with all terms active. For keeping
the model simple and informative we used4-5 degree of nonlinearity. Then a
decoupling polynomial method is used to �nd a basis, such that the multivariate
polynomials can be replaced by a number of univariate polynomials in parallel.
In this new basis, we can increase now the degree at a much lower cost.

This chapter is organized as follows. In Section6.3 the PNLSS structure and
the identi�cation method are introduced. Section 6.4 discusses the decoupling
procedure. In Section6.5 the results are presented and a variation of the PNLSS
model is used to get a better model, faster and more e�ciently. Section6.6 is
devoted to conclusions and future work.

6.3 Nonlinear state-space modeling
In this section, nonlinear state-space modelling is introduced. The polynomial
nonlinear state-space (PNLSS) model structure is introduced in Section6.3.3.
The PNLSS identi�cation algorithm is explained brie�y in Section 6.3.4.

6.3.3 Polynomial nonlinear state-space (PNLSS) models
In this chapter, we only consider single input single output (SISO) systems. For
a SISO system the polynomial nonlinear state-space model is

x(t + 1) = Ax (t) + bu(t) + E � (x(t); u(t)) ;

y(t) = cT x(t) + du(t) + f T � (x(t); u(t)) (6.3)

where u(t) 2 R, y(t) 2 R and x(t) 2 Rn are the input, output and state vector
at time instance t, respectively. The linear part of the state-space model is
composed ofA 2 Rn � n (the state transition matrix), b 2 Rn , c 2 Rn , and d 2 R.
The vectors � (x(t); u(t)) 2 Rn � and � (x(t); u(t)) 2 Rn � contain all possible
monomials in the states and input of degrees two up tod (the linear terms are
already captured by the linear state-space part). The matrix E 2 Rn � n � and
the vector f 2 Rn � contain the corresponding polynomial coe�cients. As an
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illustration, for a second-order system with one input the monomials of degree
two are

� (x; u) = � (x; u) =
�
x2

1 x1x2 x1u x2
2 x2u u2

� T
: (6.4)

It can be shown that the total number of nonlinear monomials is given by
[Paduart et al., 4232]

�
(n + 1 + d)!
d!(n + 1)!

� n � 2
�

(n + 1) : (6.5)

6.3.4 PNLSS identi�cation algorithm

The identi�cation algorithm of PNLSS is discussed in Chapter 5 in details,
however this algorithm is explained brie�y here.

The polynomial nonlinear state-space identi�cation algorithm is introduced
in [Paduart et al., 4232] and further developed by [Van Mulders and Vanbeylen,
4235; Van Mulders et al., 4234; Paduart et al., 4228; Marconato et al., 4236].
The algorithm is explained in details in [Paduart, 4229; Paduart et al., 4232].
Here the procedure is introduced brie�y.

3. Calculate the best linear approximation (BLA) ĜBLA from the input-
output data and its total covariance �̂ GBLA using robust method [Pintelon
and Schoukens,4234; Schoukens et al.,422: ].

4. From ĜBLA , �̂ GBLA , and by using a linear subspace identi�cation [Pin-
telon, 4224; Van Overschee and De Moor,4234; McKelvey et al., 3;;8 ]
method, �nd an initial estimate for A, b, c, and d.

5. The parametersA, b, c, d, E , and f are calculated by Levenberg-Marquardt
optimization algorithm [Levenberg, 3;66],[Marquardt, 3;85 ] by minimiz-
ing the (weighted) mean-square output error.

6.4 Parameter reduction by decoupling

6.4.3 Decoupled nonlinear state-space

The number of parameters in the full polynomial nonlinear state-space model
given by (6.5) can become very large for large model ordersn and/or large
nonlinear degreesd.

The polynomial nonlinear state-space can be simpli�ed signi�cantly by ro-
tating the states and inputs. Indeed, often it is possible to �nd a new set
of linearly transformed states and inputs in which the nonlinear part can be
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Figure 6.3: The concept of decoupling the model. A multivariate polynomial vector
function is decomposed into a linear transformation V , followed by a set of parallel
univariate polynomials g1 ; : : : ; gr , and another linear transformation W .

expressed in terms of only a few univariate polynomials. The decoupled poly-
nomial nonlinear state-space model is as follows

x(t + 1) = Ax (t) + bu(t) + Wx g
�

V T

�
x(t)
u(t)

��
;

y(t) = cT x(t) + du(t) + wT
y g

�
V T

�
x(t)
u(t)

��
; (6.6)

where Wx and wT
y represent the linear transformations for transforming the

nonlinear univariate polynomial functions in the PNLSS equation and V is
the transformation matrix for transforming states and inputs (see Figure 6.3).
The system of multivariate polynomials f (s) with inputs s1; s2; � � � sn +1 is trans-
formed into the new representation which is composed of a linear transformation
matrix V T , r branches of univariate polynomialsg1(~s1); � � � ; gr (~sr ), and a linear
transformation matrix W to transform back to the original output space.

6.4.4 Decoupled nonlinear state-space model identi�ca-
tion algorithm

An initial decoupled model can be found from the canonical polyadic decompo-
sition of the Jacobian of the multivariate functions in the PNLSS model. The
parameters of this initial decoupled model then can be further optimized using
Levenberg-Marquardt optimization. The following steps present the detailed
algorithm:

3. The Jacobian of the polynomial vector function f (s) is evaluated in a set
of N sampling points s(k ) , for k = 1 ; 2; : : : N , which are drawn from a
standard random normal distribution, or points along the trajectory (see
Section 6.5.6).
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4. The Jacobian matrices are stacked into an(n + 1) � (n + 1) � N tensor
(see the Figure in step6.). We have thus

J ijk =
@vi (s(k ) )

@sj
: (6.7)

5. Estimate the rank r of tensor J ijk . This is done by scanning a number
of candidate values forr and selecting the one for which the approxima-
tion error of the CPD is su�ciently small. The rank r corresponds to
the number of branches. In the exact case, assuming that an underlying
decomposition exists and is su�ciently generic (see [Dreesen et al.,4237]),
the decoupling task has a unique solution if

n2(n2 � 1) � 2r (r � 1): (6.8)

6. The tensor J is decoupled using the canonical polyadic decomposition as
follows (see the �gure below)

J ijk �
rX

` =1

wi` vj` hk` ; (6.9)

whereW and V are CPD factors andhk` = g`
0(~s(k )

` ) is the derivative of the
univariate function g` evaluated in sampling points ~s(k )

` , for k = 1 ; : : : ; N .

7. For the ` th branch g0
` (~s` ), we solve the following polynomial �tting

2

6
6
6
6
4

(~s(1)
` )1 (~s(1)

` )2 � � � (~s(1)
` )d� 1

(~s(2)
` )1 (~s(2)

` )2 � � � (~s(2)
` )d� 1

...
...

(~s(N )
` )1 (~s(N )

` )2 � � � (~s(N )
` )d� 1

3

7
7
7
7
5

2

6
6
6
4

c0
`; 1

c0
`; 2
...

c0
`;d � 1

3

7
7
7
5

=

2

6
6
6
4

h1`

h2`
...

hN`

3

7
7
7
5

; (6.: )
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leading to the coe�cients of g0
` . The constant term is not considered. The

symbolic integration

g` (~s` ) =
Z

g0
` (~s` )d~s` ; (6.; )

determines the functions g` up to the correct value of the integration
constants.

9. This algorithm, till this point gives an initialization for the decoupled
model. If this initial decoupled model encounters stability problems during
further optimization when it is plugged into the PNLSS model structure,
it is needed to initialize the optimization algorithm from a stable linear
model. This initial model then still contains the univariate polynomial
coe�cients (coe�cients of g` (~s` ) in (6.; )) and the matrix V , but the
matrix W is set to zero to make the output of the nonlinear part in this
initial decoupled model zero.

: . We use the Levenberg-Marquardt optimization algorithm to minimize the
(weighted least square (WLS)) output error, initialized with this model.
The decoupled model is iterated until the optimal solution is obtained.

; . Go to step 3 and regenerate another set of random points. Try several
times and select the model which gives the minimum amount of error on
the validation data set among all candidates.

The obtained model has ((n + 1) r + ( n + 1) r + r (d � 1) = (2 n + d + 1) r ) pa-
rameters corresponding to nonlinear terms. It is worth mentioning two bene�ts
of this approach:

ˆ The number of parameters increases linearly with the degree of nonlin-
earity ( d), which is in contrast to the combinatorial increase in the full
polynomial state-space approach.

ˆ The reduction of the number of estimated parameters allows for the ability
to increase the degree of the nonlinearity in the estimated model.

6.4.5 Comparison with neural network
According to the theorem of Weierstrass (see [Courant and Hilbert,3;88 ] Vol.
3 page 87) every continuous function can be approximated arbitrarily well by
polynomials on a closed and bounded interval. Parameters of nonlinear models
expressed by polynomials can be optimized e�ectively. One drawback of using
polynomials is the high orders for approximating some functions which is not
the case in this study where the maximum order of polynomials is11. We
decided to stop at degree33, since as we will see later on, from this degree on,
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there are indications of over�tting of the models. Another drawback is their
poor extrapolation ability. The latter disadvantage of using polynomials is not
the case for neural networks, however, neural networks have intrinsically the
problem of local minima trap [Janczak, 4226]. In the full PNLSS model, the
estimation of the polynomial coe�cients is nonlinear in the parameters, and
is hence also sensitive to local minima. In the estimation of the derivatives of
the univariate functions g` (6.: ), the polynomial model can be expressed as
one that is linear in the parameters. Although the tensor decomposition in
(6.9) is nonlinear in parameters, it helps that the problem is multilinear in the
parameters.

It worths mentioning that, in [Bittanti and Picci, 3;;8 ], localizing the non-
linearity in the neural network models, is mentioned as a positive point, which
is not the case for hysteresis system.

The similarity between the PNLSS models (full and decoupled) and neural
networks approaches is that they are typically black-box approaches. In [Xie
et al., 4235], however, the hysteresis Bouc-Wen model is discretized, and based
on this model a neural network is designed to estimate the Bouc-Wen param-
eters. Because the underlying system equations are used, this approach seems
to be a grey-box approach which is not comparable with the current black-box
approaches.

6.5 Results
In this section, the excitation and technical settings are de�ned, and results are
explained and compared to some other studies that have been done.

6.5.3 The excitation signal
For exciting the system a few points are taken into account.

ˆ To be able to capture at least the 3rd order nonlinearity (the highest
polynomial degree in the identi�ed full PNLSS model is three), the high-
est excitation frequency is selected to be at least three times as large as
the resonance frequency (The resonance frequency can be estimated by a
simple swept sine experiment).

ˆ The test duration is set by the frequency resolution.

ˆ To avoid extrapolation problems in the estimated model, the amplitude
(rms level) of the input signal is slightly higher in the training set than in
the test set.

For these reasons a random phase multisine [Pintelon and Schoukens,4234] with
the following property is chosen for the excitation. The standard deviation of
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the training multisine data is 55 N and the standard deviation of the test data
is 50 N. The training signal consists of5 periods of a multisine and has a total
length of 40960 (= 5 � 8192) samples. The �rst two periods of this signal
were removed to eliminate transient. The random-phase multisine is generated
through the following equation

u(t) = N
� 1

2
s

N s
2 � 1X

k= � N s
2 +1

Uk ej (2 �k f s
N s

t + � k ) (6.32)

where Uk is the amplitude of each frequency linek. The phases� k are chosen
randomly and uniformly from the interval [� �; � ). Furthermore, Ns is the
number of time samples per period and is equal to8192, f s is the sampling
frequency which is750Hz, and j is the imaginary unit. Here the amplitudes Uk

in the excited frequency band are equal. By increasing the number of frequency
lines the distribution of this signal approaches to a Gaussian distribution. The
frequency band of excitation is [5 � 150] Hz.

Moreover, a swept-sine test dataset is available with a sweep from20 to
50 Hz at a rate of 10 Hz per minute [Noºl and Schoukens,4238].

6.5.4 Decoupled models
The system is excited with the signal which is generated with the properties
mentioned in Section 6.5.3. The input/output data is collected. The PNLSS
model is estimated with quadratic and cubic nonlinearities in the state equation.
The quadratic and cubic nonlinearities (4-5) have the ability to capture the odd
and even nonlinearities quite well. And also by increasing the nonlinearity the
number of monomials in the PNLSS model will be very high. The Jacobian
matrix of E � (x; u) is evaluated at N = 500 points. The rank of the Jacobian
tensor J ijk is estimated by the rankest command of the Tensorlab toolbox
[Vervliet et al., 4238]. It calculates the rank of the tensor which is de�ned as
the minimum number of rank-one tensors that generate the tensor as their sum
[Kolda and Bader, 422; ]. This rank is estimated to be 6. It suggests to check
all possible number of branches up to6. The maximum degree of univariate
polynomials is checked from2 to 11. All these possible models are re-estimated
5 times with di�erent random grid points for Jacobians. The generated models
are tested on the test data.

6.5.4.3 Overview of all decoupled models

Figure 6.4 shows the rms error (in dB) of all generated decoupled models vs.
the order of the decoupled univariate polynomials on the multisine test data.
Figure 6.5 shows a similar plot for the swept-sine test data. For each decoupled
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model all 5 estimated models are depicted with a marker. The minimum of each
group of �ve trials are connected with a line for models with the same number
of branches. As a reference, the error of the full PNLSS model is shown with
a dashed line. From Figure6.4 it can be observed that the rms error for all
decoupled models with2nd order univariate polynomials is 20 dB larger than
that of the full PNLSS model. The one branch decoupled model converges to
a �xed error level which is about 10 dB higher than the PNLSS error. The
decoupled model with 4 branches shows a slightly better error than the one
branch model and converges to an rms error that is about4 dB larger than that
of the full PNLSS model. Models with 5 branches up to8 branches and7th to
33th order of polynomials show the error near the PNLSS error. Among these
models the 5-branch model with 10th order of nonlinearity with 51 nonlinear
terms gives an error signi�cantly fewer than PNLSS error especially for the
multisine (see Figure 6.4), although this model shows a great variation from
one trial to the other. This model is the best model, but largely depends on the
CPD initialization which depends on the choice of points where the Jacobians
are calculated (see Section6.5.6). It is worth to mention that this model is
comparable to PNLSS models of nonlinear order of2 � 3 � 4 � 5 � 6 � 7 and
3 � 5 � 7 (Table 5.5 in Chapter 5) where they are the best model of that
work, but with 364and 217parameters, respectively. All the decoupled models
with polynomials of order 11 show higher error than PNLSS. It seems from
this model order that the decoupled model starts to over�t. This is the reason
why we limited the polynomial degree to 33. This is especially pronounced in
Figure 6.5.

The decoupling approach in one way limits the complexity of the model,
i.e. the decoupled model has less parameters. This leads to a lower variance
on the parameters and can be interpreted as a regularization e�ect. On the
other hand decoupling increases the �exibility of the model to capture more
severe nonlinearities since the polynomial degree in the decoupled model can be
increased without the drawback of an explosion of the number of parameters as
would be the case for the full PNLSS model. It thus seems that the absolute
value nonlinearities can be better captured with the decoupled model.

The same information is shown in Figures6.6 and 6.7, but in a di�erent
way. The horizontal axis shows the number of nonlinear terms in a logarithmic
scale. The decreasing trend in the error of decoupled models is quite obvious.
In Figure 6.6, models with less than 64 parameters have a higher error than
the full PNLSS model. From 64 parameters onwards (5-branch model with 7th

order nonlinearities), we see that the decoupling approach reduces the number of
parameters signi�cantly (the full PNLSS has ;2 nonlinear parameters), while
most decoupled models still have enough �exibility to capture the behaviour
of the system. From 76 parameters onwards, the decoupled models are more
�exible and they all have an error comparable to that of the full PNLSS model.
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Figure 6.4: The rms error (in dB) on the multisine test data of all candidate models
with di�erent number of branches and di�erent order of nonlinearity in univariate
polynomial branches. 1b; 2b; � � � 6bstand for 1; 2; � � � 6 branches. The best decoupled
model has 5 branches and 10th order of nonlinearity, and achieves a signi�cant error
reduction compared to the full PNLSS model.

From this �gure, all 2nd order models have nearly the same error. The rms
error for the estimated linear model is � 76 dB which means the 2nd order
model has the same error level as the linear model. This fact reminds that the
system has a signi�cant odd nonlinearity (see Chapter5). The systems with
2 branches and with nonlinear order higher than2 are stagnated at � 91 dB,
without any signi�cant improvement. This happens also for 3-branch models
with nonlinear order higher than 2. They stagnated around � 85 dB. It can
be seen that some models have the same number of parameters and the same
error level, but a di�erent number of branches and order of nonlinearity. For
example, a 8-branch model with 3rd order nonlinearity has the same number
of parameters and error level as a6-branch model with 4th order nonlinearity.
Similarly, a 7-branch model with 3rd order nonlinearity and a 4-branch model
with 6th order nonlinearity have the same number of parameters and error level.

It is worth mentioning that the user should make a trade-o� between pre-
cision and complexity. From Figure 6.7, it is seen that the user has plenty of
models which can be selected based on the rms error and complexity of the
model.
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Figure 6.5: The rms error (in dB) on the swept�sine test data of all candidate models
with di�erent number of branches and di�erent order of nonlinearity in univariate
polynomial branches. 1b; 2b; � � � 6b stand for 1; 2; � � � 6 branches. Also for the
swept-sine test data, to obtain an error less than or similar to the full PNLSS model,
the decoupled model needs at least5 branches and 7th order of nonlinearity.

6.5.4.4 Result of the selected model

Among all of these models the results of the decoupled model with the minimum
amount of rms error in the test data (obtained for a model with 5 branches and
10th order of nonlinearity) is shown in Figures 6.8, 6.9, and 6.: . The output
spectrum of the multisine test data is plotted in Figure 6.8 together with the
output error spectra of the linear, full PNLSS, and decoupled PNLSS models.
The PNLSS error shows a signi�cantly higher error at higher frequencies than
that of the decoupled model. The PNLSS and decoupled model have a20 dB
lower error around the resonance frequency than the linear model. The decou-
pled model has even lower error than the PNLSS model in the higher frequency
part of the spectrum (higher than the resonance frequency). The time series
of the output error of the three models (linear, PNLSS, and decoupled model)
is plotted in Figure 6.9 for the swept-sine test data. The full and decoupled
PNLSS model have a lower error than the linear model, especially around the
resonance frequency, which in the swept-sine data is reached after about32222
samples.

The decoupled model’s univariate polynomials are shown in Figure6.: . Al-
though the univariate polynomials look very smooth, the polynomials from the
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Figure 6.6: The minimum rms error (in dB) on the multisine test data of all can-
didate models with di�erent number of branches and di�erent number of parameters
in the decoupled model (the scale of horizontal axis is logarithmic). 1b; 2b; � � � 6b
stand for 1; 2; � � � 6 branches. The black star in the far right shows the number of
parameters of the PNLSS model (;2 parameters). A signi�cant parameter reduction
can be achieved with a (su�ciently �exible) decoupled model while maintaining or
even improving on the rms error of the full PNLSS model.

CPD may show some outliers. In other words there would be some points far
from the cluster of other points. The drawback of using polynomials is their
’explosive’ behaviour outside the domain where they were estimated. In future
works we will consider the use of other basis functions, such as splines, neural
networks [Marconato et al., 4236], or sine functions [Svensson and Schön,4239].
There are also some works with di�erent basis functions such as reproducing
kernels [Tobar et al., 4237] and radial basis functions (RBFs) [Ghahramani and
Roweis,3;;; ; Frigola et al., 4236].

6.5.5 Comparing with other methods
As a summary for comparing this approach with other approaches that were
tested on the same test data, all the approaches are reported in the Table6.3.
In this table, all the methods which are applied to the same generated data
from the Bouc-Wen benchmark model, are compared. The reference column
refers to the article which explains the method and reports the results on the
data. Here these methods are explained brie�y.

ˆ In [Münker et al., 4239] the local model network (a local linear neuro-fuzzy
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Figure 6.7: The minimum rms error (in dB) on the swept�sine test data of all can-
didate models with di�erent number of branches and di�erent number of parameters
in the decoupled model (the scale of horizontal axis is logarithmic). 1b; 2b; � � � 6b
stand for 1; 2; � � � 6 branches. The black star in the far right shows the number of
parameters of the PNLSS model (;2 parameters). A signi�cant parameter reduction
can be achieved with a (su�ciently �exible) decoupled model while maintaining or
even improving on the rms error of the full PNLSS model.

model) is used. The network structure of a local linear neuro-fuzzy model,
which is a black box model, is composed of a number of neurons. Each
neuron has a local linear model (LLM ) and a validity function ( � i (M )).
The output of the local linear model of the i th neuron is

ŷi = wi 0 + wi 1u1 + wi 2u2 + � � � + wip up (6.33)

where wij is the j th parameter of the LLM of the neuron i . The validity
functions � i (�) are usually normalized Gaussian functions. The output of
the local linear neuro-fuzzy model is

ŷ =
MX

i =1

(wi 0 + wi 1u1 + wi 2u2 + � � � + wip up)
| {z }

ŷ i

� i (u) (6.34)

Therefore the network’s output is a weighted sum of the outputs of the lo-
cal linear models. The� i (�)s are the operating point dependent weighting
factors [Nelles,4235].
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Figure 6.8: The spectrum of output error on the multisine test data of the selected
decoupled model (in cyan) with 5 branches and nonlinear degree up to32, the polyno-
mial nonlinear state-space (PNLSS) model’s output error (in red), the linear model’s
output error (in green), and true output (in blue). The best decoupled model achieves
its better performance compared to the full PNLSS model mainly at the higher fre-
quencies.

ˆ [Westwick et al., 4239] uses a black-box polynomial NARX model

y(t) =
KX

k=1

 k � k (u ; y ) + e(t) (6.35)

where � k (u ; y ) are monomial functions of the current and past inputs (u )
and past outputs (y ), and  k are the coe�cients and e(t) is an IID noise
sequence.
By using the method of [Dreesen et al.,4237] a decoupled polynomial
NARX model

y(t) =
RX

r =1

gr

�
vT

r

�
u
y

��
(6.36)

is estimated, wheregr are univariate polynomials, R is the number of
branches,vr is the matrix of linear transformation of the inputs and out-
puts.

ˆ A continuous time output error method (OEM) is used in [Brunot et al.,
4239] to identify the hysteretic data. The method is inspired from [Jate-
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gaonkar, 4228]. The system unknown parameters�̂ are tuned in a way
that the measured output y and the simulated model output ys are �tted
based on a minimization criterion. The Nelder-Mead simplex approach is
used to solve the minimization problem.

ˆ In [Belz et al., 4239] applies di�erent variations of the black-box approach
introduced in �rst item in Section 6.5.5.

ˆ The Bouc-Wen’s internal state model (Equations (5.3) and (5.5)) is re-
placed with a new linear parametric model

z(y; _y) = �y (t) + � _y(t) (6.37)

where

� =
9� 2"

32A2� + 9 � 2 (6.38)

� =
12A��"

! (32A2� 2 + 9 � 2)
(6.39)

where " = � � �� , and � = � . By using a covariance driven stochas-
tic subspace identi�cation algorithm (COV-SSI) [Peeters and De Roeck,
3;;; ]. This linearized parametric identi�ed model is used to predict the
hysteretic data.

ˆ The approach of [Gaasbeek and Mohan,4238], is based on the identi�ca-
tion of the Duhem model from the hysteretic data.

ˆ The approach which is used by [Schoukens and Griesing Scheiwe,4238], is
based on estimating a feedback model according the hysteretic data. This
feedback model is composed of a linear system blockG(q) in the feedfor-
ward path and a nonlinear system blockf (y) model in the feedback path.
The nonlinear system in the feedback path can be a static polynomial
nonlinearity and also a truncated Volterra series.

Considering all above mentioned methods and their results in Table6.3, the
current method has a very low error, with an acceptable number of parameters
to estimate.
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Figure 6.9: Time series of the output response error of the linear system (in green),
PNLSS model (in red), and the decoupled model (in cyan) with 5 branches and non-
linear degree up to 32, on the swept�sine test data. The frequency band of input
swept�sine is [20� 50] Hz. The natural frequency of the system is 35:59 Hz [Noºl and
Schoukens, 4238]. The full and decoupled PNLSS model can signi�cantly improve
on the linear model’s prediction of the output to a swept sine, especially around the
resonance frequency.
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6.5 Results

Figure 6.: : Three univariate polynomials in the decoupled model. The dots indicate
the points where these polynomials were evaluated during the �ltering on the multisine
test data. ’Explosive’ behaviour of the polynomials is avoided here by training the
model on data with a slightly larger excitation amplitude than the test data.

:3



C
hapter

6:S
im

plifying
the

nonlinear
state

space
structure

using
decoupling

m
ethod

Table 6.3: Overview of other approaches that were tested on the same Bouc-Wen benchmark.

Error (dB) Error (dB) reference commentfor multisine for swept-sine
circa -97 circa -97 [Münker et al., 4239] local FIR
circa -8: circa -92 [Münker et al., 4239] ARX
-:6 .5 -;5 .: [Westwick et al., 4239] 98 parameters
-68.82 -96.83 [Brunot et al., 4239]
-97.95 -99.42 [Belz et al., 4239]
-:4 .27 -9; .39 [Bajri¢, 4238]

-:8 .24 [Gaasbeek and Mohan,4238]
-:3 .73 -:7 .25 [Schoukens and Griesing Scheiwe,4238]

-;6 .78 -;: .62 This full PNLSS
chapter ;2 parameters

-;9 .69 -;; .26 This Decoupled PNLSS
chapter 73 parameters
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6.5.6 Some technical issues
Two possible alternatives were tried in the decoupling algorithm presented in
Section 6.4.4, but the results were not satisfactory.

The �rst alternative is related to the �rst step in the decoupling algorithm.
Instead of evaluating the Jacobian in random sampling points, the sampling
points were drawn from the states and input of the full PNLSS model. In-
tuitively, this strategy tries to make the approximation of the multivariate
polynomial with the decoupled polynomials as good as possible in (some of)
the samples where the full polynomial is evaluated. But the performance of
the decoupled models in this case was not satisfactory. The rms errors ranged
from � 85:20 dB to � 88:76 dB in 7 trials, which is signi�cantly higher than the
� 94:56 dB rms error of the full PNLSS model and the rms errors ranging from
� 97:47 dB to � 84:18 dB of the decoupled models obtained after evaluating the
Jacobian in random sampling points (see also Figure6.4).

The second alternativeis related to the observation that the decoupled5-
branch models with 10th order nonlinearities can perform very well (the best
model has � 97 dB error on the multisine test data), but also quite poor (the
worst model has about � 84 dB error). The 5-branch models with 3rd order
nonlinearities don’t have so much variability on the error (best: � 90 dB, worst:
� 87 dB). In the second alternative, the 5-branch models with 10th order nonlin-
earities were initialized from the 5-branch models with 3rd order nonlinearities,
i.e. with the higher-degree coe�cients initialized as zeros. With this approach,
however, the models got stuck in a local minimum with an error close to that
of the initial 5-branch models with 3rd order nonlinearities.

6.6 Conclusion and future work
In this chapter, an algorithm was proposed to decouple the polynomial state-
space model. We found that decoupling a full PNLSS model was able to reduce
the number of model parameters, while maintaining a comparable error level.
Several models of di�erent orders were found that could achieve error levels
comparable to (and even smaller than) those of the full PNLSS model. The
decoupled model showed an acceptable behaviour, not only on the multisine
test data set (the training data set also consisted of multisine data), but also
for the swept-sine class of test data. As a future work, it worths to look for
a process to select the best model out of all possible candidates. The physical
interpretability would be non-ignorable subject to follow.
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Chapter 7

Nonlinear feedback
distinguishability

7.3 Introduction

In this work, the realizability of the sub-blocks in a nonlinear feedback system
is assessed. The nonlinear feedback system under study consists of a Wiener-
Hammerstein branch in the feedforward path, and a linear block in the feedback
path. The uniqueness of this representation with respect to input/output data
is studied. Under the assumption that all blocks in the model are causal and
stable, it is examined whether or not it is possible to obtain a di�erent model
representation with the same input/output behaviour.

Let’s make the following experiment. Put the system in a box having, only
access to the input and the output. It is a nonlinear feedback with one branch
in feedforward and one branch in feedback. Can we determine if the nonlinear
block is in the feedback or the feedforward branch? The answer is no [Schoukens
et al., 422: ]. In this chapter, the answer is re�ned by imposing that the LTI
blocks should be causal and stable. But even then, there are situations where
it is impossible to tell if the nonlinearity is in the feedback or feedforward.

7.4 Preliminaries

According to [Schoukens et al.,422: ] there are two dual nonlinear feedback
systems with a Wiener-Hammerstein branch, see Figs.7.3 and 7.4, that have
the same input/output behaviour, if the blocks in these two structures are
related as [Schoukens et al.,422: ]:
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Figure 7.3: Feedback structure, nonlinearity in the feedforward path ( ~S0 , ~R0 , and
~G0 are linear dynamic systems, ~f 0 is a static nonlinear system).

~f 0 = f � 1
0 (7.3)

~G0 = G� 1
0 (7.4)

~S0 = S� 1
0 (7.5)

~R0 = R� 1
0 : (7.6)

In this research, the case where there is a nonlinear block both in the feed-back
and feedforward branch is not studied.

When identifying the model from measured input/output data, one can
freely choose between both model structures. In [Schoukens et al.,422: ], an
identi�cation procedure is provided for the representation with the nonlinearity
in the feedback path. If a physical interpretation is desired, a unique structure
is needed, and thus additional assumptions or prior knowledge (e.g. all the
blocks in the model are stable and causal) should be provided.

For example, the blocks ~R0, ~S0, and ~G0 can either be minimum/non-minimum
phase or stable/unstable. According to Equations (7.3)-(7.6) the blocks R0; S0;
and G0 in the dual feedback structure will be stable/unstable or minimum/non-
minimum phase respectively. In order that both the representations in Figs.7.3
and 7.4 are realizable with stable blocks,R0, S0, G0, and R̂0, Ŝ0, Ĝ0, should
be stable and minimum phase.

When ~G0 is non-minimum phase (and thusG0 is unstable), it can be assumed
there is an internal feedback aroundG0 that can stabilize G0. This internal
feedback is created by shifting some of the dynamics (namely�R 0S0) from the
feedback to the feedforward path (see Fig. 7.5). The resulting feedforward
dynamics are given by:
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Figure 7.4: Feedback structure, nonlinearity in the feedback path ( S0 , R0 , and G0

are linear dynamic systems, f 0 is a static nonlinear system).

~~G0 =
G0

1 + �R 0S0G0
(7.7)

and the resulting nonlinearity in the feedback is:

~~f 0 (x) = f 0 (x) � �x (7.8)

Note that for � = 0 the representation in Fig. 7.4 is obtained.
The following abbreviations are adopted in this chapter.
If

G (q) =
NG

DG
=

bG qm + bm � 1qm � 1 + � � � + b1q + b0

qn + an � 1qn � 1 + � � � + a1q + a0
with bG 6= 0 (7.9)

NG the numerator polynomial of G
DG the denominator polynomial of G
m the degree of the numerator polynomial ofG
n the degree of the denominator polynomial ofG
degfg degree of a polynomial
q is the forward shift operator (qu(t) = u(t + 1) )

7.5 Problem formulation
The problem considered in this work, is to �nd under which conditions on the
blocksR0, S0, G0, and f 0, the representation of the feedback structure is unique,
given that all blocks should be stable and causal.
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Figure 7.5: Feedback structure, nonlinearity in the feedback path, with some dy-
namics shifted to the feedforward path ( ~~G0 = G 0

1+ �R 0 S0 G 0
and ~~f 0 (x) = f 0 (x) � �x ).

Remark 7.3. It should be noted that if a representation with a nonlinearity in
the feedback path (see Fig.7.5) is realizable, then in�nitely many possibilities
exist for the blocks ~~G0 and ~~f 0, just by varying the value of � . Similarly, if
a representation with a nonlinearity in the feedforward path (see Fig. 7.3) is
realizable, then in�nitely many possibilities exist for ~G0 and ~f 0. The uniqueness
that we investigate is thus with respect to the model structure (nonlinearity in
the feedback or feedforward path) and not with respect to the individual blocks.

Throughout this chapter, we assume that all linear blocks are discrete-time
transfer functions.

Assumption 7.4. G0, R0, and S0 are discrete-time transfer functions: G0 (q) =

bG0

m G 0Q

i =1

(q� zG 0 ;i )
n G 0Q

i =1

(q� pG 0 ;i )
, R0 (q) = bR 0

m R 0Q

i =1

(q� zR 0 ;i )
n R 0Q

i =1

(q� pR 0 ;i )
, and S0 (q) = bS0

m S 0Q

i =1

(q� zS 0 ;i )
n S 0Q

i =1

(q� pS 0 ;i )
with

bG0 6= 0 , bR 0 6= 0 , and bS0 6= 0 , and where q is the forward shift operator
(qu(t) = u(t + 1)) .

Remark 7.5. The forward shift operator is used in these expressions. Hence
it follows immediately that for a causal system, the degree of the numerator is
less than or equal to degree of the denominator.

Bounded input bounded output (BIBO) stability is considered throughout
this chapter.

This chapter focuses on the stability and causality conditions of the linear
blocks and not so much on the realizability of the nonlinear block. To simplify
the discussion, all the results below are presented under the following assump-
tion.

Assumption 7.6. ~~f 0 (x) is invertible for the considered values of� .
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7.6 Proposed solution: Causality condition

To address this structure uniqueness problem, we �rst assess in Section7.6
under which conditions the di�erent representations are realizable with causal
blocks. Next, we assess the stability conditions in Section7.7.

7.6 Proposed solution: Causality condition

We �rst assess under which conditions onR0, S0, G0, and � the representation
with the nonlinearity in the feedback path (Fig. 7.5) is realizable with causal
blocks. Next, we assess the causality conditions for the representation with the
nonlinearity in the feedforward path (Fig. 7.3).

7.6.3 Nonlinearity in the feedback path

To analyse the causality of ~~G0, we work out the expression in (7.7):

~~G0 =
G0

1 + �R 0S0G0
(7.: )

=

N G 0
D G 0

1 + � N R 0
D R 0

N S 0
D S 0

N G 0
D G 0

(7.; )

=
NG0 DR 0 DS0

DR 0 DS0 DG0 + �N R 0 NS0 NG0

(7.32)

=
N ~~G0

D ~~G0

(7.33)

where

NG0 = bG0

m G 0Y

i =1

(q � zG0 ;i ) (7.34)

NR 0 = bR 0

m R 0Y

i =1

(q � zR 0 ;i ) (7.35)

NS0 = bS0

m S 0Y

i =1

(q � zS0 ;i ) (7.36)

DG0 =
n G 0Y

i =1

(q � pG0 ;i ) (7.37)

:;
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DR 0 =
n R 0Y

i =1

(q � pR 0 ;i ) (7.38)

DS0 =
n S 0Y

i =1

(q � pS0 ;i ) (7.39)

N ~~G0
= NG0 DR 0 DS0 (7.3: )

D ~~G0
= DG0 DR 0 DS0 + �N G0 NR 0 NS0 (7.3; )

The degree of the numerator of (7.33) is mG0 + nR 0 + nS0 . The denominator is
the sum of two polynomials, one of degreenR 0 + nS0 + nG0 and one of degree
mR 0 + mS0 + mG0 , provided that � 6= 0 . We can now formulate the causality
conditions for the representation with the nonlinearity in the feedback path
(Fig. 7.5).

Theorem 7.7. Under Assumption 7.4, the representation in Figure 7.5 can be
realized with causal blocks if and only if

a3) R0, S0, G0 are causal,
or

a4) nR 0 = mR 0 , nS0 = mS0 , and � 6= 0 .
and

b) if

8
<

:

nG0 = mG0

nS0 = mS0

nR 0 = mR 0

, then � 6= � 1
bR 0 bS 0 bG 0

Proof : only if part
The causality of the blocks in Fig. 7.5 gives rise to the following inequalities
(see Remark7.5)

degf NR 0 g � degf DR 0 g (7.42)
degf NS0 g � degf DS0 g (7.43)
degf N ~~G0

g � degf D ~~G0
g (7.44)

The latter inequality ( 7.44), by considering Equations (7.32) and (7.33), implies
the following

degf NG0 DR 0 DS0 g �

degf DG0 DR 0 DS0 + �N G0 NR 0 NS0 g (7.45)

The term with the highest degree in ~~DG0 is either in DG0 DR 0 DS0 , or �N G0 NR 0 NS0

or they both have the same degree, leading to the three possibilities
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i ) degf DG0 DR 0 DS0 g > degf �N G0 NR 0 NS0 g

ii ) degf DG0 DR 0 DS0 g < degf �N G0 NR 0 NS0 g

iii ) degf DG0 DR 0 DS0 g = deg f �N G0 NR 0 NS0 g

Proof of a3
From the �rst possibility ( i ) and (7.45)

degf NG0 DR 0 DS0 g � degf DG0 DR 0 DS0 g (7.46)

which results in
degf NG0 g � degf DG0 g (7.47)

which means G0 is causal. The causality ofG0 and assumptions (7.42) and
(7.43) complete the proof of part a3.
Proof of a4
By considering the second possibility (ii ), we immediately have � 6= 0 , since if
� would be zero,�N G0 NR 0 NS0 would be zero and its degree cannot be strictly
larger than that of any other polynomial, which is in contradiction to the second
possibility. Considering the second possibility together with (7.45) results in

degf NG0 DR 0 DS0 g � degf NG0 NR 0 NS0 g (7.48)

and thus
degf DR 0 DS0 g � degf NR 0 NS0 g (7.49)

From (7.42) and (7.43), we have

degf DR 0 DS0 g � degf NR 0 NS0 g (7.4: )

So that from (7.49) and (7.4: )

degf DR 0 DS0 g = deg f NR 0 NS0 g (7.4; )

and in order not to contradict with ( 7.42) and (7.43),

nR 0 = deg f DR 0 g = deg f NR 0 g = mR 0

nS0 = deg f DS0 g = deg f NS0 g = mS0 (7.52)

This completes the proof of the part a4.
Proof of b
When considering the third possibility ( iii ) and when � would be equal to

� 1
bG 0 bR 0 bS 0

there would be a degree drop inD ~~G0
, i.e.

degf DG0 DR 0 DS0 g = deg f �N G0 NR 0 NS0 g > degf D ~~G0
g (7.53)
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Together with ( 7.45), this leads to

degf NG0 DR 0 DS0 g < degf DG0 DR 0 DS0 g (7.54)

and thus
degf NG0 g < degf DG0 g (7.55)

This together with ( 7.42) and (7.43) leads to

degf NG0 NR 0 NS0 g < degf DG0 DR 0 DS0 g (7.56)

which is in contradiction to the third possibility. As a consequence, � should
be di�erent from � 1

bG 0 bR 0 bS 0
. This leads to

degf ~~DG0 g = deg f DG0 DR 0 DS0 g (7.57)

which together with ( 7.45) results in

degf NG0 DR 0 DS0 g � degf DG0 DR 0 DS0 g (7.58)

and thus
degf NG0 g � degf DG0 g (7.59)

Together with ( 7.42) and (7.43), and considering the third possibility ( degf �
NG0 NR 0 NS0 g = deg f DG0 DR 0 DS0 g) we have

degf DG0 g = deg f NG0 g (7.5: )
degf DR 0 g = deg f NR 0 g (7.5; )
degf DS0 g = deg f NS0 g (7.62)

since picking a strict inequality in either ( 7.42), (7.43), or (7.59) would other-
wise lead to a contradiction in the third possibility.

if part
In casea3
From the causality of R0, S0, and G0, we have

8
<

:

nR 0 = deg f DR 0 g � degf NR 0 g = mR 0

nS0 = deg f DS0 g � degf NS0 g = mS0

nG0 = deg f DG0 g � degf NG0 g = mG0

(7.63)

then

degf DR 0 DS0 DG0 g � degf DR 0 DS0 NG0 g (7.64)
degf DR 0 DS0 DG0 g � degf NR 0 NS0 NG0 g (7.65)
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therefore, if there is no degree drop inDR 0 DS0 DG0 + �N R 0 NS0 NG0

(degf DR 0 DS0 DG0 + �N R 0 NS0 NG0 g = deg f DR 0 DS0 DG0 g)

degf DR 0 DS0 DG0 + �N R 0 NS0 NG0 g �

degf NG0 DS0 DR 0 g (7.66)

From the inequality in Section 7.6.3 it is clear that ~~G0 is causal. This completes
the proof for the part a3 in case there is no degree drop inDR 0 DS0 DG0 +
�N R 0 NS0 NG0 . For the case where there is a degree dropping in the denominator
of ~~G0, it will be explained at the end of the proof of the part a4.
For the part a4 we have

nR 0 = deg f DR 0 g = deg f NR 0 g = mR 0 (7.67)
nS0 = deg f DS0 g = deg f NS0 g = mS0 (7.68)

� 6= 0 (7.69)

There are two possibilities

degf NG0 g � degf DG0 g (7.6: )
or

degf NG0 g � degf DG0 g (7.6; )

By considering the Equations (7.32), (7.67), (7.68), and (7.6: ) and if there is
no degree drop inDG0 DR 0 DS0 + �N G0 NR 0 NS0 we have

degf D ~~G0
g = deg f DG0 DR 0 DS0 g �

degf NG0 DR 0 DS0 g = deg f N ~~G0
g (7.72)

which is the causality condition of ~~G0. From Equations (7.32), (7.67), (7.68),
(7.69), and (7.6; ) and if there is no degree drop inDG0 DR 0 DS0 + �N G0 NR 0 NS0

we have

degf D ~~G0
g = deg f NG0 NR 0 NS0 g =

degf NG0 DR 0 DS0 g = deg f N ~~G0
g (7.73)

which means in this condition the numerator and denominator have the same
degree. That concludes the causality of~~G0. This completes the proof for the
part a4 in case there is no degree drop inDR 0 DS0 DG0 + �N R 0 NS0 NG0 .
Degree dropping inDG0 DR 0 DS0 + �N G0 NR 0 NS0 , i.e.

degf DG0 DR 0 DS0 + �N G0 NR 0 NS0 g < (7.74)
max (degf DG0 DR 0 DS0 g; degf NG0 NR 0 NS0 g)

;5
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can only occur if both DG0 DR 0 DS0 and NG0 NR 0 NS0 have the same degree

degf DG0 DR 0 DS0 g = deg f NG0 NR 0 NS0 g (7.75)

and if the highest-degree coe�cient is zero, which is the case if

� =
� 1

bG0 bR 0 bS0

(7.76)

In part a3, we have Equation (7.63). From this and Equation ( 7.75), degree
dropping in part a3 can only occur if degf NG0 g = deg f DG0 g, degf NR 0 g =
degf DR 0 g, degf NS0 g = deg f DS0 g.
In part a4, we have degf DR 0 g = deg f NR 0 g, degf DS0 g = deg f NS0 g. From
this and Equation (7.75), degree dropping in part a4 can also only occur if
degf NG0 g = deg f DG0 g, degf NR 0 g = deg f DR 0 g, degf NS0 g = deg f DS0 g.
Degree dropping inDG0 DR 0 DS0 + �N G0 NR 0 NS0 whendegf NG0 g = deg f DG0 g,
degf NR 0 g = deg f DR 0 g, and degf NS0 g = deg f DS0 g would make ~~G0 non-
causal, which needs to be avoided. Choosing� 6= � 1

bG 0 bR 0 bS 0
in Section 7.6.3,

which is exactly what is done in part b, avoids the degree drop inDG0 DR 0 DS0 +
�N G0 NR 0 NS0 . This completes the proof of the if part of the part a4. �

7.6.4 Nonlinearity in the feedforward path
The causality conditions for the representation with the nonlinearity in the
feedforward path (Fig. 7.3) are presented in the following theorem, where the
blocks in Fig. 7.3 are in general given by

~f 0 = ~~f � 1
0 ; (7.77)

~G0 = ~~G� 1
0 =

DR 0 DS0 DG0 + �N R 0 NS0 NG0

NG0 DR 0 DS0

; (7.78)

~R0 = R� 1
0 ; (7.79)

~S0 = S� 1
0 : (7.7: )

Theorem 7.8. Under Assumptions7.4 and 7.6, the representation in Fig. 7.3
can be realized with causal blocks if and only if

a) nR 0 = mR 0 , nS0 = mS0 , and nG0 � mG0

or

b) nR 0 � mR 0 , nS0 � mS0 , nR 0 + nS0 < m R 0 + mS0 , and

1: if nG0 � mG0 , then � = 0

;6
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2: if nG0 > m G0 , then mR 0 + mS0 + mG0 = nR 0 + nS0 + nG0 , � =
� 1

bR 0 bS 0 bG 0
, and with this choice for � all nG0 � mG0 terms in

DR 0 DS0 DG0 + �N R 0 NS0 NG0 of degree higher thanmG0 + nR 0 + nS0

are zero.

Proof : only if part
~R0, ~S0 and ~G0 are causal, therefore according to (7.4), (7.5) and (7.6) and
Assumption 7.4

degf DR 0 g � degf NR 0 g (7.7; )
degf DS0 g � degf NS0 g (7.82)

degf DG0 DR 0 DS0 + �N G0 NR 0 NS0 g �

degf NG0 DR 0 DS0 g (7.83)

In ( 7.7; ) and (7.82), there are two possibilities. Either we have an equality in
both (7.7; ) and (7.82) (which will lead to the result in part a) or at least one
inequality (which will lead to the result in part b).
Proof of a
If we have an equality in both (7.7; ) and (7.82), then degf DR 0 g = deg f NR 0 g
and degf DS0 g = deg f NS0 g. If there is no degree drop inD ~~G0

, then
degf DG0 DR 0 DS0 g� degf D ~~G0

g and taking into account (7.83),
degf DG0 DR 0 DS0 g � degf NG0 DR 0 DS0 g and thus degf DG0 g � degf NG0 g. If
there is a degree drop inD ~~G0

, then degf DG0 DR 0 DS0 g = deg f NG0 NR 0 NS0 g
and since we have equalities in both (7.7; ) and (7.82), degf DG0 g = deg f NG0 g
which is a special case ofdegf DG0 g � degf NG0 g. This completes the proof for
part a.
Proof of b
If ( 7.7; ) and (7.82) contain at least one inequality, then besides (7.7; ) and
(7.82), we have

degf DR 0 DS0 g < degf NR 0 NS0 g (7.84)

For the linear block G0 we will consider two possibilities, namelydegf DG0 g �
degf NG0 g (which will lead to the result in part b3) and degf DG0 g > degf NG0 g
(which will lead to the result in part b4).
Proof of b3
In this case, we will prove by contradiction that � should be zero ifdegf DG0 g �
degf NG0 g. Suppose that� 6= 0 , then from degf DR 0 DS0 g < degf NR 0 NS0 g and
degf DG0 g � degf NG0 g, we have

degf D ~~G0
g = deg f DG0 DR 0 DS0 + �N G0 NR 0 NS0 g

= deg f NG0 NR 0 NS0 g (7.85)

;7
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Combining this with ( 7.83), we have

degf NG0 NR 0 NS0 g � degf NG0 DR 0 DS0 g (7.86)

and thus
degf NR 0 NS0 g � degf DR 0 DS0 g (7.87)

but this is in contradiction to ( 7.84) and thus � cannot be di�ered from zero
in this case. If � = 0 , then

degf DG0 DR 0 DS0 + �N G0 NR 0 NS0 g = deg f DG0 DR 0 DS0 g

� degf NG0 DR 0 DS0 g

(7.88)

from which we obtain degf DG0 g � degf NG0 g which does not contradict with
what was assumed inb3. This completes the proof for the part b3.
Proof of b4
In this case we assumedegf DG0 g > degf NG0 g. Suppose there is no de-
gree drop in D ~~G0

, then degf DG0 DR 0 DS0 g � degD ~~G0
and then due to (7.83)

degf DG0 DR 0 DS0 g � degf NG0 DR 0 DS0 g from which we have degf DG0 g �
degf NG0 g. This is in contradiction with what is assumed in part b4, Hence
there should be a degree drop inD ~~G0

. If there is a degree drop inD ~~G0
, then

degf DG0 DR 0 DS0 g = deg f NG0 NR 0 NS0 g and � = � 1
bG 0 bR 0 bS 0

. Note also that
since degf DG0 g > degf NG0 g, there are nG0 � mG0 terms in DG0 DR 0 DS0

(and in �N G0 NR 0 NS0 that has the same degree) that have a higher degree
than the highest-degree term in NG0 DR 0 DS0 . The corresponding terms in
DG0 DR 0 DS0 + �N G0 NR 0 NS0 should be zero in order not to contradict with
(7.83). This completes the proof of part b4.
if part
From the part a, ~R0 and ~S0 are causal and also by the conditionnG0 � mG0

we have

degf D ~G0
g = deg f NG0 DR 0 DS0 g �

degf DG0 DR 0 DS0 + �N G0 NR 0 NS0 g = deg f N ~G0
g (7.89)

which shows that ~G0 is also causal. From the assumptions inb3 or b4 the
causality condition on ~R0, ~S0 is reached. The causality of ~G0 from b3 is proved
in the following way. By considering b3 and in particular � = 0 , ~G0 in (7.78)
simpli�es to

~G0 =
DG0 DR 0 DS0 + �N G0 NR 0 NS0

NG0 DR 0 DS0

=
DG0

NG0

(7.8: )

which is causal according to the assumption inb3 (nG0 � mG0 ). Part b4 tries
to drop all the terms that make the degree of the numerator of ~G0 higher than

;8
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that of its denominator. Therefore

degf N ~G0
g = deg f DG0 DR 0 DS0 + �N G0 NR 0 NS0 g

� degf NG0 DR 0 DS0 g = deg f D ~G0
g (7.8; )

which shows the causality of ~G0.
�

The results of Theorems7.7 and 7.8 are summarized in Table7.3.
The conditions under which both representations (Fig. 7.3 and Fig. 7.5) are
realizable with causal blocks can be obtained by combining the results in The-
orems7.7 and 7.8.

Corollary 3. Under Assumptions 7.4 and 7.6, the representations in Figs.
7.3 and 7.5 can both at the same time be realized with causal blocks only if
nR 0 = mR 0 and nS0 = mS0 , and if either

ˆ nG0 = mG0 and � 6= � 1
bR 0 bS 0 bG 0

or

ˆ nG0 < m G0 and � 6= 0 .

Hence, from the causality perspective, the structure with the nonlinearity in
the feedback path (Fig. 7.5) is unique if the conditions in Theorem 7.7 are met,
while those in Corollary 3are not. Similarly, the structure with the nonlinearity
in the feedforward path (Fig. 7.3) is unique if the conditions in Theorem 7.8
are met, while those in Corollary 3 are not.

7.7 Proposed solution: Stability condition
We now analyse under which conditions the representations with the nonlinear-
ity in the feedback and the feedforward path, respectively, are realizable with
stable blocks.
The stability of R0 and S0, and ~R0 and ~S0 is straightforward, as these blocks
are independent of � . The stability of G0 and ~G0 requires some more atten-
tion, as an unstable G0 or ~G0 can possibly be stabilized by varying the value
of � . These stability conditions are summarized in Table7.4. For blocks R0

and S0 being stable and minimum phase, and the unstable and minimum phase
block G0 there are some� -values for which the internal loop in Fig. 7.5 can be
stabilized. Let GOL = �R 0G0S0 and ! c be the phase crossover frequency:

\ GOL (j! c) = � 180� : (7.92)

;9
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According to the de�nition of the Gain Margin [Ogata, 4224]:

Gain Margin =
1

jGOL (j! c)j
(7.93)

=
1

j�R 0(j! c)G0(j! c)S0(j! c)j
(7.94)

Usually Gain Margin is presented in dB, but here we adopted the linear scale.
Fig. 7.6 shows typical Nyquist plots of three systems. If the open loop is stable,
the black curve is in the marginal stability, the blue curve corresponds to a
stable closed loop system, and the red curve corresponds to an unstable closed
loop system. Since the closed loop system is unstable, however, the situation
is reversed, and the blue curve corresponds to an unstable closed loop system
and the red curve to a stable closed loop system. According to the de�nition
of gain margin, the system is assumed to be stable and the gain margin brings
the system to the unstable margin, but here it is assumed that the system is
unstable and by tuning � the system comes to the stable region. Therefore the
� is selected as� � GM (R0G0S0). This is formalized in the following theorem.

Theorem 7.9. If R0 and S0 are stable and minimum phase, andG0 is unstable
and minimum phase, then ~~G0 = G0

1+ �R 0 S0 G0
can be stabilized by choosing� �

GM , where GM is the Gain Margin (seeEquation (7.94)).

Proof: The dynamics in the internal feedback are ~~G0 = G0
1+ �R 0 G0 S0

. Its
poles depend on the gain� . Just like a root locus, for � ! 0, the poles of
~~G0 are the poles ofG0, and thus ~~G0 is unstable for � ! 0. For � ! 1 , the
poles of ~~G0 are the zeros ofR0G0S0. SinceR0, G0, and S0 are assumed to be
minimum-phase (zeros at in�nity are also not allowed), ~~G0 is stable for � ! 1 .
The marginal stability is obtained when (1 + �R 0(j! c)G0(j! c)S0(j! c)) ! 0,
which is given by the gain margin [Ogata,4224], i.e. � = GM(R0G0S0). Hence,
for stability of ~~G0, � should ful�ll � � GM(R0G0S0). It is important to note
that the considered gain margin should correspond to the highest gain� for
which �R 0G0S0 = � 1. �
For example Fig. 7.7 shows the pole/zero map of a system with unstable and
minimum phase G0, and stable and minimum phaseR0 and S0, in open loop
(top left), and with three di�erent gains in closed loop (top right: GM, bottom
left: 1:1 GM, and bottom right: 0:9 GM). The closed loop system is stable
when � � GM.
For the case whereG0 is non-minimum phase the proof is similar. Both for
� ! 0 and � ! 1 , G0 is unstable and a more detailed analysis (e.g. root
locus or the Bistritz stabilization test [Bistritz, 4224]) is required to determine
the stability of ~~G0 in that case. The stability conditions for the blocks in the
representation of Figs. 7.3 and 7.5 can now be formulated.

;:
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Table 7.3: Summary of the e�ects of the causality constraint

Condition on Result
R0 S0 G0

nR 0 < m R 0 � �
representation in Figure 7.3 unique if causal
(not the case if e.g. ~S0 is non-causal)

� nS0 < m S0 �
representation in Figure 7.3 unique if causal
(not the case if e.g. ~R0 is non-causal)

nR 0 = mR 0 nS0 = mS0 nG0 < m G0 representations in Figures7.3 and 7.5 (� 6= 0 ) causal

nR 0 = mR 0 nS0 = mS0 nG0 = mG0

representations in Figures7.3 and 7.5 (� 6= � 1
bR 0 bS 0 bG 0

)
causal

nR 0 > m R 0 � � representation in Figure 7.5 unique if causal
� nS0 > m S0 � representation in Figure 7.5 unique if causal

nR 0 = mR 0 nS0 = mS0 nG0 > m G0 representation in Figure 7.5 unique

;;
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Theorem 7.: . Under Assumption 7.4, the representation in Fig. 7.5 can be
realized with stable blocks only ifR0 and S0 are stable, and if eitherG0 is stable
(if � = 0 is possible), or G0 can be stabilized by varying� (see Theorem7.9).

Proof: This follows from the discussion above. �

Theorem 7.; . Under Assumptions7.4, and 7.6, the representation in Fig. 7.3
can be realized with stable blocks only ifR0, S0, and G0 are minimum phase,
and � = 0 if R0 and/or S0 are unstable.

Proof: From (7.79) and (7.7: ) it is concluded that R0 and S0 should be
minimum-phase for ~R0 and ~S0 to be stable. We have from (7.78) that

~G0 =
1

G0
+ �R 0S0 (7.95)

Therefore 1
G0

and �R 0S0 should be stable, which is the case ifG0 is minimum-
phase and� = 0 if R0 or S0 is unstable. �
From the stability perspective, the structure with the nonlinearity in the feed-
back path (Fig. 7.5) is unique if the conditions in Theorem 7.: are met, while
those in Theorem7.; are not. Similarly the structure with the nonlinearity in
the feedforward path (Fig. 7.3) is unique if the conditions in Theorem 7.; are
met, while those in Theorem7.: are not.
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I m

R e

Figure 7.6: Three Nyquist plots of a stable open-loop system with 5 di�erent open-
loop gains. Blue is stable, black is in the stability margin, and red is unstable.
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Table 7.4: Summary of the e�ects of the stability constraint

Condition on Result
R0 S0 G0

unstable � �
representation in Figure 7.5 has
unstable block(s)

� unstable �
representation in Figure 7.5 has
unstable block(s)

non-min � � �
representation in Figure 7.3 has
unstable block(s)

� non-min � �
representation in Figure 7.3 has
unstable block(s)

� � non-min �
representation in Figure 7.3 has
unstable blocks�

stable & min � stable & min � stable ~~G0 is stable if � � GM (R0S0G0)
stable & min � stable & min � unstable & min � ~~G0 is stable if � � GM (R0S0G0) �� y

stable & min � stable & min � unstable & non-min �
Not always possible to �nd an � to
stabilize ~~Gz

0

stable & non-min � stable unstable Not always possible to �nd an � to
stabilize ~~Gz

0

stable stable & non-min � unstable Not always possible to �nd an � to
stabilize ~~Gz

0

min � min � min �
~G0 is stable (� = 0 if R0 or S0

unstable)

� ~G0 is stable for � ! 1 , but it is not considered here, because� is limited ( � < 1 ).
�� GM represents the highest possible Gain Margin.
y If GM = 1 , then it is important to �nd � such that the closed loop system can be stabilized, but this only occurs
if R0, S0, and G0 have an unequal amount of poles and zeros, which is not considered here.
z A more detailed analysis is required to determine the stability of ~~G0 (e.g. using a root locus or the Bistritz
stabilization test [Bistritz, 4224]).
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Figure 7.7: Pole zero map of a typical system a) G0 , b) G 0
1+1 � GM � G 0

, c)
G 0

1+1 :1� GM � G 0
, and d) G 0

1+0 :9� GM � G 0

7.8 Conclusion

A nonlinear feedback system with a Wiener-Hammerstein branch can be realized
in two di�erent ways. Either the Wiener-Hammerstein branch is in the feedback
path or in the feedforward path. This chapter studied under which conditions
one of both representations is unique, provided that the individual blocks in the
model are causal and stable.
In some cases, only one of both representations is realizable with causal and
stable blocks. Therefore, it is important for the identi�cation method to either
allow for both model structures or, if the model structure is �xed, to allow for
non-causal and unstable blocks.
Although in some cases the structure (Wiener-Hammerstein branch in feedback
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or feedforward path) is unique, in general there are still an in�nite number of
possibilities for the nonlinear block and the linear block that is not part of the
Wiener-Hammerstein branch in the model. This chapter shows that there is
a need for physical insight to determine the structure of a nonlinear feedback
system.
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Conclusions and future
works

8.3 Conclusions

The design of experiment approach proposes to set the DC and the STD level of
the input signal based on real experiments and the total distortion is reduced sig-
ni�cantly. This helps to have better quality best linear approximations (BLAs)
at di�erent points. The uncertainty of the �tted parametric models on the
BLAs will be lower. Therefore the decision about the structure of the system is
more reliable.

For the Bouc-Wen hysteretic data the identi�ed PNLSS model captures the
model up to near noise level. Despite the presence of the absolute value func-
tion in the Bouc-Wen model the identi�ed PNLSS model shows a very good
behaviour. But the combinatorially growing number of parameters, prevents to
go up for higher order nonlinear terms in the model. Also the lack of structure
in this model doesn’t give any physical interpretability.

Decoupling approach enables us to calculate higher order nonlinearities in
the model. The Bouc-Wen model is a very good example that shows the de-
coupling approach works successfully. Even a decoupled model is found, which
has less number of parameters and less error than the full PNLSS were found in
Chapter 5. On the other hand, as decoupling decreases the number of param-
eters in the model, it is expected to have decrement in the uncertainty of the
parameters. As it is the case for simple linear models, where by decreasing the
number of parameters, the uncertainty of the estimated parameters is decreased
(see pp. 34-35 of [Schoukens et al.,4234]). Decoupling also enables the user to
have �rst steps in inferring the structure of the model. Decoupling gives freedom
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to the user to select the model from a set of possible models with di�erent pre-
cision and complexity. From the simplest model with a precision near the BLA
to the possible highest decoupled model with a slightly better precision than
the full PNLSS model. The user should make a trade-o� between complexity
and precision.

The causality and stability condition on realizability of feedback systems
make the user able to screen the identi�ed models. These conditions are not
always su�cient to select a unique model structure.

8.4 Future works
One of the future works for the design of experiment approach is to optimize
the other input characterizations such as the colouring (i.e. the bandwidth and
the amplitude spectrum) of the excitation. By optimizing all these factors, it is
expected that the calculated BLA would have even higher quality.

The structure inference and physical interpretability of the identi�ed model
is a very interesting future topic to work on. It is very interesting to compare the
PNLSS identi�ed model of the hysteresis to the Bouc-Wen identi�cation of the
hysteresis data. The random grid points, which is used to generate the Jacobians
are sampled from a standard Gaussian distribution. Generating these random
points based on the distribution of the states, or by using Bayesian approach
is a very interesting future work. Robustifying the selection of the sampling
points is a very important question. This is beyond the scope of this thesis, but
surely an important open research direction.

The other open research topic is to �nd a criterion to choose the best needed
model from the spectrum of models.

The minimum sensitivity of the response to parameter values and other
criteria such as minimum phase sub-blocks may be considered for limiting the
number of possible models. The stability and causality with combination of the
aforementioned criteria might lead to a unique model structure selection.
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