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Notation

Symbols

Symbol Description

ai Denominator coe�cients of a transfer function
aNL Nonlinear sti�ness coe�cient (in N m � 3)
A(q) Denominator polynomial of a transfer function
bi Numerator coe�cients of a transfer function
B (q) Numerator polynomial of a transfer function
B [i ] Symmetric matrix of quadratic polynomial coe�cients

� [i ]
i 1 ;i 2

B [i ] Symmetric tensor of cubic polynomial coe�cients
� [i ]

i 1 ;i 2 ;i 3

c0; cs; c� s (Complex) constant gains
c1; c2 Arbitrary constants
cBLA Constant gain
ceq; ceq1

; ceq1
Arbitrary non-zero constants

cGOBF Constant
ci Coe�cients of a linear combination of OBFs
cshift Constant positive integer
C Set of complex numbers
C1 Upper bound of

P 1
d=1 CK d CU

d

C2 Upper bound of �
CK d Upper bound of jK d j
CU Upper bound of

p
2�U( !

2� )
d Degree of nonlinearity
D Maximum degree of nonlinearity
e Error signal

Continued on next page
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NOTATION

Continued from previous page
E E := f z 2 C : jzj > 1g is the exterior of the unit disk

including in�nity
f (u) Static nonlinear function f operating on u
f (u1; : : : ; un ) Multivariate static nonlinear function f operating on

u1; : : : ; un
f s Sample frequency (in Hz)
F Matrix containing the spectra of a set of GOBFs
Fi (q) Orthonormal basis function
Fi (z) Z -transform of the impulse responsef i (� )
g(� ) Impulse response of linear dynamic systemG
G(q) Discrete-time linear dynamic system
GBLA Frequency response function of the best linear approx-

imation
GM Parametric transfer function model
G+

SBLA ; G�
SBLA Frequency response function of the shifted best linear

approximations that are proportional to S(k)R(k + s)
and S(k)R(k � s), respectively

H 2(E) Hardy space of functions that are squared integrable
on T and analytic on E

Hd(u(t)) dth-degree normalized Hermite polynomial
Hd[x(~t)] dth-order Volterra operator in the Silverbox example
i Index
i max Positive integer that determines the bandwidth of a

phase-coupled multisine
j j 2 = � 1
J Regression matrix
k Frequency bin
k Index
k1(� ) Impulse response of a linear dynamic system
kd(� 1; : : : ; � d) dth-order Volterra kernel
k! i k! i =

j
! i N
2�f s

k

K (s) Second-order system in the Silverbox example
K (� ) Cost function in �
Kdf u1; : : : ; udg dth-order Volterra operator; K df u; : : : ; ug = K d[u]
K d(L k ; l1; l2; : : : ; ld� 1) Symmetrized frequency domain representation of

kd(� 1; : : : ; � d)
K N Cost function that depends upon the number of sam-

ples N
K (p) pth-order inverse of a Volterra operator
l Index, mostly over the frequency bins

Continued on next page
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NOTATION

Continued from previous page
l i Index over the frequency bins
L k Frequency bin such that k = L k +

P d� 1
i =0 l i

M Number of branches in a parallel Wiener-Hammerstein
model belonging to the classSM

M cubic Partially symmetric tensor in which each of the tensors
B [i ] is stacked

M mixed Partially symmetric tensor in which the matrices B [i ]

and the tensorsB [i ] are stored
M quad Partially symmetric tensor in which each of the ma-

trices B [i ] is stacked
n Number of FIR coe�cients/OBFs, possibly aug-

mented with one or more feed-through terms
n Number of branches in a parallel Wiener-Hammerstein

model
n1 Number used in determining the rank of a regression

matrix J
na Degree of the denominator polynomial in a transfer

function
nb Degree of the numerator polynomial in a transfer func-

tion
nblocks Number of experiment blocks
ncubic Number of branches in a parallel Wiener-Hammerstein

model with only cubic nonlinearities
nexp Number of experiments
ni Number of OBFs in the i th set of OBFs, possibly aug-

mented with a feed-through term
nmixed Number of branches in a parallel Wiener-Hammerstein

model with only quadratic and cubic nonlinearities
np Number of poles of a linear dynamic system
nquad Number of branches in a parallel Wiener-Hammerstein

model with only quadratic nonlinearities
nrep Number of pole repetitions
nu Number of inputs
n� Number of GOBFs
n� Number of polynomial coe�cients
n� Number of pole estimates
N Number of samples (per period)
O(�) Big-O notation, indicates boundedness of a determin-

istic sequence (see further)
Op(�) Indicates boundedness in probability (see further)

Continued on next page
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NOTATION

Continued from previous page
p Real pole of a �rst-order system
p Order of a pth-order inverse K(p)
pi Pole location of a linear dynamic system
P Number of periods
P (�) Probability of
q Forward shift operator (qu(t) = u(t + 1))
q� 1 Backward shift operator (q� 1u(t) = u(t � 1))
Q[x(~t)] Volterra operator in the Silverbox example
Q(d)

i 1 i 2 :::i d
(x) Multivariate (normalized) Hermite polynomial, called

Q-polynomial
R(q) Wiener dynamics
R Set of real numbers
R+ Set of positive real numbers
s Positive integer that determines the frequency o�set

of the input dynamics in the shifted BLA
S(q) Hammerstein dynamics
Sd

l Sd
l := f sk : sk 2 f� s;0; sg ^

P d
k=1 sk = lg

SM Subclass of parallel Wiener-Hammerstein models
SUU (Auto-)power spectrum of u(t) (SUU (k) =

Eu fj U(k)j2g)
SY U Cross-power spectrum ofy(t) and u(t) (SY U (k) =

Eu f Y (k)U � (k)g)
t Discrete time (in number of samples)
~t Continuous time (in s) (~t = t=f s at the sampling in-

stants)
T Maximal number of delays considered in a Volterra

series expansion (as a number of samples)
T T := f z 2 C : jzj = 1g is the unit circle
u Input signal
�U( !

2� ) Uniformly bounded function in the de�nition of a mul-
tisine

Uk Fourier coe�cient
v Output noise
w Intermediate signal
W Matrix containing the spectra of the intermediate sig-

nals wi (t)
W (k) Weighting sequence in the frequency domain
x Intermediate signal
x?

BLA Output of an OBF that is proportional to the para-
metric estimate of the BLA

Continued on next page
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Continued from previous page
y Output signal
y Displacement (in m) in the Silverbox example
_y Velocity (in m s � 1) in the Silverbox example
�y Acceleration (in m s� 2) in the Silverbox example
y0 Noise-free output signal
ŷDC Estimate of the DC component at the output
yS Stochastic nonlinear noise source
y� Output of a multivariate polynomial with coe�cients

�
Y (k) Collection of DFT spectra of several output signals in

a vector
Yd Output spectrum of a Wiener-Hammerstein model

with a pure dth-degree nonlinearity
z Variable of the Z -transform

� Coe�cients of a linear combination of GOBFs
� Collection of multivariate polynomial coe�cients
� r Collection of multivariate polynomial coe�cients of a

polynomial with a reduced number of parameters

 d Polynomial coe�cient corresponding to a dth-degree

monomial
� ij Kronecker delta (� ii = 1 ; � ij = 0 if i 6= j )
~� Time shift
� pi Di�erence between the estimated and the true polepi ,

i.e. � pi = p̂i � pi
� x Di�erence between the true intermediate signal x(t)

and its approximation
� � Phase shift due to a shifted time origin
� (Typically small) positive number
� Positive integer that determines the frequency resolu-

tion of a phase-coupled multisine
� [i ]

k Scalar coe�cient in the canonical polyadic decompo-
sition of B [i ]

� Model parameters
� i Coe�cients of a linear combination of matrices
� k Basis vector in the canonical polyadic decomposition

of B [i ]

� [i ]
k Scalar coe�cient in the canonical polyadic decompo-

sition of B [i ]

� The excited frequencies in a phase-coupled multisine
are at frequencies� and � + s

Continued on next page
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Continued from previous page
� Pole estimate, pole location
� Measure for how close the estimated poles are to the

true poles
� 2

u Variance of the signalu(t)
� Discrete time (in number of samples)
~� Continuous time (in s)
� d Ratio of the contributions in Yd in which the input

dynamics shift over s and those in which the input
dynamics shift over 2s

� Phase shift of the poles and the zeros of the input
dynamics with respect to their complex conjugates

� k Phase of the DFT coe�cient at the kth frequency bin
 k Basis vector in the canonical polyadic decomposition

of B [i ]

! Angular frequency (in rad s� 1)
! p Normalized passband edge frequency of a Chebyshev

�lter

The notations O(�), and Op(�) are explained in more detail hereafter.

Notation 0.1 (O(�)) . The notation h1 is an O(N n ) indicates that for N big
enough, jh1(N )j � cN n , where c is a strictly positive real number.

Notation 0.2 (Op(�), [van der Vaart, 1998]). The notation h2 is an Op(N n )
indicates that the sequenceh2(N ) is bounded in probability at the rate N n .
More precisely, h2(N ) = h3(N )N n , where h3(N ) is a sequence that is bounded
in probability.
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NOTATION

Acronyms

Acronym Description

AIC Akaike’s information criterion
ALS Alternating least-squares
BLA Best linear approximation
CANDECOMP Canonical decomposition
CPD Canonical polyadic decomposition
DC Direct current, but mostly used here to indicate the mean

value (contribution at zero frequency) of a signal
DFT Discrete Fourier transform
DVD Digital versatile disc
FIR Finite impulse response
FRF Frequency response function
GOBF Generalized orthonormal basis function
IFAC International Federation of Automatic Control
i.i.d. Independent and identically distributed
IIR In�nite impulse response
INDSCAL Individual di�erences in scaling
LS Least squares
LTI Linear and time-invariant
MDL Minimum description length
MIMO Multiple input multiple output
MISO Multiple input single output
MLE Maximum likelihood estimator
MSE Mean-square error
NARMAX Nonlinear autoregressive moving average model with exoge-

nous inputs
OBF Orthonormal basis function
PARAFAC Parallel factors
PEM Prediction error method
PISPO Period in same period out
PNLSS Polynomial nonlinear state-space
QBLA Quadratic best linear approximation
rms Root mean square
SISO Single input single output
SNR Signal-to-noise ratio
SVD Singular value decomposition
SVM Support vector machine
TISO Two input single output
WS Wiener-Schetzen
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Notational conventions and operators

Notation Description

Bold symbols Vectors or matrices, e.g.� , J
Bold calligraphic symbols Tensors, e.g.M
x(t); X (k) Signal and its DFT spectrum
G(q); g(� ) Discrete-time LTI system and its impulse response
G(z) Z -transform of g(� )
(̂�) Estimate, e.g. ŷ is an estimate ofy
_(�) Time derivative, e.g. _y = dy

d~t
�(�) Second time derivative, e.g. �y = d2 y

d~t 2

�(�) Subtracts the DC value of a signal, e.g.
�y = y � E f yg

�

(�) Explicitly indicates a coupled representation of a
nonlinear function (e.g. with cross-terms if the
function is a polynomial), or a signal or LTI system
associated with the function, e.g.

�

f , �x(t),
�

R(q)
�(�) Originates from true model parameters, e.g.�� are

the true model parameters
(�)[i ] i th element in a sequence
(�)T Matrix transpose
(�) � Complex conjugation
(�)? Explicitly indicates orthogonality
(�)6? Explicitly indicates lack of orthogonality
(�)! Factorial, e.g. d! = d(d � 1) � � � 1� n + D

D

�
Binomial coe�cient, indicates the number of com-
binations of D elements that can be made out of a
set of n + D elements,

� n + D
D

�
= (n + D )!

n !D !
b�c Floor function, i.e. bxc is the largest integer not

greater than x
h�; �i Inner product, e.g. hF1; F2i is the in-

ner product between two transfer functions
F1(z); F2(z) 2 H 2(E)

\ U(k) Phase of a complex numberU(k)
jU(k)j Amplitude of a complex number U(k)
k�k2 Two-norm
k�k1 In�nity norm
k�kF Frobenius norm
/ Is proportional to

Continued on next page
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Continued from previous page
:= Is de�ned as
� Convolution, e.g. g(~t) � u(~t) =

R+ 1
�1 g(~� )u(~t � ~� )d~�

� Tensor product

 Kronecker product
Kdf u1; : : : ; udg dth-order Volterra operator; K df u; : : : ; ug = K d[u]
Lf�g Laplace transform
L � 1f�g Inverse Laplace transform
E f�g Expected value
Eu f�g Ensemble average over an input class
�E f�g Generalized expected value

�E f x(t)g := lim
N !1

1
N E f x(t)g

arg min� K (� ) Minimizing argument of K (� )
atan(�) Inverse of the tangent function
corank(�) Corank of a matrix, i.e. the dimensionality of its

null space
min( �) Minimum
max(�) Maximum
perm(l1; l2; l3) All possible permutations of (l1; l2; l3)
plim Limit in probability (see further)
vec(�) Vectorization of a matrix, stacks the columns of

the matrix on top of each other

The notation plim is explained in more detail hereafter.

Notation 0.3 (plim, [Pintelon and Schoukens, 2012]). The sequenceh(N ), for
N = 1 ; 2; : : : converges toh in probability if, for every �; � > 0 there exists an
N0 such that for everyN > N 0 : P (jh(N ) � hj � � ) > 1 � � . We write

plim
N !1

h(N ) = h , 8 � > 0 : lim
N !1

P (jh(N ) � hj � � ) = 1 :

Remark 0.4. We will often|by abuse of notation|use u(t) to denote the
signal u instead of the instantaneous value.
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Chapter 1

Introduction

This chapter introduces the context of this thesis and presents the main ques-
tions that are addressed. It also gives an overview of the content in the remain-
ing chapters, and makes the connection with the publications that resulted from
this thesis.

1.1 Context

This thesis is situated in the context of nonlinear system identi�cation. Here-
after, we give a very brief introduction to this subject. More comprehensive
information on system identi�cation can be found in e.g. S�oderstr�om and Sto-
ica [1989]; Ljung [1999] and Pintelon and Schoukens [2012].

1.1.1 System identi�cation

A system can be thought of as a device that maps an excitation (an input) to
a response (an output). Think for example about a spring scale that �shermen
use to weigh the �sh they catch. The input is the �sh’s gravitational force that
is applied to the spring. The output is the displacement of the spring. Another
example is a loudspeaker, which maps the waveform provided by e.g. a DVD
player to a sound.

System identi�cation is the process of creating mathematical models of sys-
tems from measured input/output data. This is useful, since knowing how the
input is mapped to the output makes it possible to understand the behavior
of the system, to simulate and predict the responses of the system to di�erent
excitations, and to modify the behavior of the system using a controller. For
example, if it is known that a loudspeaker attenuates the bass (low frequencies)
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system

model

+
u y

ŷ

e+

�

class of
excitation

model
class

error
criterion

Figure 1.1: When approximating the input/output behavior of a system using a model,
three important choices need to be made: the excitation signal, the model class, and
the error criterion.

and ampli�es the treble (high frequencies) too much, then the overall behav-
ior of the loudspeaker can be improved by �rst amplifying the low frequencies
and attenuating the high frequencies in the waveform, and next applying this
pre�ltered waveform to the loudspeaker.

In system identi�cation, mathematical models of systems are built in a sys-
tematical way. The four main steps that need to be performed when building
the model are:

1. Excite the system and collect the input/output data.

2. Select an appropriate model structure or model class.

3. Estimate the model parameters.

4. Validate the model on new input/output data.

In these four steps, three important choices need to be made: the class of
excitation signals, the model class, and the error criterion (see Figure 1.1).

In the �rst step, a well-designed excitation u is applied to the system, and
the excitation u and the system responsey are measured. The excitation should
be persistently exciting such that enough information can be collected from the
measured input/output data. For example, the loudspeaker should be excited
by a signal with a su�ciently large bandwidth, such that information about
both the low and high frequencies is present in the collected data.

In the second step, an appropriate model class is selected. The model class
is a collection of models that have the same structure, e.g. all polynomials of
degree at most three, all second-order linear state-space models, etc. Many
di�erent model structures are available, and choosing an appropriate one is not
always simple. A more detailed explanation of the model selection is given in
the next subsection.
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1.1 Context

In the third step, the model parameters are estimated. The model structure
is typically parameterized in terms of a �nite number of parameters, e.g. the
polynomial coe�cients, the matrix entries of the state-space model, etc. These
model parameters need to be tuned, such that the model explains the collected
data as well as possible. This is usually done by minimizing a certain error
criterion (a distance between the model and the data). A typical choice is
to minimize the mean-square distance between the measured and the modeled
output data, i.e. minimize

1
N

N � 1X

t =0

e2(t) ; with e(t) = y(t) � ŷ(� ; t) ; (1.1)

with respect to the model parameters� . This minimization is straightforward if
the model is linear-in-the-parameters, since then a closed-form solution exists. If
the model is nonlinear in its parameters, then typically a nonlinear optimization
needs to be done, which requires good initial estimates of the model parameters.

In the fourth step, it is checked whether the obtained model can satisfac-
torily model new input/output data that were not used to estimate the model
parameters.

1.1.2 Model structures
A crucial step in system identi�cation is choosing an appropriate model class.
On the one hand, the model structure should be 
exible enough to make it
possible to well approximate the behavior of a large variety of systems. On
the other hand, the model should be parameter-parsimonious, as the variability
of the identi�ed model parameters increases with the number of independent
parameters [S�oderstr�om and Stoica, 1989] when the model is identi�ed from
noisy measurements. A trade-o� thus needs to be made between model errors
(bias) and noise sensitivity (variance). This trade-o� is the well-known bias-
variance trade-o�.

Depending on the amount of physical knowledge that is used when building a
model, the model is either called a white-box, a gray-box, or a black-box model.
White-box modeling only uses �rst principles or physical laws, e.g. Hooke’s law
in the case of the spring scale, which states that the displacement of the spring
is proportional to the force applied to it. Depending on the complexity of the
system, building a white-box model can take quite some e�ort. Moreover, the
building process needs to be done over again for every new system. Black-
box modeling uses no physical knowledge about the system, but only uses the
measured input/output data to determine the mapping. Typically, black-box
models are 
exible mathematical expressions that can well approximate a large
variety of system behaviors. They are thus quite generally applicable, but often
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use a large number of parameters in return. In between white-box and black-
box modeling are di�erent shades of gray-box modeling (see e.g. Ljung [2010]
for a classi�cation), where both physical laws and measurements are used. This
thesis primarily concerns black-box modeling.

In order not to use too many parameters, the model structure should re
ect
the properties of the system that is to be modeled. A linear time-invariant
(LTI) model is commonly used to approximate the behavior of a dynamical
system (a system with memory). A system is linear if its steady-state behavior
ful�lls the superposition principle. This means that if the steady-state response
to an input u1 is y1, and the steady-state response to an inputu2 is y2, then
the steady-state response of a linear system to a linear combination of those
inputs u = c1u1 + c2u2 is the linear combination of the corresponding steady-
state outputs y = c1y1 + c2y2, wherec1 and c2 are arbitrary constants. Systems
that do not ful�ll the superposition principle are called nonlinear systems. A
system is time-invariant if its dynamic behavior does not change with time.
This means that if the system responds with an output y(~t) to an input u(~t),
it responds with an output y(~t � ~� ) to a time-shifted input u(~t � ~� ) for every
arbitrary time-shift ~� . LTI models are often used, because many systems can
be assumed linear when working with small amplitude ranges of the excitation,
and many systems can be assumed time-invariant when working on su�ciently
small timescales with respect to the time variations. Moreover, LTI models give
much insight about the behavior of the system, there are many tools available
to estimate LTI models, and the linear identi�cation theory is mature. Never-
theless, all physical systems are nonlinear and/or time-varying to some extent,
even the spring scale that ideally obeys Hooke’s law. If the �sh is too heavy,
the spring cannot stretch any further, and hence does not behave linearly any-
more. Moreover, the spring constant, i.e. the proportionality constant, changes
over time due to wearing. In this thesis, nonlinear time-invariant models are
considered.

The class of nonlinear systems is extremely large (all systems that are not
linear are nonlinear), hence many di�erent nonlinear model structures have
already been proposed. Examples are nonlinear state-space models [Verdult,
2002], the NARMAX model [Chen and Billings, 1989], block-oriented models
[Giri and Bai, 2010], Volterra series [Schetzen, 2006], neural networks [Nelles,
2001], etc. They all have their advantages and disadvantages. Nonlinear state-
space and NARMAX models are quite 
exible for example, but provide little
or no physical insight. Block-oriented models are parameter-parsimonious and
provide some physical insight, but the estimation of the more complex block-
oriented models often involves nonlinear optimization, and thus requires good
initial estimates. More information on nonlinear modeling can be found in e.g.
Billings [1980]; Sj�oberg et al. [1995].

4



1.1 Context

1.1.3 Block-oriented models

This thesis makes extensive use of block-oriented models [Billings and Fakhouri,
1982; Giri and Bai, 2010]. These models combine linear dynamic and nonlinear
static (memoryless) blocks. Due to this highly structured nature, block-oriented
models o�er insight about the system to the user.

In this thesis, we will work with discrete-time linear dynamic blocks, al-
though it is possible to handle continuous-time dynamics as well. Note that
block-oriented models allow for an easy discretization, due to the separation
between the dynamics and the nonlinearities.

The simplest block-oriented models are the Wiener model (nonlinear static
block preceded by a linear dynamic block, see Figure 1.2a) and the Hammer-
stein model (nonlinear static block followed by a linear dynamic block, see
Figure 1.2b).

A possible generalization is to put more blocks in series, resulting in e.g. a
Wiener-Hammerstein model (nonlinear static block sandwiched between two lin-
ear dynamic blocks, see Figure 1.2c) and a Hammerstein-Wiener model (linear
dynamic block sandwiched between two nonlinear static blocks, see Figure 1.2d).

Another possible generalization is to have parallel branches, each contain-
ing a single-branch block-oriented model, resulting in e.g. a parallel Wiener-
Hammerstein model (see Figure 1.3a). Moreover, the intermediate blocks can
have multiple inputs and/or multiple outputs, resulting in e.g. a parallel Wiener
model with a multivariate nonlinearity (see Figure 1.3b).

Parallel Wiener and parallel Wiener-Hammerstein models are known to be
universal approximators [Palm, 1979; Boyd and Chua, 1985; Schetzen, 2006].
This means that they can approximate the behavior of systems belonging to the
class of Wiener systems arbitrarily well in mean-square sense, i.e. the mean-
square error in (1.1) can be made arbitrarily small for these systems. The
class of Wiener systems should not be confused with the cascade of a linear
dynamic and a nonlinear static block (see Figure 1.2a), which is also called a
Wiener system. Instead, systems belonging to the class of Wiener systems are
roughly all time-invariant, non-explosive systems (meaning that their output
has �nite variance for a Gaussian noise excitation), where the in
uence of the
input in�nitely far back in time on the present output decays to zero [Schetzen,
2006]. A subset of these systems are the fading memory systems considered
in Boyd and Chua [1985]. In a proper setting, to be speci�ed later, Wiener
systems can also deal with discontinuous nonlinearities. A clear advantage of
model structures with the universal approximation property is that they are
quite 
exible. In Chapter 2, we go more into detail on the class of Wiener
systems and on the approximation properties of parallel Wiener and parallel
Wiener-Hammerstein models.
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G(q) f (x)
u(t) x(t) y(t)

(a) Wiener model

f (u) G(q)
u(t) w(t) y(t)

(b) Hammerstein model

G1(q) f (x) G2(q)
u(t) x(t) w(t) y(t)

(c) Wiener-Hammerstein model

f 1(u) G(q) f 2(w)
u(t) x(t) w(t) y(t)

(d) Hammerstein-Wiener model

Figure 1.2: Single-branch block-oriented models consist of series connections of linear
dynamic and nonlinear static systems (G, G1 , and G2 are linear dynamic systems; f ,
f 1 , and f 2 are nonlinear static systems).

1.1.4 Wiener-Schetzen model
The particular model structure that will be studied in this thesis is the Wiener-
Schetzen model. This model structure is a block-oriented model with a parallel
Wiener structure (see Figure 1.3b) where the linear dynamics are parameterized
by orthonormal basis functions (OBFs) [Heuberger et al., 2005] and where the
static nonlinearity is parameterized by Hermite polynomials [Schetzen, 2006].
The parameters of the model are the polynomial coe�cients.

Basically, the OBFs (see also Chapter 2) are LTI systems that form a com-
plete set of basis functions, meaning that any LTI system can be written as a
linear combination of these basis functions. By choosing an orthonormal set of
basis functions, the numerical conditioning of estimating the coe�cients of the
basis function expansion is improved. The static nonlinearity is described in
terms of Hermite polynomials (see also Chapter 2), which are an optimal choice
for Gaussian inputs [Schetzen, 2006].

The Wiener-Schetzen model is a universal approximator for systems belong-
ing to the class of Wiener systems, making it a quite 
exible model structure.
Moreover, the model is linear-in-the-parameters, which allows for a convenient
estimation of the model parameters. A disadvantage of the model structure is
the rapid increase of the number of parameters with the number of OBFs and

6



1.2 Questions

R1(q)

Rn (q)

...

f 1(x1)

f n (xn )

...

S1(q)

Sn (q)

... +
u(t)

x1(t)

xn (t)

w1(t)

wn (t)

y1(t)

yn (t)

y(t)

(a) parallel Wiener-Hammerstein model

G1(q)

...

Gn (q) f
(x

1
;:

::
;x

n
)

u(t)

x1(t)

xn (t)

y(t)

(b) parallel Wiener model with a multivariate nonlin-
earity

Figure 1.3: Two parallel block-oriented models ( R1 ; : : : ; Rn , S1 ; : : : ; Sn , and
G1 ; : : : ; Gn are linear dynamic systems; f 1 ; : : : ; f n , and f are nonlinear static sys-
tems).

the degree of nonlinearity (see Table 1.1).

1.2 Questions
Looking at the rapid increase of the number of parameters with the number
of OBFs and the degree of nonlinearity (see Table 1.1) immediately raises the
question whether it is possible to do something about it. The �rst question that
will be addressed in this thesis is:

Q1. How to make Wiener-Schetzen models less parameter expensive?

Considering the large number of parameters, and keeping in mind the bias-
variance trade-o� raises the question whether the universal approximation prop-
erty (i.e. the bias can be made arbitrarily small for the class of Wiener systems)
is still useful in practice. Will the variance error not dominate too much, and
what about the approximation quality for systems that do not belong to the
class of Wiener systems? The second question addressed in this thesis is:

Q2. Is the universal approximation property still useful in practice?
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Table 1.1: The number n � of polynomial coe�cients in a multivariate polynomial with
n inputs and all possible monomials up to degree D increases combinatorially with n
and D , i.e. n � = ( n + D )!

n !D ! =
� n + D

n

�
=

� n + D
D

�
.

D n �

n = 1 n = 4 n = 7 n = 10 n = 13 n = 16

1 2 5 8 11 14 17
2 3 15 36 66 105 153
3 4 35 120 286 560 969
4 5 70 330 1001 2380 4845
5 6 126 792 3003 8568 20 349
6 7 210 1716 8008 27 132 74 613
7 8 330 3432 19 448 77 520 245 157

Finally, the Wiener-Schetzen model has all its dynamics at the input side and
all its nonlinearity at the output side. What happens when the true underlying
system has dynamics at the output side? The third question addressed in this
thesis is:

Q3. How to deal with dynamics at the output?

1.3 Overview and outline
After providing the necessary background material in Chapter 2, the questions
in Section 1.2 will be tackled one at a time.

Chapter 3 addresses the reduction of the number of parameters in a Wiener-
Schetzen model. The model is made less parameter expensive in three ways.

The �rst part of Chapter 3 considers the approximation of a block-oriented
system with a (parallel) Wiener structure by a Wiener-Schetzen model. Prior
knowledge about the system dynamics can be incorporated into the model by
constructing the OBFs based on user-speci�ed pole locations. This prior knowl-
edge is obtained from the best linear approximation (BLA) of the system. By
making a proper choice for the OBFs, it is shown that the modeled output con-
verges in probability to the system output, and that fast convergence rates can
be obtained for a moderate number of OBFs. The reduced number of OBFs
results in a smaller number of model parameters.

The second part of Chapter 3 considers the approximation of single-branch
block-oriented models with a Wiener structure. Although the number of OBFs
can be reduced with the approach in the �rst part, the number of parameters
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can still be relatively large. This is because at least one OBF is needed for every
pole estimate. Moreover, a mismatch between the true and the estimated poles
is compensated by additional basis functions. In the second part of Chapter 3,
one of the OBFs is replaced by the BLA itself. It is shown that in this way the
number of relevantly contributing terms in the multivariate polynomial can be
signi�cantly reduced, while maintaining a good model quality. This parameter
reduction approach is extended to multiple input single output (MISO) Wiener
structures as well.

The third part of Chapter 3 considers again (parallel) Wiener structures.
The quality of the pole estimates is iteratively improved without making re-
peated experiments. The improved pole estimates remove the need for the
additional basis functions, which results in less model parameters.

Chapter 4 addresses the practical usefulness of the universal approximation
property. The extent to which the universal approximation property of the
Wiener-Schetzen model is valid, is analyzed on measurement and simulation ex-
amples. These examples show that the Wiener-Schetzen model can successfully
approximate the behavior of Wiener-like systems, but that the model structure
is less appropriate to approximate nonlinear feedback systems and systems with
dynamics at the output side.

Chapter 5 makes an attempt to deal with output dynamics.
Two methods to generate initial estimates for Wiener-Hammerstein models

are proposed. The �rst method uses basis function expansions to parameterize
the input and the output dynamics, and the static nonlinearity. The second
method uses a well-designed excitation signal, the phase-coupled multisine, to
split the overall linear dynamics of the BLA over the input and the output
dynamics of the Wiener-Hammerstein model.

Finally, a method based on tensor decompositions is proposed to decouple
the polynomial representation of the static nonlinearity in a parallel Wiener-
Hammerstein model. By getting rid of the cross-terms in the multivariate poly-
nomial, the model becomes easier to interpret and a possible reduction of the
number of parameters is realized.

The conclusions of this thesis, along with its main contributions and recom-
mendations for further work are provided in Chapter 6.

1.4 Publications
A large part of the material in this thesis is based on articles that appeared or
will appear in journals or international conference proceedings. This subsection
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makes the connection between this material and the publications it is based on.
Please see page 143 for a publication list by category.

The �rst part of Chapter 3 is based on an article that is published in Auto-
matica:

� Tiels, K. and Schoukens, J. (2014b). Wiener system identi�cation with
generalized orthonormal basis functions.Automatica, 50:3147{3154.

The initial ideas for this article were presented at the 2011 IEEE CDC and ECC
conference:

� Tiels, K. and Schoukens, J. (2011a). Identifying a Wiener system us-
ing a variant of the Wiener G-Functionals. In 50th IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC11),
Orlando, FL, USA, December 12{15.

The second part of Chapter 3 was presented at SYSID 2012:

� Tiels, K. , Heuberger, P. S. C., and Schoukens, J. (2012c). Reducing
the number of parameters in a Wiener-Schetzen model. In 16th IFAC
Symposium on System Identi�cation, Brussels, Belgium, July 11{13.

and its extension to MISO Wiener structures was presented at the 2012 IEEE
I2MTC conference:

� Tiels, K. , Heuberger, P. S. C., and Schoukens, J. (2012a). Parameter
reduction of MISO Wiener-Schetzen models using the best linear approx-
imation. In I2MTC 2012, IEEE International Instrumentation and Mea-
surement Technology Conference,Graz, Austria, May 13{16.

The third part in Chapter 3 was presented at ALCOSP 2013:

� Tiels, K. and Schoukens, J. (2013c). Iterative update of the pole locations
in a Wiener-Schetzen model. In 11th IFAC International Workshop on
Adaptation and Learning in Control and Signal Processing,Caen, France,
July 3{5.

The two Wiener-Hammerstein initialization methods in Chapter 5 were pre-
sented at IFAC 2014:

� Tiels, K. , Schoukens, M., and Schoukens, J. (2014a). Generation of initial
estimates for Wiener-Hammerstein models via basis function expansions.
In 19th World Congress of the International Federation of Automatic Con-
trol, Cape Town, South Africa, August 24{29.

� Schoukens, J.,Tiels, K. , and Schoukens, M. (2014b). Generating initial
estimates for Wiener-Hammerstein systems using phase coupled multi-
sines. In 19th World Congress of the International Federation of Auto-
matic Control, Cape Town, South Africa, August 24{29.
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The generalization of the second method to Wiener-Hammerstein structures
with polynomial nonlinearities of arbitrary degree, and experimental results
obtained using this method were processed in an article that has been submitted
for possible publication in Automatica:

� Tiels, K. , Schoukens, M., and Schoukens, J. (2014b). Initial estimates for
Wiener-Hammerstein models using phase-coupled multisines. Submitted
for possible publication in Automatica.

The simultaneous decoupling of quadratic, cubic, and �nally a mixture of quadratic
and cubic multivariate polynomials using tensor decompositions, which appears
in Chapter 5, was presented at the 2013 IEEE CDC conference:

� Tiels, K. and Schoukens, J. (2013b). From coupled to decoupled poly-
nomial representations in parallel Wiener-Hammerstein models. In 52nd

IEEE Conference on Decision and Control,Florence, Italy, December 10{
13.

The improved version of the decoupling method for multivariate polynomials of
mixed degrees was presented at IFAC 2014:

� Schoukens, M.,Tiels, K. , Ishteva, M., and Schoukens, J. (2014e). Identi-
�cation of parallel Wiener-Hammerstein systems with a decoupled static
nonlinearity. In 19 th World Congress of the International Federation of
Automatic Control, Cape Town, South Africa, August 24{29.

Most of the material was also presented at local conferences (only abstract):

� Tiels, K. and Schoukens, J. (2011b). Identifying a Wiener system using a
variant of the Wiener G-Functionals. In 30th Benelux Meeting on Systems
and Control, Lommel, Belgium, March 15{17.

� Tiels, K. , Heuberger, P. S. C., and Schoukens, J. (2012b). Parameter
reduction of SISO Wiener-Schetzen models. In 31th Benelux Meeting on
Systems and Control,Heijden, The Netherlands, March 27{29.

� Tiels, K. and Schoukens, J. (2013d). Iterative update of the pole locations
in a Wiener-Schetzen model. In 32nd Benelux Meeting on Systems and
Control, Hou�alize, Belgium, March 26{28.

� Tiels, K. and Schoukens, J. (2014a). Initial estimates for Wiener-Hammerstein
models via basis function expansions. In 33th Benelux Meeting on Systems
and Control, Heijden, The Netherlands, March 25{27.

and at international workshops (poster presentation):
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� Tiels, K. and Schoukens, J. (2011c). Parameter reduction of a Wiener
model using the best linear approximation. InEuropean Research Network
on System Identi�cation workshop (ERNSI 2011), Nice, France, Septem-
ber 25{28.

� Tiels, K. and Schoukens, J. (2012). Iterative update of the pole loca-
tions in a Wiener-Schetzen model. InEuropean Research Network on Sys-
tem Identi�cation workshop (ERNSI 2012), Maastricht, The Netherlands,
September 23{26.

� Tiels, K. and Schoukens, J. (2013a). Decoupling polynomial representa-
tions in parallel Wiener-Hammerstein models. InEuropean Research Net-
work on System Identi�cation workshop (ERNSI 2013), Nancy, France,
September 22{25.

� Tiels, K. , Schoukens, M., and Schoukens, J. (2014c). Initial estimates
for Wiener-Hammerstein models via phase-coupled multisines. InEuro-
pean Research Network on System Identi�cation workshop (ERNSI 2014),
Ostend, Belgium, September 21{24.

Besides the publications already mentioned, the collaboration with colleagues
at the department resulted in the following publications:

� Marconato, A., Schoukens, M.,Tiels, K. , Abu-Rmileh, A., and Schoukens,
J. (2012). Nonlinear block-oriented identi�cation for insulin-glucose mod-
els. In 31th Benelux Meeting on Systems and Control,Heijden, The
Netherlands, March 27{29.

� Marconato, A., Schoukens, M.,Tiels, K. , Widanage, W. D., Abu-Rmileh,
A., and Schoukens, J. (2014). Comparison of several data-driven non-
linear system identi�cation methods on a simpli�ed glucoregulatory sys-
tem example. IET Control Theory and Applications , 8:1921{1930.
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Chapter 2

Preliminaries

This chapter introduces the two basic starting points of this thesis: the best
linear approximation (BLA) and rational orthonormal basis functions (OBFs).
A linear approximation of a nonlinear system depends on the considered system
and on the excitation signal applied to it. Also, the orthogonality of the outputs
of the rational OBFs depends on the considered excitation signal. Therefore,
this chapter �rst presents the considered signals and systems. Next, the BLA
and the rational OBFs are introduced.

2.1 Considered signals

The excitation signals that are considered in this thesis are either Gaussian noise
signals or multisine signals. Both signals are de�ned below, and di�erences and
equivalences between both signals are discussed.

2.1.1 Gaussian noise and multisines

The Gaussian noise and multisine signals considered in this thesis are assumed
to be normalized so that they have �nite power.

De�nition 2.1 (Gaussian noise). A signal u(t) for t = 0 ; 1; : : : ; N � 1 is a
Gaussian noise signal if it is a random sequence drawn from a zero-mean nor-
mally distributed process with a user-de�ned power spectrumSUU ( !

2� ). Here,
SUU ( !

2� ) 2 R+ is a uniformly bounded function with a countable number of dis-
continuities.
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De�nition 2.2 (Multisine) . A signal u(t) is a multisine if

u(t) =
N= 2X

k= � N= 2+1

Uk ej 2� k
N t for t = 0 ; 1; : : : ; N � 1 ; (2.1)

where the Fourier coe�cients Uk = U� k
� = jUk jej� k are either zero (the har-

monic is not excited) or have a normalized amplitudejUk j = 1p
N

�U( k
N ), where

�U( !
2� ) 2 R+ is a uniformly bounded function ( �U( !

2� ) � CU =
p

2 < 1 ) with a
countable number of discontinuities.

A multisine is a periodic signal. Unlike the Gaussian noise signal, its power
spectrum is perfectly realized even for a �nite sample signal [Schoukens et al.,
2005].

2.1.2 Equivalence between both
The phases� k can be chosen such that the multisine is asymptotically normally
distributed, resulting in a random-phase multisine.

De�nition 2.3 (Random-phase multisine). A signal u(t) is a random-phase
multisine if it is a multisine (see De�nition 2.2) where the phases � k are inde-
pendently and identically distributed with the propertyE f ej� k g = 0 .

A random-phase multisine is asymptotically (number of excited harmonics
approaches in�nity for N ! 1 ) Gaussian distributed.

If the power of a random-phase multisine is asymptotically equal to that of
a Gaussian noise signal in each �nite frequency band, then both signals are said
to be Riemann-equivalent. They then belong to the same Gaussian Riemann-
equivalence class. This concept is important for the invariance of the BLA (see
Subsection 2.3.2).

De�nition 2.4 (Gaussian Riemann-equivalence class). A Gaussian noise signal
with power spectrumSUU ( !

2� ) (see De�nition 2.1) and a random-phase multi-
sine (see De�nition 2.3) belong to the same Gaussian Riemann-equivalence class
if [Schoukens et al., 2009a]

1
N

k ! 2X

k= k ! 1

Eu fj U(k)j2g =
1

2�

Z ! 2

! 1

SUU

� !
2�

�
d! + O(N � 1) 8k! i ;

with k! i =
�

! i N
2�f s

�
and 0 < ! 1 < ! 2 < �f s for i=1, 2 ;

where the expectationEu f�g is taken over the random realizations of the multi-
sine, U(k) is the discrete Fourier transform (DFT) of the multisine, and f s is
the sample frequency.
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Here, the DFT of a time domain signalu(t) for t = 0 ; 1; : : : ; N � 1 is denoted
by U(k) = U(ej! k ), and is given by

U(k) =
1

p
N

N � 1X

t =0

u(t)e� j 2� k
N t :

The inverse DFT is given by

u(t) =
1

p
N

N= 2X

k= � N= 2+1

U(k)ej 2� k
N t : (2.2)

Note that for the multisine in (2.1), U(k) =
p

NUk .

2.2 Considered systems
As the class of nonlinear systems is extremely large, we restrict ourselves in this
thesis to a subset of nonlinear systems, the so-called Wiener systems. Wiener
systems are roughly all time-invariant systems that are not explosive and that
can be arbitrarily well (the convergence criterion will be speci�ed later) approx-
imated by a fading memory system. The fading memory system will be modeled
by a convergent Volterra series. In a proper setting, Wiener systems can also
deal with discontinuous nonlinearities. The technical details will be speci�ed in
this section.

2.2.1 Uniform versus mean-square convergence
First, the di�erence between uniform and mean-square convergence is demon-
strated on a simple example. Consider therefore the sawtooth function in Fig-
ure 2.1. Two polynomials are plotted that approximate the sawtooth function
as well as possible. The �rst one converges uniformly, while the second one only
converges in mean-square sense.

The �rst polynomial is a Taylor series around the origin. It converges uni-
formly in the interval [ � 1; 1), since for every� > 0 and every point in the interval
[� 1; 1), the absolute value of the di�erence between the sawtooth function and
the polynomial can be made smaller than� , as long as the degree of the polyno-
mial is large enough (degree one su�ces in this case). The convergence interval
cannot be made larger, since the error cannot be made arbitrarily small in the
discontinuity points. In other words, the convergence interval is determined by
the approximated function.

The coe�cients of the second polynomial are determined by minimizing the
mean-square error (cfr. (1.1)) in the interval [� 2; 2]. The polynomial converges
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Figure 2.1: Approximation of a sawtooth function (black) by a Taylor series around
the origin (blue) and by a 20th-degree polynomial whose coe�cients are determined
by minimizing the mean-square error in the interval [ � 2; 2] (green).

in mean-square sense in this interval, since the mean-square error can be made
arbitrarily small in this interval by choosing a su�ciently large degree of the
polynomial. At a countable number of points, the polynomial approximation
can fail to converge. For that reason, there will be no uniform convergence in
that case. In this case, any �nite-length convergence interval could have been
chosen. In other words, the convergence interval is determined by the user. For
that reason, we choose mean-square convergence in this thesis.

In both cases, the approximation error can become arbitrarily large outside
the convergence interval. Care should be taken when a (polynomial) model is
used outside the interval in which it was estimated.

2.2.2 Volterra series

A Volterra series generalizes a Taylor series in the sense that it also captures
the dynamic behavior, i.e. the memory, of the system that is approximated.
Another way of looking at the Volterra series is that it generalizes the impulse
response of a linear time-invariant system to a nonlinear time-invariant system.

The responsey1(~t) of a linear dynamic system on any input u(~t) is given by
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the convolution of its impulse responsek1(~t) and the input u(~t):

y1(~t) = k1(~t) � u(~t)

=
Z + 1

�1
k1(~� )u(~t � ~� )d~� ;

(2.3)

where ~t denotes the continuous time. The generalization to nonlinear systems
is done using multidimensional impulse responses. A puredth-degree non-
linear dynamic system is characterized by itsd-dimensional impulse response
kd(~t1; : : : ; ~td). The responseyd(~t) of the system on any input u(~t) is given by
the d-dimensional convolution of its d-dimensional impulse response with the
input:

yd(~t) =
Z + 1

�1
� � �

Z + 1

�1
kd(~� 1; : : : ; ~� d)u(~t � ~� 1) � � � u(~t � ~� d)d~� 1 � � � d~� d : (2.4)

The output y(~t) of a large class of nonlinear systems can be written as

y(~t) =
DX

d=0

yd(~t) ; (2.5)

where (2.5) is the Volterra series, and where the impulse responseskd(~t1; : : : ; ~td)
are the Volterra kernels of the system.

The notations yd(~t) = K d[u(~t)] and y(~t) = K[ u(~t)] will be used later on,
where Kd[�] is the dth-order Volterra operator. Note that K d[�] is a multilinear
operator, i.e. the operator Kdf u1(~t); u2(~t); : : : ; ud(~t)g that is given by

Z + 1

�1
� � �

Z + 1

�1
kd(~� 1; : : : ; ~� d)u1(~t � ~� 1) � � � ud(~t � ~� d)d~� 1 � � � d~� d

is linear in one input ui (~t) when all other inputs are given, and by de�nition
Kd[u(~t)] := K df u(~t); u(~t); : : : ; u(~t)g.

A necessary condition for a system to belong to the class of Wiener systems
is that its Volterra kernels kd(~� 1; : : : ; ~� d) should tend to zero as ~� i tends to
in�nity for i = 1 ; : : : ; d.

2.2.3 The class of Wiener systems
Most of the systems that are considered in this thesis are assumed to belong to
the class of Wiener systems, which means that they have a convergent (in mean-
square sense) and uniformly bounded Volterra series representation [Schetzen,
2006].

19



Chapter 2: Preliminaries

In this thesis, we will also work with discrete-time systems, or at least model
them in discrete-time. The continuous time ~t is then replaced by discrete time
samplest=f s (or t for short), and the integrals in (2.3) and (2.4) are replaced
by sums:

yd(t) =
1X

� 1 =0

� � �
1X

� d =0

kd(� 1; : : : ; � d)u(t � � 1) � � � u(t � � d) :

The Volterra series is said to converge in mean-square sense if its output
converges to the system’s output in mean-square sense.

For periodic excitations, the output Fourier coe�cient Yd(k) at frequency
kf s
N is [Chua and Ng, 1979]

Yd(k) =
�

1
p

N

� d� 1 N= 2X

l 1 = � N= 2+1

N= 2X

l 2 = � N= 2+1

� � �
N= 2X

l d � 1 = � N= 2+1

K d(L k ; l1; l2; : : : ; ld� 1)U(l1)U(l2) � � � U(ld� 1)U(L k ) ;

with

L k = k �
d� 1X

i =1

l i :

Here, K d is the symmetrized frequency domain representation of the Volterra
kernel of degreed. The Volterra series is uniformly bounded if [Schoukens et al.,
1998]

1X

d=1

CK d CU
d � C1 < 1 ;

with CK d = max jK d j, and CU as in De�nition 2.2.
A system belongs to the class of Wiener systems if the following assumption

holds:

Assumption 2.5 (Existence of a convergent and uniformly bounded Volterra
series). There exists a uniformly bounded Volterra series, for which the multidi-
mensional Fourier transforms of the Volterra kernels are continuous functions
of the frequencies, and whose output converges in mean-square sense with proba-
bility 1 to the true system’s output for the considered class of excitation signals.

For systems satisfying Assumption 2.5, it holds that if the system is excited
by a periodic signal, the steady-state output is also periodic with the same
period [Boyd et al., 1984]. These systems are called PISPO (period in same
period out) systems. This includes systems with saturation and discontinuous
nonlinearities, but it excludes chaotic behavior, sub-harmonics, and hysteresis.
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2.2.4 Universal approximation
In the context of this thesis, universal approximators are model structures that
can arbitrarily well approximate the behavior of systems belonging to the class
of Wiener systems (or PISPO systems) in mean-square sense.

Parallel Wiener and parallel Wiener-Hammerstein models are known to be
universal approximators, without any constraint on the excitation class [Schet-
zen, 2006]. Other approximation properties of these block-oriented model struc-
tures have been shown in the past.

Palm [1979] showed that every discrete-time, nonlinear system with �nite
memory and a continuous input/output mapping can be uniformly approxi-
mated by a �nite sum of parallel Wiener-Hammerstein branches.

Korenberg [1991] showed that discrete-time systems that have a �nite-order
Volterra series representation and �nite memory can be exactly represented
by a �nite sum of parallel Wiener branches. Korenberg [1991] also provides
an upper bound for the number of parallel Wiener branches that is needed to
exactly represent a Volterra functional of a given order.

If the class of systems is restricted to fading memory systems, uniform con-
vergence of the Volterra series can be shown for bounded inputs [Boyd and
Chua, 1985]. \Intuitively, an operator has fading memory if two input signals
which are close in the recent past, but not necessarily close in the remote past,
yield present outputs which are close" [Boyd and Chua, 1985]. Discontinuous
nonlinearities are then no longer allowed, but the bound on the input can be
set by the user.

The particular model structure that is studied in this thesis is the Wiener-
Schetzen model. The Wiener-Schetzen model has a parallel Wiener structure,
and is a universal approximator as well.

2.3 The best linear approximation
Linear approximations of nonlinear systems can be very useful, for example,
to gain insight in the behavior of the system. In this thesis, the best linear
approximation (BLA) will be extensively used to initialize the dynamics in
nonlinear block-oriented models. After a formal de�nition of the BLA and a
brief overview of the existence and invariance of the BLA, it is shown that the
BLA can be used to initialize the dynamics in some block-oriented models.

2.3.1 De�nition
The BLA of a system with input u(t) and output y(t) is de�ned for a class
of input signals as the linear system whose output approximates the system’s
output best in mean-square sense around the operating point, i.e.
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De�nition 2.6 (Best linear approximation, Pintelon and Schoukens [2012]).

GBLA (k) := arg min
G (k )

Eu

n
k �Y (k) � G(k) �U(k)k2

2

o
; (2.6)

with (
�u(t) = u(t) � E f u(t)g
�y(t) = y(t) � E f y(t)g

;

where GBLA is the frequency response function (FRF) of the BLA, and where
the expected valueEu f�g in (2.6) is the ensemble average over the given class
of input signals.

In the remainder of the thesis, it is assumed that the mean values are re-
moved from the signals when a BLA is calculated. The notationsu and y will
be used, instead of �u and �y.

2.3.2 Existence and invariance
If the BLA exists, the output spectrum of the system can always be written as

Y (k) = GBLA (k)U(k) + YS (k) + V (k) ; (2.7)

where the term YS accounts for the nonlinear contributions that cannot be cap-
tured by the linear model, and whereV (k) accounts for additive measurement
noise on the output. The additive \noise source" YS is completely determined
by the system and the particular realization of the input, but it behaves as noise
due to the random behavior of the input. Therefore, it is called the nonlinear
noise source. For excitation signals belonging to the same Gaussian Riemann-
equivalence class (De�nition 2.4), and for systems belonging to the class of
Wiener systems (Assumption 2.5), the BLA is guaranteed to exist [Schoukens
et al., 1998], and the BLA and the power spectrum of the nonlinear noise source
are invariant [Schoukens et al., 2009a]. If the BLA exists, the minimizer in (2.6)
can be obtained as

GBLA (k) =
SY U (k)
SUU (k)

; (2.8)

where the expectation in the cross-power and auto-power spectra is again an en-
semble average over the considered class of input signals. Note that for periodic
excitations, (2.8) reduces to [Schoukens et al., 2012]

GBLA (k) = Eu

�
Y (k)
U(k)

�
: (2.9)

The invariance of the BLA is very useful. It means that the BLA can be
estimated by averaging (2.8) or (2.9) over a number of realizations of signals
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R(q) f (x) S(q)
u(t) x(t) w(t) y(t)

Figure 2.2: A Wiener-Hammerstein system consists of a static nonlinear block ( f (x))
sandwiched in between to linear dynamic blocks (R(q) and S(q)).

belonging to the same Riemann-equivalence class. This is the main idea in the
robust method [Schoukens et al., 2012], which provides nonparametric estimates
of the BLA, the noise variance, the nonlinear variance, and the total (= noise
+ nonlinear) variance.

2.3.3 Initialization of dynamics in block-oriented models
The BLA is extensively used in this thesis to initialize the dynamics in some
block-oriented models.

Consider the Wiener-Hammerstein system in Figure 2.2. Due to Bussgang’s
theorem [Bussgang, 1952], the BLA of a static nonlinear block that has a Gaus-
sian input, is equal to a constant gain. Since Gaussianity of a signal is pre-
served after passing through a linear dynamic block, the BLA of the Wiener-
Hammerstein system in Figure 2.2 is proportional to the product of the under-
lying dynamics for a Gaussian input u(t). This is summarized in the following
theorem.

Theorem 2.7. The BLA of a Wiener-Hammerstein system

x(t) = R(q)u(t)
w(t) = f (x(t))
y(t) = S(q)w(t)

(2.10)

excited by a Gaussian noise (see De�nition 2.1) or by a random-phase multisine
(see De�nition 2.3), is equal to

GBLA (k) = cBLA R(k)S(k) + O(N � 1) ;

where cBLA is a constant that depends upon the odd nonlinearities inf (x) and
the power spectrum of the excitation signal, and whereN is the number of
samples in the excitation signal.

Proof. This is shown in Pintelon and Schoukens [2012, pp. 85{86].

The result in Theorem 2.7 shows that the poles and the zeros of the under-
lying linear dynamics in a Wiener-Hammerstein system can be easily obtained
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from the BLA using a Gaussian input. This generalizes to parallel Wiener-
Hammerstein systems for its poles, but not for its zeros.

The derivation of the result in Theorem 2.7 for a polynomial nonlinearity
f (x) is given in Appendix 2.A. A similar derivation for a di�erent type of mul-
tisine will be made in Section 5.3. Moreover, the derivation for the special
case of a Wiener system excited by a random-phase multisine will be used in
Section 3.5.

2.4 Orthonormal basis functions
The input/output behavior of a linear dynamic system can be represented in var-
ious ways. An orthonormal basis function (OBF) expansion is one of them. The
advantages of an OBF expansion are its ability to represent linear dynamic sys-
tems that have long memory with a small number of coe�cients (parameters),
and the fact that the representation is linear in those parameters. This allows
for a convenient estimation of the coe�cients from measured input/output data.
Furthermore, the coe�cients can be estimated in a numerically reliable way due
to the orthonormality of the OBFs. Moreover, prior knowledge of the system
dynamics can be incorporated in the OBFs. Here, we give a brief overview of
OBFs. A profound reference work on OBFs is the book Heuberger et al. [2005].

2.4.1 Finite impulse response model
The input/output behavior of a linear dynamic system can be obtained from
its impulse response (cfr. (2.3)), which for discrete-time systems corresponds to
an in�nite sum

y(t) =
1X

� =0

g(� )u(t � � ) :

In practice, the impulse response is determined on a discrete number of points
in time, resulting in a �nite impulse response (FIR) representation

ŷ(t) =
nX

� =0

g(� )u(t � � ) : (2.11)

Using the backward shift operator q� 1 (q� 1u(t) = u(t � 1)), the FIR model can
be represented as a polynomial inq� 1:

ŷ(t) = G(q)u(t) ; with G(q) =
nX

� =0

g(� )q� � ; (2.12)

where the polynomial coe�cients g(� ) are the impulse response coe�cients.
The input/output representation in (2.11) is linear in these coe�cients. They
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can thus be obtained from input/output data by solving a linear least-squares
problem, which can be solved in closed-form.

To obtain a decent approximation for systems with a long memory, however,
a large number of FIR coe�cients can be required (n large). This may result
in a large variance error, since the variance is proportional to the number of
estimated parameters. Recently, regularization methods are proposed that can
signi�cantly reduce this problem [Chen et al., 2012] (see also Birpoutsoukis and
Schoukens [2015] for regularization on Volterra kernels).

2.4.2 In�nite impulse response models
An in�nite impulse response (IIR) representation with a �nite number of co-
e�cients can be obtained by introducing a denominator polynomial in (2.12).
This results in a transfer function representation

y(t) =
B (q)
A(q)

u(t) ; with
B (q)
A(q)

=
P n b

i =0 bi q� i

1 +
P n a

i =1 ai q� i (2.13)

that, however, is nonlinear in the coe�cients ai of the denominator polyno-
mial. To obtain an IIR representation that is linear in its parameters, a �xed
denominator

A(q) = 1 +
n aX

i =1

ai q� i =
n aY

i =1

(1 � � i q� 1)

can be used, where the� i s are user-speci�ed pole locations. Hence, the transfer
function representation in (2.13) can be written as an expansion

y(t) =
n bX

i =0

bi F 6?
i (q)u(t) ; (2.14)

in terms of the set of functions

F 6?
i (q) =

q� i

A(q)
;

where thebi s are the coe�cients of the expansion. The representation in (2.14)
is linear in its parametersbi . These parameters can be determined from a linear
regression, where the outputs of the set of functionsF 6?

i , i.e. x6?
i (t) = F 6?

i (q)u(t),
are the regressors. Moreover, prior knowledge of the system dynamics can be
incorporated in the choice of the poles� i . Furthermore, the approximation
of dynamic systems with a long memory is no problem, since the expansion
representation is an IIR representation. Nevertheless, the set of functionsF 6?

i
are in general not orthogonal, which may lead to a numerically ill-conditioned
estimation of the parametersbi .
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The importance of a well-conditioned estimation is demonstrated in Ap-
pendix 2.B, where the approximation of a nonlinear function by orthogonal and
non-orthogonal polynomials is considered.

2.4.3 Rational orthonormal basis functions
The orthogonality that is considered here is with respect to the inner prod-
uct on the Hardy spaceH 2(E) of functions that are squared integrable on the
unit circle T and analytic on the exterior of the unit disk including in�nity
E. This basically means that stable, discrete-time, proper, rational transfer
functions are considered. The inner product between two transfer functions
F1(z); F2(z) 2 H 2(E) is denoted by

hF1; F2i :=
1

2�

Z �

� �
F1(ej! )F2

� (ej! )d! =
1

2�j

I

T
F1(z)F2

�
�

1
z�

�
dz
z

;

with F1(z) and F2(z) the Z -transforms of the impulse responsesf 1(� ) and f 2(� ).
Two transfer functions F1 and F2 are orthonormal if

hF1; F2i = 0 and hF1; F1i = hF2; F2i = 1 :

A set of orthonormal transfer functions forms a basis if any proper, �nite-
dimensional, stable, rational transfer function can be written as a linear com-
bination of the orthonormal transfer functions in the set, where the coe�cients
of the linear combination need to decay to zero.

The outputs x1(t) and x2(t) of two orthonormal transfer functions F1(q) and
F2(q) that share the same input u(t) are orthogonal if the input u(t) is white.
This can be seen as follows. Using Parseval’s theorem, the generalized expected
value �E f x1(t)x2(t)g can be written as

�E f x1(t)x2(t)g =
1

2�

Z �

� �
F1(ej! )F2

� (ej! )jU(ej! )j2d! ;

and reduces to the inner product of two orthonormal transfer functions if the
input is white ( jU(ej! )j2 is constant). Hence, the linear regression in (2.14) is
optimally conditioned when OBFs and a white input are used. In general, we
will not use white inputs in this thesis. One obvious reason is that sampled sig-
nals are considered. Hence, excitation will only go up to the Nyquist frequency
to avoid aliasing. White inputs, which require an in�nite bandwidth, can thus
not be achieved. Nevertheless, the OBFs that will be considered are quite robust
with respect to the coloring of the input [Heuberger et al., 2005, Chapter 6].
If numerical conditioning would still be a problem, then the transfer functions
can be made orthogonal for the speci�c data set at hand [Bultheel et al., 2004].
The drawback is that no closed-form exists for those transfer functions.
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2.4.4 Pole locations and OBF structures
The considered OBFs in this thesis in its most general form are the Takenaka-
Malmquist basis functions [Heuberger et al., 2005]

Fi (q) =
p

1 � j � i j2

q � � i

i � 1Y

k=1

1 � � k
� q

q � � k
; i = 1 ; 2; : : : ; � k 2 C ; j� k j < 1 ; (2.15)

which can be obtained using the Gram-Schmidt procedure on basis functions of
the form

F 6?
i (q) =

1
q � � i

:

The Takenaka-Malmquist basis functions form a complete basis if and only if
the so-called Sz�asz condition

1X

i =1

(1 � j � i j) = 1

is ful�lled. This basically means that the poles � i cannot converge (too fast) to
the unit circle.

Speci�c OBF structures can be obtained for speci�c choices of the pole
locations � i . The most simple of these structures is the pulse basis, which
corresponds to choosing all pole locations� i in the origin and thus corresponds
to an FIR model. When choosing all poles� i identical and real, the Laguerre
basis is obtained. A two-parameter Kautz basis is obtained when choosing a
pole structure f � 1; � 2; � 1; � 2; : : :g, where � 1 and � 2 are either real or complex
conjugated. Generalized orthonormal basis functions (GOBFs) are obtained
when a �nite set of n� poles is periodically repeated, i.e.

� i +( k � 1)n � = � i ; i = 1 ; 2; : : : ; n� ; k = 1 ; 2; : : : : (2.16)

2.4.5 Error bound
Intuitively, one would place the poles � i as close as possible to the true poles
of the system. This intuition is con�rmed by an error bound that can be ob-
tained when a �nite-order rational transfer function is approximated by a linear
combination of a �nite number of GOBFs.

Since GOBFs form a complete basis, every stable, strictly proper, rational
transfer function G(q) can be represented exactly by a series expansion in terms
of the GOBFs Fi (q):

G(q) =
1X

i =1

bi Fi (q) :
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Provided furthermore that G(q) is a �nite-order rational transfer function
with the �nite set of true poles p1; p2; : : : ; pn , an error bound on the model error
can be given whenG(q) is approximated by a truncated series expansion

Ĝ(q; nrep ) =
nX

i =1

bi Fi (q) ;

with n = nrep n� , and nrep the number of repetitions of the �nite set of poles
f � 1; : : : ; � n � g. Let

� = max
k

n �Y

i =1

����
pk � � i

1 � pk � i

���� ; (2.17)

then there exists a �nite cGOBF 2 R, such that for any C2 2 R, 0 � � < C 2 < 1
[de Vries and Van den Hof, 1998; Heuberger et al., 1995]

kG(q) � Ĝ(q; nrep )k1 � cGOBF
Cn rep

2
1 � C2

; (2.18)

which shows thatG(q) can be well approximated with a small number of GOBFs
if the poles � i are close to the true polespk .

To enable the representation of proper (not just strictly proper) transfer
functions, one extra basis functionF0(q) = 1 can be introduced. SinceF0(q) is
a pure direct feed-through term, which is not in the function space of strictly
proper, �nite-dimensional, stable, rational transfer functions, F0(q) is orthogo-
nal with respect to the other basis functions (see also Appendix 2.C).

In general, procedure (2.15) leads to complex valued functions, but this can
be easily overcome by a simple unitary transformation if non-real poles come in
conjugate pairs.

2.5 Conclusion
This thesis considers systems belonging to the class of Wiener systems, i.e. sys-
tems with a uniformly bounded and convergent (in mean-square sense) Volterra
series representation. In particular, the approximation of some block-oriented
models is considered. Concerning the choices that need to be made when ap-
proximating such systems (see Figure 1.1), the following choices are made in
this thesis: Gaussian noise and multisine excitations, a Wiener Schetzen model,
and convergence in mean-square sense.

A Wiener-Schetzen model structure will be used, as it is known that this
model is a universal approximator, i.e. it can approximate systems belonging
to the class of Wiener systems arbitrarily well in mean-square sense.

Mean-square convergence is chosen, as the convergence interval can be set
by the user in that case.

28



2.5 Conclusion

Gaussian noise and random-phase multisine excitations will be used, as the
best linear approximation of some block-oriented models provides prior knowl-
edge of the dynamics of these block-oriented models when Gaussian distributed
excitation signals are used.

This prior knowledge of the dynamics of the system will be incorporated in
the OBFs that describe the linear dynamics in the Wiener-Schetzen model.
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Appendix

2.A BLA of a polynomial Wiener-Hammerstein
system

Consider the Wiener-Hammerstein system in Figure 2.2 given by (2.10), where
f (x) is a polynomial:

f (x) =
1X

d=0


 dxd :

When operating in steady-state, the output spectrum of the Wiener-Hammerstein
system is equal to

Y (k) = 
 0 +
1X

d=1


 dYd(k) ;

whereYd(k) is the output spectrum of a Wiener-Hammerstein system that con-
tains a pure dth-degree nonlinearity (f (x) = xd). The multiplication in the time
domain corresponds to a convolution in the frequency domain, and thus (also
keeping in mind the normalization factor in the inverse DFT in (2.2))

Yd(k) =
�

1
p

N

� d� 1

S(k)
N= 2X

l 1 ;l 2 ;:::;l d = � N= 2+1

dY

i =1

R(l i )U(l i ) ; (2.19)

such that
P d

i =1 l i = k. The only terms in Yd(k) that contribute to the BLA
are those where the product

Q d
i =1 U(l i ) has a phase� k = \ U(k). Terms that

also depend on� l 6= k will be eliminated in the expected valueEu f Y (k)U � (k)g in
(2.8) or in the expected value in (2.9). The contributing terms are those where
one of the l i s is equal to k, and where the other factors combine pairwise to
X (l)X (� l) = jX (l)j2. Note that this is only possible if d is odd. Summing up
all the terms in (2.19) that contribute to the BLA results in

Yd;BLA (k) = d!S(k)R(k)U(k)

0

@ 1
N

N= 2X

l = � N= 2+1

jX (l)j2
1

A

d � 1
2

+ O(N � 1) : (2.20)

For example, for f (x) = x3, the BLA is equal to

GBLA (k) = 6 S(k)R(k)

0

@ 1
N

N= 2X

l = � N= 2+1

jX (l)j2
1

A + O(N � 1) :

The error term O(N � 1) is due to the fact that there are six permutations of
(k; l; � l) if k 6= l , while there are only three permutations of (k; k; � k).
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2.B Intermezzo: (non-)orthogonal polynomials
The importance of a well-conditioned regression matrix is demonstrated in this
appendix on a simple example. The condition number of the regression matrix
indicates the loss of precision in a linear regression problem in the sense that
the logarithm of the condition number is an estimate for the number of digits
that is lost when solving the linear regression problem. In the optimal case of
orthonormal regressors, the condition number is one, and no precision is lost.

Consider the smooth saturation function y(t) = atan( u(t)) in Figure 2.3.
Ten thousand input/output samples are collected where the inputu(t) is Gaus-
sian with zero mean and variance four. Two polynomial models are used to
approximate the function starting from these data. The �rst model has non-
orthogonal regressors, while the second model has nearly orthonormal regres-
sors.

The �rst model has monomials of the form ud(t) up to degree 15 as regressors.
The approximation quality of this model is quite poor, since the estimation of
the polynomial coe�cients is ill-conditioned in this case. The condition number
of the regression matrix is equal to 2:09 � 1012, indicating that about 12 digits
are lost. Hence, only the �rst three digits of the polynomial coe�cients are
correct. This leads to a poor approximation of the function.

The second model has Hermite polynomials [Schetzen, 2006] up to degree
15 as regressors. These regressors are orthogonal for a Gaussian inputu(t),
i.e. the expected value of the product of two regressors is only non-zero if both
regressors are the same. To obtain orthonormal regressors, i.e. where the non-
zero expected values are equal to one, we normalize the Hermite polynomials,
and obtain the expression

Hd(u(t)) =
1

p
d!

bd=2cX

i =0

(� 1)i d!
i !(d � 2i )!

�
1
2

� i �
u(t)
� u est

� d� 2i

for the dth-degree normalized Hermite polynomial, where� 2
u est

is the variance
of the input signal that was used to estimate the polynomial coe�cients. The
condition number of the regression matrix (1:87 � 103 in this case) is already
much smaller than that of the ordinary polynomial model, resulting in a better
approximation of the function. The condition number is not equal to one due
to the fact that u(t) is not perfectly Gaussian, as only ten thousand samples are
used. If the number of samples is increased, the condition number decreases.

2.C Extra basis function
The orthogonality of the extra basis function F0(q) = 1 with respect to the basis
functions in the set of GOBFs f Fi (q)g (i = 1 ; 2; : : :) can be shown by working
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Figure 2.3: Approximation of the smooth saturation y = atan( u) (black) by ordinary
polynomials (blue) and by Hermite polynomials (green) up to degree 15.

out the inner products hFi ; F0i .

Proof. Consider the basis functionsF 6?
i (q), given by F 6?

i +( k � 1)n �
(q) = 1

(q� � i ) k for
i = 1 ; : : : ; n� and k = 1 ; 2; : : :. We now prove that these basis functions are
orthogonal to F0(q) = 1, by showing that the inner product

hF 6?
i +( k � 1)n �

; F0i =
1

2�j

I

T
F 6?

i +( k � 1)n �
(z)F �

0

�
1
z�

�
dz
z

is equal to zero. Two cases are considered:� i 6= 0 and � i = 0.

1. � i 6= 0

hF 6?
i +( k � 1)n �

; F0i =
1

2�j

I

T

1
z(z � � i )k dz

=
1

(k � 1)!
lim

z ! � i

dk � 1

dzk � 1

�
1
z

�
+ lim

z ! 0

1
(z � � i )k

=
1

(k � 1)!
(� 1)k � 1(k � 1)! � � k

i + ( � 1)k � � k
i

= � � k
i

�
(� 1)k � 1 + ( � 1)k �

= 0
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2. � i = 0

hF 6?
i +( k � 1)n �

; F0i =
1

2�j

I

T

1
zk+1 dz

=
1
k!

lim
z ! 0

dk

dzk

�
1
�

= 0

The OBFs Fi (q) are linear combinations of the basis functionsF 6?
i (q) [Heuberger

et al., 2005] and are thus orthogonal toF0(q) = 1. Since the norm of F0(q) is
equal to one, the setf Fi (q)g (i = 0 ; 1; : : :) is a set of OBFs.
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Chapter 3

Making Wiener-Schetzen
less parameter expensive

This chapter considers the identi�cation of block-oriented models with a (paral-
lel) Wiener structure (see Figures 1.2a and 1.3b). After a brief introduction on
Wiener system applications and identi�cation methods, the approximation of a
Wiener system by a Wiener-Schetzen model is considered. In particular, the dis-
advantage of a Wiener-Schetzen model to be parameter expensive is addressed
in three di�erent ways. First, a proper choice of the orthonormal basis functions
(OBFs) is made based on the poles of the best linear approximation (BLA) of
the system. Next, the BLA itself is chosen as one of the basis functions. Finally,
an iterative update scheme for the pole locations is proposed.

3.1 Wiener system identi�cation
Since Wiener models consist of the cascade of a linear dynamic system and a
nonlinear static system, they can be used to model linear systems with sensor
nonlinearities. Actual applications where Wiener models have been used are e.g.
the modeling of biological systems [Hunter and Korenberg, 1986], a pH process
[Kalafatis et al., 1995; Norquay et al., 1998], a distillation column [Norquay
et al., 1999; Bloemen et al., 2001], and a DC motor [Peng and Dubay, 2011].

Several methods have been proposed to identify Wiener models, see for ex-
ample Wigren [1993] for a recursive prediction error method, Greblicki [1994] for
a nonparametric approach where the nonlinearity is assumed to be invertible,
Hagenblad et al. [2008] for the maximum likelihood estimator (MLE), Pelck-
mans [2011] for an approach built on the concept of model complexity control,
and Giri et al. [2013] for a frequency domain identi�cation method where mem-
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ory nonlinearities are considered. More complex parallel Wiener systems are
identi�ed in Westwick and Verhaegen [1996] using a subspace method, G�omez
and Baeyens [2004] using an OBF approach where the nonlinearity is assumed
to be invertible, and in Schoukens and Rolain [2012b] using a parametric ap-
proach that needs experiments at several input excitation levels. Some more
Wiener identi�cation methods can be found in Giri and Bai [2010].

3.2 Setup

This chapter considers the approximation of Wiener systems with Wiener-
Schetzen models. The assumptions made on the Wiener system, the excita-
tion signal, and the Wiener-Schetzen model are listed in this section for future
reference.

3.2.1 System

The data-generating system is assumed to be a single input single output (SISO)
discrete-time Wiener system (see Fig. 3.1). Parallel Wiener systems can be
handled as well, but, without loss of generality, the focus is on the approximation
of a single-branch Wiener system, to keep the notation simple. In Section 3.4,
however, only single-branch Wiener systems are considered.

Note that the representation in Figure 3.1 is not unique. An equivalent
representation is shown in Figure 3.2, in whichceq is an arbitrary non-zero
constant.

Below, we list the assumptions made on the Wiener system.

Assumption 3.1 (Proper, �nite-dimensional, stable, rational transfer func-
tion) . The linear dynamic systemG(q) is a proper, �nite-dimensional, rational
transfer function. The Z -transform G(z) of its impulse response is analytic in
jzj > 1 and squared integrable on the unit circle.

Assumption 3.2 (Known order) . The order of G(q) is known.

The order of G(q) will be denoted by np, while its poles will be denoted by
pi (i = 1 ; : : : ; np).

Assumption 3.3 (Non-even nonlinearity). The function f (x) is non-even around
the operating point.

Even nonlinearities are ruled out as the BLA of the Wiener system would
otherwise be zero, making it impossible to use the result in Theorem 2.7 to
initialize the dynamics of the Wiener-Schetzen model.
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G(q) f (x)
u(t) x(t) y0(t)

Figure 3.1: The data-generating system is a discrete-time Wiener system (G(q) is a
discrete-time linear dynamic system, f (x) is a static nonlinear function).

ceqG(q) f
�

x
ceq

�u(t) ceqx(t) y0(t)

Figure 3.2: An arbitrary non-zero scaling factor ceq can be exchanged between the
linear dynamic block and the static nonlinear block in the Wiener system in Figure 3.1,
without changing the input/output behavior of the system.

Assumption 3.4 (Polynomial nonlinearity) . The function f (x) is a polynomial
of known degreeD :

f (x) =
DX

d=0


 dxd : (3.1)

More general functions can be approximated arbitrarily well in mean-square
sense by (3.1) over any �nite interval (see also Subsection 2.2.1).

3.2.2 Signals
For simplicity, in this chapter, the excitation signal u(t) is chosen to be a
random-phase multisine with �nite power (see De�nition 2.3). Nevertheless,
the theory applies for a much wider class of Riemann-equivalent signals (see
Subsection 2.3.2). In this case, these are the extended Gaussian signals, which
among others include Gaussian noise.

The intermediate signal x(t) = G(q)u(t) is not available for measurement.

Assumption 3.5 (No output noise). The output is measured without noise.

The situation of Assumption 3.5, which is generally impossible to ful�ll, is
�rst considered. Afterwards, the situation where the output signal is measured
in the presence of an additive, zero-mean measurement noisev(t) is considered,
i.e.

y(t) = f (x(t)) + v(t)
= y0(t) + v(t) :

Assumption 3.6 (Zero-mean �ltered white measurement noise). The mea-
surement noisev(t) is obtained by �ltering a sequence of independent random
variables, that are independent of the excitation signalu(t) and that have a zero
mean and a bounded variance, by a stable monic �lter.
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F0(q)

...

Fn (q)

f̂
(x

0
;:

::
;x

n
)

u(t)

x0(t)

xn (t)

ŷ(t)

Figure 3.3: The measured input/output behavior of the system is approximated by a
Wiener-Schetzen model (F1(q); : : : ; Fn (q) are GOBFs, F0(q) is a feed-through term,
f̂ (x0 ; : : : ; x n ) is a multivariate polynomial).

The excitation signal u(t) and the steady-state, noise-corrupted output sig-
nal y(t) are measured att = 0 ; : : : ; N � 1.

3.2.3 Model

The system’s input/output behavior is approximated by a Wiener-Schetzen
model (see Figure 3.3), where we chooseF1(q); : : : ; Fn (q) to be GOBFs (see
Subsection 2.4.4). The extra basis functionF0(q) = 1 is added as well.

The multivariate polynomial f̂ (x0; : : : ; xn ) is implemented in terms of multi-
variate Hermite polynomials, the so-calledQ-polynomials [Schetzen, 2006] (see
Appendix 3.A), to improve numerical conditioning. As this has no consequence
for the further results, however, and to keep the notation simple, the notation
will be in terms of ordinary polynomials.

3.3 OBFs based on the poles of the BLA

Based on Tiels and Schoukens [2014].

This section considers the approximation of (parallel) Wiener systems with
Wiener-Schetzen models. The OBFs that describe the linear dynamics in the
Wiener-Schetzen model will be constructed based on the poles of the BLA of
the system. The coe�cients of the multivariate polynomial that describes the
static nonlinearity in the Wiener-Schetzen model are determined via a linear
regression. The convergence of this approach is analyzed in this section in an
output-error framework. This approach and its analysis are the starting point
for the parameter reduction methods developed in the remainder of this chapter.
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3.3.1 Basic idea
The linear dynamics in a Wiener-Schetzen model are described in terms of
orthonormal basis functions (OBFs). Although any set of OBFs can be used,
the choice is important for the convergence rate. If the pole locations of the
OBFs match the poles of the underlying linear dynamic system closely, then this
linear dynamic system can be described accurately with only a limited number
of OBFs [Heuberger et al., 2005] (see also Subsection 2.4.5). In the original
ideas of Wiener [Wiener, 1958], Laguerre OBFs were used. As Laguerre OBFs
are characterized by a real-valued pole, they are suitable for describing well-
damped systems with dominant �rst-order dynamics. For describing moderately
damped systems with dominant second-order dynamics, using two-parameter
Kautz OBFs is more appropriate [da Rosa et al., 2007; Van den Hof et al., 1995].
We choose generalized OBFs (GOBFs), since they can deal with multiple real
and complex valued poles [Heuberger et al., 2005].

Since the asymptotic BLA (N ! 1 ) has the same poles asG(q) (special case
of Theorem 2.7), the poles calculated from the estimated BLA are excellent
candidates to be used in constructing the GOBFs. Since the BLA will be
estimated from a �nite data set (and thus N �nite), the poles calculated from
the estimated BLA will di�er from the true poles. Extensions of the basis
functions (nrep > 1) will be used to compensate for these errors (see (2.18)).

3.3.2 Identi�cation procedure (no output noise)
The identi�cation procedure can be summarized as:

1. Estimate the BLA and calculate its poles.

2. Use these pole estimates to construct the GOBFs.

3. Estimate the multivariate polynomial coe�cients.

These steps are now formalized and the asymptotic behavior (N ! 1 ) of the es-
timator is analyzed. This subsection considers the situation without disturbing
noise. The in
uence of disturbing noise is analyzed in the next subsection.

Note that the procedure to construct GOBFs from a set of poles is not unique
as the ordering of the poles is not �xed. Two sets of GOBFs constructed from
the same set of poles, but with a di�erent ordering of the poles, are related to
each other via a unitary transformation.

Identify the BLA and calculate its poles

First, a nonparametric estimate of the BLA is calculated. Since the input is peri-
odic, the BLA is estimated as ĜBLA (k) = Y (k )

U (k ) (see also (2.9)). The parametric
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estimate, developed in (3.2), is shown to converge toGBLA (k) = Eu

n
Y (k )
U (k )

o

for periodic excitations when the number of excited frequencies in the multi-
sine grows to in�nity [Schoukens et al., 1998]. Note that Eu f Y (k)g = 0 and
Eu f U(k)g = 0. For random excitations, the classical frequency response esti-
mates (division of cross-power and auto-power spectra) can be used [Pintelon
and Schoukens, 2012], or more advanced FRF measurement techniques can be
used, like the local polynomial method [Pintelon et al., 2010].

Next, a parametric model is identi�ed using a weighted least-squares esti-
mator [Schoukens et al., 1998]

�̂ (N ) = arg min
�

K N (� ) ; (3.2a)

where the cost function K N (� ) is equal to

1
N

N= 2X

k=1

W (k)
���ĜBLA (k) � GM (k; � )

���
2

: (3.2b)

Here, W (k) 2 R+ is a deterministic, � -independent weighting sequence, and
GM (k; � ) is a parametric transfer function model

GM (k; � ) =
P n b

l =0 bl e� j 2� k
N l

P n a
l =0 al e� j 2� k

N l

=
B � (k)
A � (k)

;

� =
�
a0 � � � an a b0 � � � bn b

� T ;

(3.2c)

with the constraints k� k2 = 1 and the �rst non-zero element of � positive to
obtain a unique parameterization. Under Assumption 3.2, we put na = np,
where np is the known order of G(q). We also need a regularity condition on
the parameter set � .

Assumption 3.7 (Regularity condition on � , Schoukens et al. [1998]). The
parameter set � is identi�able if the system is excited by a random-phase multi-
sine u(t) with �nite power (see De�nition 2.3) and with a su�cient number of
excited frequencies.

This assumption requires that enough information is present in the data to
be able to identify the parameter set of the parametric BLA.

Remark 3.8. To be able to show consistency of the estimation of the paramet-
ric model, it is assumed in Schoukens et al. [1998] that the number of excited
frequencies grows to in�nity when the number of data pointsN tends to in�nity.
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Eventually, the poles p̂i (i = 1 ; : : : ; np) of the parametric model GM (k; �̂ ) are
calculated. The following lemma shows that good pole estimates are obtained.

Lemma 3.9 (Bound on � pi ). Consider a discrete-time Wiener system, with
a static nonlinear system f (x) and an LTI system G(q), excited by a random-
phase multisineu(t) with �nite power (see De�nition 2.3). Let pi ( i = 1 ; : : : ; np)
be the poles ofG(q) and p̂i be the pole estimates, obtained using the weighted
least-squares estimator(3.2). Then under Assumptions 2.5, 3.1{3.3, 3.5, and
3.7, � pi := p̂i � pi is an Op(N � 1=2).

Proof. The proof can be found in Appendix 3.B.

Construct the GOBFs

Next, the GOBFs are constructed with these pole estimates (see (2.15) and (2.16),
with � i = p̂i ), and the intermediate signalsx l (t) = Fl (q)u(t) ( l = 0 ; : : : ; n) (see
Fig. 3.3) are calculated. The following lemma shows that the true intermediate
signal x(t) can be approximated arbitrarily well by a linear combination of the
calculated signalsx l (t).

Lemma 3.10 (Bound on � x). Consider the setting of Lemma 3.9. LetF0(q) = 1 ,
and let Fl (q) ( l = 1 ; 2; : : :) be GOBFs, constructed from the �nite set of poles
f p̂1; : : : ; p̂n p g. Let x(t) = G(q)u(t) and x l (t) = Fl (q)u(t) be the intermediate
signals in the system and the model, respectively. LetG(q) =

P 1
l =0 � l Fl (q),

and denoten = nrep np. Then under Assumptions 2.5, 3.1{3.3, 3.5, and 3.7,
� x(t) := x(t) �

P n
l =0 � l x l (t) is an Op(N � n rep =2).

Proof. The proof can be found in Appendix 3.C.

Estimate the multivariate polynomial coe�cients

Finally, the coe�cients of the multivariate polynomial f̂ (x0; : : : ; xn ) are esti-
mated. Let

y� (t) = � DC +
DX

d=1

0

@
nX

i 1 =0

nX

i 2 = i 1

� � �
nX

i d = i d � 1

� i 1 ;:::;i d x i 1 (t) � � � x i d (t)

1

A

be the output of f̂ (x0(t); : : : ; xn (t)), where the coe�cients of the polynomial
are chosen to be

� =
�
� DC � 0 � � � � i 1 ;:::;i d � � � � n;:::;n

� T :

They are estimated using linear least-squares regression:

�̂ = arg min
�

ky � � yk2

= arg min
�

kJ� � yk2 ;
(3.3a)
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where the regression matrixJ is equal to

J =

2

666666664

1 � � � 1
x0(0) � � � x0(N � 1)

...
...

x i 1 (0) � � � x i d (0) � � � x i 1 (N � 1) � � � x i d (N � 1)
...

...
xn

D (0) � � � xn
D (N � 1)

3

777777775

T

: (3.3b)

The following theorem shows that the estimated output ŷ(t) := y�̂ (t) converges
in probability to y(t) as N ! 1 .

Theorem 3.11 (Convergence ^y(t)) . Consider the setting of Lemma 3.10. Let
y(t) = f (x(t)) and ŷ(t) = y�̂ (t), where the coe�cients �̂ are obtained from the
least-squares regression(3.3). Then under Assumptions 2.5, 3.1{3.5, and 3.7,
ŷ(t) � y(t) is an Op(N � n rep =2).

Proof. The proof can be found in Appendix 3.D.

3.3.3 Noise analysis

This subsection discusses the sensitivity of the identi�cation procedure to out-
put noise. Noise on the intermediate signalx(t) is not considered here. In
general, this would result in biased estimates of the nonlinearity. More involved
estimators, e.g. the MLE, are needed to obtain an unbiased estimate [Hagenblad
et al., 2008; Wills et al., 2013].

In the case of �ltered white output noise (see Assumption 3.6), the error
on the estimated output due to the noise is anO(N � 1=2) (see Appendix 3.E).
This error is thus independent of the number of repetitions nrep . Increasing
nrep allows us to tune the model error such that it disappears in the noise 
oor.

3.3.4 Illustration

This subsection illustrates the approach on three simulation examples. The �rst
one considers the noise-free case, and illustrates the convergence rate predicted
by Theorem 3.11. The second and the third example compare the proposed
method to the so-called approximative prediction error method (PEM) [Ha-
genblad et al., 2008], as implemented in the MATLABfi System Identi�cation
Toolbox� [Ljung, 2013].
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3.3 OBFs based on the poles of the BLA

Example 1: noise-free case

Consider a SISO (single input single output) discrete-time Wiener system (see
Figure 3.1) with

G(q) =
1 + 3q� 1 + 3q� 2 + q� 3

1 � 2:1q� 1 + 1 :9q� 2 � 0:7q� 3 ; (3.4)

and
f (x) = x + 0 :8x2 + 0 :7x3 : (3.5)

The system is excited with a random-phase multisine signalu(t) with an in-
creasing number of samples (N = 1024; 2048; 4096; 8192; 16384; 32768; 65536).
The excited frequencies are equidistantly spaced between DC and one sixth
of the sample frequency. Within this range, the amplitudes jUk j are cho-
sen equal to each other and such that the rms value ofu(t) is equal to one.
The system is identi�ed using the identi�cation procedure described in Subsec-
tion 3.3.2. No weighting is used to obtain a parametric estimate of the BLA, i.e.
W (k) = 1 in (3.2b). A random-phase multisine with N = 65536 samples is used
for the validation. This multisine has the same rms value and power spectrum
as the corresponding multisine that is used for estimation. Fifty Monte Carlo
simulations are performed, with each time a di�erent realization of the random
phases of the excitation signals.

The results in Figure 3.4 show that the convergence rate of (^y(t) � y(t))
agrees with what is predicted by Theorem 3.11. The convergence rate increases
with an increasing number of repetitions of the pole estimates. It can be shown
that these results generalize to parallel Wiener systems as well.

Example 2: noisy case with saturation nonlinearity

The second example is inspired by the second example in Hagenblad et al. [2008].
It is a discrete-time SISO Wiener system with a saturation nonlinearity. The
system is given by

G(q) =
1 � 0:3q� 1 + 0 :3q� 2

1 + 0:3q� 1 � 0:3q� 2

f (x(t)) =

8
><

>:

c1 for x(t) � c1

x(t) for c1 < x (t) � c2

c2 for c2 < x (t)

y(t) = f (x(t)) + v(t) ;

(3.6)

where the input u(t) and the output noise v(t) are i.i.d. Gaussian, with zero
mean, and with variances � 2

u = 1 and � 2
v = 0 :01 respectively. The coe�cients
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kŷ
�

yk
1

Figure 3.4: Average of kŷ � yk1 along the 50 Monte Carlo simulations (full line) and
its one standard deviation con�dence interval (�lled area). The predicted convergence
rate is indicated by the dashed lines, which are an O(N � n rep =2).

c1 and c2 are equal to � 0:4 and 0:2, respectively. Compared to the example
in Hagenblad et al. [2008], no process noise (i.e. noise on the intermediate
signal x(t)) was added to x(t) since the GOBF approach cannot deal with
process noise. Moreover, the output noise variance was lowered from� 2

v = 0 :1
to � 2

v = 0 :01 as the large output noise would otherwise dominate so much that
no sensible conclusions could be made.

One thousand Monte Carlo simulations are performed, with each time an
estimation and a validation data set of N = 1000 data points each. In case of
the approximative PEM [Hagenblad et al., 2008], the true model structure is
assumed to be known, and the true system belongs to the considered model set.
In case of the proposed GOBF approach, the order of the linear dynamics is as-
sumed to be known. A model withnrep = 0 and one with nrep = 1 is estimated.
The local polynomial method [Pintelon et al., 2010] is used to estimate the BLA.
The nonlinearity is approximated by a multivariate polynomial of degree three,
in order to capture both even and odd nonlinearities. Note that in this case,
the true system is not in the model set, while it is in the PEM model.

The results in Figure 3.5 show that the approximative PEM performs sig-
ni�cantly better than the GOBF approach. Note that the approximative PEM
used full prior knowledge of the model structure, while no prior knowledge on
the nonlinearity was used in the GOBF approach. Still, it is able to �nd a de-
cent approximation. A better approximation can be obtained by representing
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Figure 3.5: Distribution of ky ( t ) � ŷ ( t ) k 2
ky ( t ) k 2

on the validation data sets for the 1000 Monte
Carlo simulations. PEM indicates the results for the approximative prediction error
method, while GOBF (0) and GOBF (1) indicate the results for the proposed GOBF
approach with nrep = 0 and nrep = 1, respectively. For the parametric BLA, the av-
erage of ky ( t ) � ŷ ( t ) k 2

ky ( t ) k 2
along the 1000 Monte Carlo simulations is equal to 0:657, while

its standard deviation is equal to 0 :0227.

the nonlinearity with another basis function expansion that is more appropriate
to the nonlinearity at hand. Alternatively, support vector machines (SVMs)
can be used [T�otterman and Toivonen, 2009; G�omez and Baeyens, 2012].

Example 3: noisy case with polynomial nonlinearity

To make a fair comparison, the second example is modi�ed such that the system
is in the model class for both of the considered approaches. The nonlinearity
in (3.6) is changed to a third-degree polynomial that best approximates the
saturation nonlinearity on all the estimation data sets. The approximative PEM
now estimates a third-degree polynomial nonlinearity. In this case, the GOBF
approaches have a similar performance as the approximative PEM approach
(see Figure 3.6).

To determine the number of required repetitionsnrep , one can easily estimate
several models for an increasingnrep , and compare the simulation errors on a
validation data set. Once the simulation error increases, the variance error
outweighs the model error, and one should select less repetitions. Here, the
normalized rms error for nrep = 0 is lower than the normalized rms error for
nrep = 1 in 850 out of the 1000 cases. A Wiener-Schetzen model withnrep = 0
should then be selected, which corresponds to a model with 35 parameters.
In the remaining 150 cases, one would select a model withnrep � 1, which
corresponds to a Wiener-Schetzen model with (at least) 120 parameters.
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Figure 3.6: Distribution of ky ( t ) � ŷ ( t ) k 2
ky ( t ) k 2

on the validation data sets for the 1000 Monte
Carlo simulations (polynomial nonlinearity). For the parametric BLA, the average
of ky ( t ) � ŷ ( t ) k 2

ky ( t ) k 2
along the 1000 Monte Carlo simulations is equal to 0:566, while its

standard deviation is equal to 0 :0410.

3.3.5 Conclusion
The input/output behavior of a Wiener system with �nite-order IIR dynamics
and a polynomial nonlinearity can be well approximated by a Wiener-Schetzen
model. The modeled output was shown to converge in probability to the true
output when GOBFs are used that are constructed based on the poles of the
BLA of the system. A mismatch between the true and the estimated poles can
be handled by periodically repeating the set of pole estimates. Fast convergence
rates, in terms of the number of required repetitions, can be obtained. This
results in Wiener-Schetzen models with a moderate number of parameters.

The approach can be applied to parallel Wiener systems as well.

3.4 The BLA as a basis function
Based on Tiels et al. [2012b] and Tiels et al. [2012a].

This section considers the approximation of single-branch Wiener systems
with Wiener-Schetzen models. It was shown in the previous section that by us-
ing high-quality pole estimates the number of required repetitions of these pole
estimates could be kept small. Nevertheless, the number of parameters can still
be relatively large. This is because at least one basis function is needed for
every pole estimate, and the number of parameters increases combinatorially
with the number of OBFs (see Table 1.1). Therefore, an extra parameter re-
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3.4 The BLA as a basis function

duction step is proposed that is added to the identi�cation procedure presented
in Subsection 3.3.2.

3.4.1 Basic idea
Since the asymptotic BLA (N ! 1 ) is proportional to G(q) (special case of
Theorem 2.7), and considering that an arbitrary non-zero scaling factor can be
exchanged between the linear and the nonlinear block of the Wiener system
(see Figure 3.2), we propose to replace one of the OBFs by the estimated BLA.
In that way, most of the dynamics are represented by only one basis function.
The other basis functions can then be considered as correction terms, and many
of the parameters resulting from these other basis functions can be considered
small compared to those resulting from the BLA.

3.4.2 Parameter reduction step
Based on Tiels et al. [2012b].

This parameter reduction step is developed in more detail in this subsection.

Independent set of functions

Let ĜBLA (q; �̂ ) be the transfer function representation of the parametric esti-
mate of the BLA GM (k; �̂ ) in (3.2). By construction, ĜBLA (q; �̂ ) is a linear
combination of the �rst np GOBFs, possibly augmented with a feed-through
term:

ĜBLA (q; �̂ ) =
n pX

i =0

ci Fi (q) :

As a consequence, the setf ĜBLA (q; �̂ ); F0(q); : : : ; Fn (q)g does not constitute an
independent set of functions. To obtain an independent set again, it is necessary
to leave out one of the basis functionsF0; : : : ; Fn p . Since we want the BLA to
represent most of the dynamics and the other basis functions to correspond to
small correction terms, we leave out the basis functionFi corresponding to the
maximum absolute value of ci . Of all basis functions F0; : : : ; Fn p , this Fi is
the one that contributes the most in the representation of the dynamics. Other
choices on which basis function to leave out are tested in Subsection 3.4.4, where
it is observed that the choice is not really important. This is likely due to the
following orthogonalization step.

Orthonormal set of functions

The set f ĜBLA (q; �̂ ); F0(q); : : : ; Fi � 1(q); Fi +1 (q); : : : ; Fn (q)g is not an orthonor-
mal set of functions. One reason why we would like to obtain an orthonormal

47



Chapter 3: Making Wiener-Schetzen less parameter expensive
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0 (q) / ĜBLA (q;�̂ )

...

F ?
n (q)

f̂ r
(x

? 0
;:

::
;x

? n
)

u(t)

x?
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ŷ(t)

Figure 3.7: A Wiener-Schetzen model where the �rst OBF is proportional to the
parametric estimate of the BLA ( f F ?

0 / ĜBLA (q; �̂ ); F ?
1 ; : : : ; F ?

n g is a set of OBFs
and f̂ r is a multivariate polynomial).

set is the improved numerical conditioning of the parameter estimation. An
orthonormal set can be easily obtained by using the Gram-Schmidt procedure,
resulting in the orthonormal set f F ?

0 / ĜBLA (q; �̂ ); F ?
1 ; : : : ; F ?

n g. The model
structure shown in Figure 3.7 is obtained.

Parameter reduction

De�ne x?
i as the output of the �lter F ?

i (i = 0 ; : : : ; n), and let x?
0 = x?

BLA .
In the model in Figure 3.7, f̂ r is again a multivariate polynomial, but unlike
before, it does not contain all possible termsx?

i 1
� � � x?

i d
. Since we considerx?

i k
,

for i k 6= 0, to be a correction term, we keep only those termsx?
i 1

� � � x?
i d

in which
at most one factor x?

i k
6= x?

BLA is present:

f̂ r (x?
0 = x?

BLA ; x?
1 ; : : : ; x?

n ) = � r DC +
DX

d=1

0

@
nX

i =0

� r BLA ��� BLA| {z }
( d � 1) times

i (x
?
BLA )d� 1x?

i

1

A :

In that way, the number of parameters is reduced from (see also Table 1.1)

n� =
(n + 1 + D )!
(n + 1)! D !

to
n� r = 1 + D (n + 1) :

Note that the number of parameters now increases proportionally with the
number of OBFs instead of combinatorially. This allows for a major reduction
of the number of parameters, especially if the number of OBFs is large.
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G1(q)

G2(q)

f (x1; x2)

u1(t)

u2(t)

x1(t)

x2(t)

y0(t)

Figure 3.8: A discrete-time TISO Wiener system ( G1(q) and G2(q) are discrete-time
linear dynamic systems, f (x1 ; x2) is a bivariate static nonlinear function).

3.4.3 Extension to MISO single-branch Wiener systems
Based on Tiels et al. [2012a].

The identi�cation procedure in Subsection 3.3.2 is extended to MISO Wiener
systems in this subsection. As the number of parameters can increase signif-
icantly compared to the SISO case, the parameter reduction step in Subsec-
tion 3.4.2 is extended to MISO single-branch Wiener systems. The poles of the
GOBFs will now be determined from an extension of the BLA towards multi-
ple input multiple output (MIMO) systems [Dobrowiecki and Schoukens, 2007].
To keep the notation as simple as possible, and without loss of generality, the
number of inputs nu is restricted to two. As such, the identi�cation of a TISO
(two input single output) Wiener system (see Figure 3.8) is considered. The
TISO Wiener-Schetzen model is shown in Figure 3.9.

Estimation of an extension of the BLA towards MIMO systems

The BLA is extended to MIMO systems in Dobrowiecki and Schoukens [2007].
For the TISO Wiener system shown in Figure 3.8, one obtains, similarly to (2.7)
and Theorem 2.7,

Y0(k) = GBLA 1 (k)U1(k) + GBLA 2 (k)U2(k) + YS (k)

= cBLA 1 G1(k)U1(k) + cBLA 2 G2(k)U2(k) + YS (k) + O(N � 1) ;

whereGBLA 1 and GBLA 2 are the BLAs in the �rst and the second input/output
path, respectively, YS is the nonlinear noise source, andcBLA 1 and cBLA 2 are
constants that depend upon the odd nonlinearities inf (x1; x2) and the power
spectrum of the excitation signalsu1(t) and u2(t).

In Dobrowiecki and Schoukens [2007], an optimized measurement strategy
involving orthogonal random-phase multisine excitations is proposed to reduce
as much as possible the in
uence of the nonlinear noise sourceYS on the es-
timated BLA. Since YS acts as output noise, its in
uence can be reduced by
averaging over multiple experiments [Dobrowiecki et al., 2006] using each time
a di�erent realization of the random input signals.
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Figure 3.9: A TISO Wiener-Schetzen model (F1;1(q); : : : ; F1;n 1 (q) and
F2;1(q); : : : ; F2;n 2 (q) are GOBFs, F1;0(q) and F2;0(q) are feed-through terms,
f̂ (x1;0 ; : : : ; x 2;n 2 ) is a multivariate polynomial function).

Assume that nexp di�erent experiments are performed:

Y (k) = GBLA (k)U (k) + Y S (k) ;

with

Y (k) =
h
Y [1]

0 (k) : : : Y [n exp ]
0 (k)

i
;

GBLA (k) =
�
GBLA 1 (k) GBLA 2 (k)

�
;

U (k) =

"
U [1]

1 (k) : : : U [n exp ]
1 (k)

U [1]
2 (k) : : : U [n exp ]

2 (k)

#

;

Y S (k) =
h
Y [1]

S (k) : : : Y [n exp ]
S (k)

i
:

The idea proposed in Dobrowiecki et al. [2006] is to perform an integer number
nblocks of nu experiments (nexp = nblocks nu ) and to use orthogonal random-
phase multisines in each of thenblocks experiment blocks. For the TISO case
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(nu = 2), the following series of experiments is proposed:

U i (k) =

"
U [2i � 1]

1 (k) U [2i ]
1 (k)

U [2i � 1]
2 (k) U [2i ]

2 (k)

#

=
�
1 1
1 � 1

�
U [2i � 1]

1 (k)

for i = 1 ; : : : ; nblocks ; (3.7)

where U [2i � 1]
1 (k) is the DFT spectrum of a random-phase multisine (see De�-

nition 2.3). The nonparametric BLAs are then estimated as

Y i (k) =
h
Y [2i � 1]

0 (k) Y [2i ]
0 (k)

i
;

Ĝ i (k) =
h
Ĝ[i ]

BLA 1
(k) Ĝ[i ]

BLA 2
(k)

i

= Y i (k)U � 1
i (k) ;

ĜBLA (k) =
�
ĜBLA 1 (k) ĜBLA 2 (k)

�

=
1

nblocks

n blocksX

i =1

Ĝ i (k) :

Next, parametric models GM (k; �̂ 1) and GM (k; �̂ 2) of orders np1 and np2

(to be chosen by the user) are identi�ed on ĜBLA 1 (k) and ĜBLA 2 (k) using
the weighted least-squares estimator in (3.2). Their poles ^p11 ; : : : ; p̂1n p 1

and
p̂21 ; : : : ; p̂2n p 2

are calculated.

Construct the GOBFs

These pole estimates are then used to construct two sets of OBFs: one set
of OBFs f F1;0; : : : ; F1;n 1 g based on the pole estimates ^p11 ; : : : ; p̂1n p 1

and one
set of OBFs f F2;0; : : : ; F2;n 2 g based on the pole estimates ^p21 ; : : : ; p̂2n p 2

(see
Figure 3.9).

Estimate the multivariate polynomial coe�cients

Finally, the coe�cients of the multivariate polynomial f̂ are estimated. De�ne
x i 1 ;i 2 as the output of the OBF Fi 1 ;i 2 (i 1 = 1 ; 2; i 2 = 0 ; : : : ; ni 1 ) and rename the
outputs to w0 = x1;0; : : : ; wn 1 = x1;n 1 , wn 1 +1 = x2;0; : : : ; wn = wn 1 +1+ n 2 = x2;n 2 .
The coe�cients � of the multivariate polynomial

f̂ (w0; : : : ; wn ; � ) = � DC +
DX

d=1

0

@
nX

i 1 =0

nX

i 2 = i 1

� � �
nX

i d = i d � 1

� i 1 ��� i d wi 1 � � � wi d

1

A
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of degreeD (to be chosen by the user), are estimated by solving the linear
least-squares problem

�̂ = arg min
�

MSE( f̂ (w0; : : : ; wn ; � )) ;

in which the (possibly weighted) mean-square error MSE is equal to

MSE =
1
N

N � 1X

t =0

[y(t) � f̂ (w0(t); : : : ; wn (t); � )]2 :

Again, the number of parameters is equal to

n� =
(n + 1 + D )!
(n + 1)! D !

: (3.8)

Parameter reduction step in the MISO case

The number of parameters increases again combinatorially with the number
of inputs to the multivariate polynomial. This number can rapidly become
large, especially for MISO systems. Therefore, the parameter reduction step in
Subsection 3.4.2 is extended to the MISO case.

The representation of the TISO Wiener system in Figure 3.8 is not unique.
Arbitrary non-zero constants ceq1

and ceq2
can be exchanged between the linear

blocks and the nonlinear block (see Figure 3.10). Hence, we propose to replace
one OBF in each input/output path by the estimated BLA in that path. Like
this, a large portion of the dynamics in each input/output path is captured by
only one basis function. The remaining basis functions will again be considered
as correction terms. This will reduce the number of signi�cantly contributing
parameters.

Let ĜBLA i 1
(q; �̂ i 1 ) be the transfer function model that corresponds to the

parametric estimate of the BLA GM (k; �̂ i 1 ) in the i 1th input/output path.
First, one of the OBFs Fi 1 ;0(q); : : : ; Fi 1 ;n p i 1

(q) is replaced by ĜBLA i 1
(q; �̂ i 1 )

in each input/output path to obtain independent sets of functions. Next, the
Gram-Schmidt procedure is applied to each of the obtained sets of functions to
obtain orthonormal sets of functions f F ?

i 1 ;0 / ĜBLA i 1
(q; �̂ i 1 ); F ?

i 1 ;1; : : : ; F ?
i 1 ;n i 1

g
in each input/output path. In each of these sets, the �rst OBF is proportional to
the BLA in that input/output path. Finally, the coe�cients of the multivariate
polynomial f̂ r in Figure 3.11 are estimated. De�ne x?

i 1 ;i 2
as the output of the

�lter F ?
i 1 ;i 2

(i 1 = 1 ; 2; i 2 = 0 ; : : : ; ni 1 ), let x?
i 1 ;0 = x?

BLA i 1
, and rename the out-

puts to w?
0 = x?

1;0; : : : ; w?
n 1

= x?
1;n 1

, w?
n 1 +1 = x?

2;0; : : : ; w?
n = w?

n 1 +1+ n 2
= x?

2;n 2
.

The polynomial f̂ r does not contain all possible terms of degree at mostD .
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Figure 3.10: Arbitrary non-zero scaling factors ceq1 and ceq2 can be exchanged between
the linear dynamic blocks and the static nonlinear block in the TISO Wiener system
in Figure 3.8, without changing the input/output behavior of the system.

Since we considerw?
i k

, for i k 6= f 0; n1 + 1g, to be correction terms, we keep only
those terms in which at most one factorw?

i k
6= f x?

BLA 1
; x?

BLA 2
g is present. In

that way, the number of parameters no longer increases combinatorially with
the number of inputs to the polynomial as in (3.8). The number of parameters
is reduced to

n� r =
(D + 2)( D + 1)

2
+ ( n � 1)

(D + 1) D
2

;

and hence only increases proportionally withn. In the general case ofnu inputs,
the number of parameters is reduced to (see Appendix 3.F)

n� r =
(nu + D )!

nu !D !
+ ( n + 1 � nu )

(nu + D � 1)!
nu !(D � 1)!

: (3.9)

3.4.4 Illustration
This subsection illustrates the proposed parameter reduction step on two simu-
lation examples. The �rst one considers the SISO case, the second one considers
the TISO case. The choice on which basis function to leave out when construct-
ing an independent set of functions is also examined in the SISO case.

Example 1: the SISO case

Based on Tiels et al. [2012b].

Consider a SISO discrete-time Wiener system (see Figure 3.1). The linear
dynamic system G(q) is a third-order low-pass Chebyshev Type I �lter with
10 dB peak-to-peak ripple in the passband and with a normalized passband edge
frequency ! p = 0 :2846. Its FRF is shown in Figure 3.12. The static nonlinear
function f (x) = x + 0 :8x2 + 0 :7x3 is a third-degree polynomial. No noise is
added to the output in order to focus completely on the model errors.

The system is excited by a random-phase multisine signalu(t) containing
N = 8192 samples. The excited frequencies are equidistantly spaced between
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Figure 3.11: A TISO Wiener-Schetzen model where the �rst OBF in each in-
put/output path is proportional to the parametric estimate of the BLA in that path
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sets of OBFs and f̂ r is a multivariate polynomial).

DC and one sixth of the sample frequency, which is normalized tof s = 1 Hz.
Within this range, the amplitudes jUk j are chosen equal to each other and such
that the rms value of u(t) is equal to one. One hundred phase realizations
of the multisine are applied for estimation purposes, although much less phase
realizations would su�ce. One extra phase realization of the multisine is applied
to do the validation.

The system is identi�ed using the identi�cation procedure described in Sub-
section 3.3.2, once including the parameter reduction step described in Sub-
section 3.4.2 and once not including this extra step. The BLA of the system
is estimated by averaging out the division of the output and the input spec-
trum over the one hundred phase realizations of the multisine. On top of this
nonparametric estimate, a parametric model of ordernp = 3 is identi�ed. The
coe�cients of the multivariate polynomials f̂ and f̂ r are estimated using the
�rst phase realization of the multisine that was used to identify the BLA.

Table 3.1 shows the number of parameters and the relative rms error on the
simulated output as a function of the number of OBFs. The relative rms error
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is calculated as

relative rms error =

q
1
N

P N � 1
t =0 (y(t) � ŷ(t))2

q
1
N

P N � 1
t =0 y2(t)

:

When the parameter reduction step is not included, the rms error can be made
arbitrarily small by increasing the number of OBFs. This is not the case when
the parameter reduction step is included. In this case, the rms error decreases
when increasing the number of OBFs from (n + 1) = 4 to ( n + 1) = 10. Fur-
ther increasing the number of OBFs does not decrease the rms error. Up to
(n + 1) = 7, the rms error is more or less the same, whether the parameter re-
duction step is included or not. However, when this extra step is included, the
number of parameters is signi�cantly smaller.

For the case (n + 1) = 7, Figure 3.13 compares the magnitude of the param-
eters, i.e. the polynomial coe�cients, when all of the 120 possible monomials in
x?

0 = x?
BLA , x?

1 , . . . , x?
6 up to third degree are considered and the magnitude of

the parameters when only the a priori selected monomials in̂f r are considered.
In this comparison, the orthogonal regressors are normalized to have unit rms
value, so that the magnitude of the parameters indicates the contribution of the
corresponding term to the rms value of the output. It can be observed that the
parameters corresponding to terms that include at least two correction terms
can indeed be neglected.

To examine the in
uence of which basis function is left out in the parameter
reduction step (see Subsection 3.4.2), each of the options is checked. These
options are the basis functionsF0; : : : ; Fn p . For each of these options, the same
relative rms errors are obtained, while the condition number of the parameter
estimation only slightly di�ers (see Table 3.2). We can conclude that the choice
of which OBF is left out does not really matter. This is likely due to the
orthogonalization step. Independent of which basis function is left out initially,
sets of orthonormal basis functions with the same span are obtained.

Example 2: the TISO case

Based on Tiels et al. [2012a].

Consider the TISO discrete-time Wiener system in Figure 3.8. The linear
dynamic systemsG1(q) and G2(q) are second-order low-pass Chebyshev Type I
�lters, the former with 10 dB peak-to-peak ripple in the passband and with a
normalized passband edge frequency! p1 = 0 :1, the latter with 20 dB peak-to-
peak ripple in the passband and with a normalized passband edge frequency
! p1 = 0 :2. The static nonlinear function

f (x1; x2) = x1 + x2 +0 :5x2
1 +0 :2x1x2 +0 :5x2

2 +0 :2x3
1 +0 :1x2

1x2 +0 :1x1x2
2 +0 :2x3

2
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Figure 3.12: FRF of the linear dynamic system G(q) in the SISO Wiener system
described in Subsection 3.4.4.

is a third-degree bivariate polynomial. A plot of this function is shown in
Figure 3.14. Again, no noise is added to the output to focus on the model
errors.

The excitation signals u1(t) and u2(t) are random-phase multisines contain-
ing N = 512 samples. The excited frequencies are between DC and one sixth of
the sample frequency. Within this range, the multisines have a 
at amplitude
spectrum. Their rms value is equal to one. Ten experiment blocks according
to (3.7) are applied to do the estimation. One extra phase realization of the
multisines is applied to do the validation.

The system is identi�ed using the identi�cation procedure described in Sub-
section 3.4.3, once including the parameter reduction step and once not in-
cluding this extra step. The parametric models of the BLAs are of order
np1 = np2 = 2. The coe�cients of the multivariate polynomials f̂ and f̂ r , which
are polynomials of degreeD = 3, are estimated using the data of all ten exper-
iment blocks.

Figure 3.15 shows the FRFs of the true and the estimated linear dynamics.
It can be observed thatĜBLA 1 (q; �̂ 1) and ĜBLA 2 (q; �̂ 2) can describe much of the
dynamics in their respective input/output path. This motivates the parameter
reduction step.

Table 3.3 shows the number of parameters and the relative rms error on the
simulated output as a function of the number of OBFs in each input/output
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3.4 The BLA as a basis function

Table 3.1: Number of parameters n � (without parameter reduction step) and n � r

(with parameter reduction step), and relative rms error on the simulated output (with
and without parameter reduction step) as a function of the number of OBFs n + 1.

n + 1 n� n� r Relative rms error (in dB)

Without parameter reduction With parameter reduction

4 35 13 � 55 � 55
7 120 22 � 110 � 109

10 286 31 � 165 � 115
13 560 40 � 220 � 115
16 969 49 � 274 � 115
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Figure 3.13: Magnitude of the parameters when all possible monomials are selected
(blue) and when only the monomials with at most one correction term are selected
(green) for the case (n + 1) = 7. The �rst parameter indicated in green corresponds
to the DC value, the next three to x?

BLA , (x?
BLA )2 , and (x?

BLA )3 , the next six to
(x?

BLA )2x?
1 , . . . , (x?

BLA )2x?
6 , the next six to x?

BLA x?
1 , . . . , x?

BLA x?
6 , and the �nal six

to x?
1 , . . . , x?

6 . The parameters that only have an indication in blue correspond to
monomials with at least two correction terms.
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Table 3.2: The condition number of the regression matrix only slightly changes when
di�erent choices are made for the basis function that is replaced by the BLA.

n + 1 Condition number when Fi (q) is replaced

i = 0 i = 1 i = 2 i = 3

4 2:06� 100 2:22� 100 2:13� 100 2:06� 100

7 2:79� 100 2:96� 100 2:87� 100 2:79� 100

10 3:44� 100 3:63� 100 3:54� 100 3:44� 100

13 4:28� 100 4:49� 100 4:39� 100 4:28� 100

16 5:15� 100 5:38� 100 5:28� 100 5:15� 100

Table 3.3: Number of parameters n � (without parameter reduction step) and n � r

(with parameter reduction step), and relative rms error on the simulated output (with
and without parameter reduction step) as a function of the number of OBFs n1 + 1
and n2 + 1 in both input/output paths.

n1 + 1 n2 + 1 n� n� r Relative rms error (in dB)

Without parameter reduction With parameter reduction

3 3 84 34 � 38 � 38
3 5 165 46 � 37 � 38
5 3 165 46 � 55 � 55
5 5 286 58 � 71 � 71
7 7 680 82 � 106 � 88
9 9 1330 106 � 139 � 88

11 11 2300 130 � 172 � 88

path. The rms error can be made arbitrarily small only when the parameter
reduction step is not included. When the parameter reduction step is included,
the rms error does not decrease when the number of OBFs is increased from
n1 + 1 = n2 + 1 = 7 onwards. Up to n1 = n2 = 5, the rms error is more or less
the same, whether the parameter reduction step is included or not. However,
when the parameter reduction step is included, the number of parameters is
approximately �ve times smaller.

3.4.5 Conclusion
When approximating a single-branch Wiener system with a Wiener-Schetzen
model, an extra parameter reduction step can be added to the identi�cation
procedure presented in Subsection 3.3.2. By replacing one of the OBFs by the
BLA, most of the dynamics are represented by only one basis function. The
other basis functions can then be considered as correction terms. It was shown
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Figure 3.14: Plot of the bivariate polynomial f (x1 ; x2) considered in Example 2 in
Subsection 3.4.4.

that in this way, the number of relevantly contributing terms in the multivariate
polynomial is signi�cantly reduced. Instead of a combinatorial increase of the
number of parameters with the number of OBFs, a proportional increase is
obtained. The identi�cation method and the extra parameter reduction step
were extended to the multiple input case.

3.5 Iterative update of the pole locations

Based on Tiels and Schoukens [2013b].

This section considers again the approximation of (parallel) Wiener systems
with Wiener-Schetzen models, and proposes an alternative parameter reduction
step. As shown in Section 3.3, a mismatch between the true and the estimated
poles can be handled by periodically repeating the set of pole estimates. By
using high-quality pole estimates, the number of pole repetitions can be kept
small, resulting in a Wiener-Schetzen model with a moderate number of pa-
rameters. Here, we propose an iterative scheme to improve the quality of the
pole estimates, without making repeated measurements, so that eventually the
number of pole repetitions can be reduced, and as such also the number of
parameters.
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Figure 3.15: FRFs of the true ( G1(q) and G2(q)) and the estimated ( ĜBLA 1 (q; �̂ 1)
and ĜBLA 2 (q; �̂ 2)) linear dynamics in the TISO Wiener system described in Subsec-
tion 3.4.4.
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Figure 3.16: Schematic overview of the proposed iterative update scheme.

3.5.1 Basic idea
A schematic overview of the proposed iterative scheme is shown in Figure 3.16.
Since an increased number of GOBFs compensates for the mismatch between
the true and the estimated poles, a high-order Wiener-Schetzen model is �rst
estimated. In each iteration, a nonparametric BLA is calculated analytically
on the Wiener-Schetzen model obtained in the previous iteration. Next, a low-
order parametric BLA is estimated on the non-parametric one, and its poles
are calculated. With these pole estimates, the GOBFs are constructed. The
nonlinearity is estimated on the measured input/output data, which results
in a new estimate of the high-order Wiener-Schetzen model. The scheme is
initialized with a nonparametric BLA estimate, calculated from the measured
input/output data.

The idea of �rst estimating a high-order model and next extracting a low-
order model from it is not new. A similar approach for the LTI setting is
described in Ak�cay and Heuberger [2001]. There, a high-order transfer func-
tion model on the basis of GOBFs is estimated from the data and a low-order
model is extracted via optimal Hankel norm model reduction. Here, the idea is
extended to the class of Wiener systems.

3.5.2 Causes for pole mismatch
This subsection analyzes the measured and the modeled output spectrum, and
as such reveals the causes for the mismatch between the true poles and those
estimated via the BLA. Each of these causes is tackled in the next subsection.

To keep the notation as simple as possible, a single-branch discrete-time
Wiener system as in Figure 3.1 is considered withf (x) = x3. Nevertheless, the
ideas can be generalized to parallel Wiener systems and a polynomial represen-

61



Chapter 3: Making Wiener-Schetzen less parameter expensive

tation of the static nonlinearity of arbitrary degree.
Since the input is chosen to be periodic (see Subsection 3.2.2), the BLA

is estimated by averaging out Y (k )
U (k ) over a number of phase realizations of the

multisine (see also (2.9)).

Measured output spectrum

A multiplication in the time domain corresponds to a convolution in the fre-
quency domain. The true, noise-free, output spectrum of the Wiener system in
Figure 3.1 with f (x) = x3 is thus equal to

Y0(k) =
1
N

N= 2X

l 1 ;l 2 ;l 3 = � N= 2+1

X (l1)X (l2)X (l3) ; (3.10)

with
P 3

i =1 l i = k.
Some of the terms inY0(k) sum up to the output spectrum of the BLA. These

are the terms where one of thel i s is equal tok, and where the two other factors
in the product X (l1)X (l2)X (l3) combine pairwise to X (l)X (� l) = jX (l)j2 (see
also Appendix 2.A). These terms sum up to

YBLA (k) =
1
N

N= 2X

l = � N= 2+1

X

perm( k;l; � l )

X (k)jX (l)j2 ; (3.11)

where the second sum runs over all permutations of (k; l; � l) [Pintelon and
Schoukens, 2012]. Thus

YBLA (k) =
1
N

X (k)

2

664

0

BB@

N= 2X

l = � N= 2+1
l 6= k

6jX (l)j2

1

CCA + 3 jX (k)j2

3

775

= G(k)U0(k)

2

4

0

@ 1
N

N= 2X

l = � N= 2+1

6jX (l)j2
1

A �
1
N

3jX (k)j2
3

5

=
�
cBLA G(k) + O(N � 1)

�
U0(k) :

(3.12)

The bias on the BLA, which is an O(N � 1), thus originates in this case from the
di�erence between the number of permutations of (k; l; � l) and the number of
permutations of (k; k; � k).

The remaining terms in (3.10) that do not contribute to YBLA sum up to
the nonlinear noise sourceYS . When averaging Y (k )

U (k ) out over a �nite number of
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phase realizations,Ys does have a non-zero contribution that behaves as noise
due to the random behavior of the input.

Since the output measurement is corrupted by measurement noisev(t), the
measured output spectrum is given by

Y (k) = YBLA (k) + YS (k) + V (k)

=
�
cBLA G(k) + O(N � 1)

�
U0(k) + YS (k) + V (k) :

(3.13)

Modeled output spectrum

As shown in Theorem 3.11 and Subsection 3.3.3, the modeled output spectrum
is equal to

Ŷ (k) = Y0(k) + Op(N � n rep =2) + O(N � 1=2) : (3.14)

The term Op(N � n rep =2) is due to pole mismatch. The term O(N � 1=2) is due to
measurement noise and the stochastic nonlinearitiesYS that are present, even
in the absence of measurement noise.

Conclusion

From (3.13) and (3.14), we can conclude that the true BLA asymptotically
results in the true pole locations. If we want to retrieve the true pole locations
from the estimated BLA, we need to get rid of the nonlinear noise sourceYS and
the bias on the BLA. If not, a model error on the estimated output results that
is due to pole mismatch. Besides the above mentioned unwanted contributions,
the measurement noise a�ects the modeled output spectrum as well.

3.5.3 Iterative update scheme
This subsection �rst discusses how to tackle each of the error sources. This
leads to an iterative update scheme, which is presented next.

Tackling the nonlinear noise source

The nonlinear noise sourceYS has a zero mean with respect to the random
phases of the input. One possibility to reduce the magnitude ofYS is thus
to generate simulation data from the estimated Wiener-Schetzen model, and
to estimate the BLA from this extra data. As the BLA estimate can then be
averaged over more phase realizations, the magnitude ofYS drops towards zero.

An alternative is to calculate the BLA analytically on the estimated model.
As in (3.10) for a single-branch Wiener system, one can calculate the BLA
of a Wiener-Schetzen model by explicitly calculating the convolution in the
frequency domain. When taking into account only those terms that contribute
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to YBLA , as is done in (3.11) for the Wiener system, one gets completely rid of
the nonlinear noise sourceYS .

Only the odd nonlinearities should be calculated, since it is impossible for
even nonlinearities to split of a factor X (k), while the other factors combine
pairwise to contributions of the form X (l)X (� l) = jX (l)j2.

It should be mentioned that the number of calculations increases combina-
torially with the degree of nonlinearity. Thus, the analytical calculation of the
BLA should only be done in case of moderate degrees of nonlinearity, e.g. up
to �fth-degree nonlinearities. For higher-degree nonlinearities, one can resort
to BLA estimates on simulation data.

Tackling the bias on the BLA

In (3.12), the bias on the BLA originates from the di�erence between the number
of permutations of (k; l; � l) when l 6= k and when l = k. When accounting for
this during the analytical calculation of the BLA, for example in (3.12) by
counting the contributions X (k)jX (k)j2 twice, the bias on the BLA is removed.

Tackling the model error due to pole mismatch

As the �rst estimate of the Wiener-Schetzen model is initialized from the es-
timated BLA, a model error due to pole mismatch is present in the modeled
output spectrum. This model error is an Op(N � n rep =2) and thus its magnitude
decreases when more pole repetitions are used. For that reason, a high-order
Wiener-Schetzen model is estimated, i.e.nrep > 1. On this model, the BLA is
calculated analytically. Intuitively, one would expect improved pole estimates
from this BLA, since the increased number of basis functions compensates for
the pole mismatch. The scheme is thus repeated iteratively, until the total
model error is below a user-speci�ed level, or until it reaches the lower bound
that is set by the disturbing noise.

Tackling the measurement noise

The measurement noisev(t) is present in the measured data. Its in
uence
cannot be nulli�ed, but it can be reduced in two ways.

As the data is assumed to be periodic, the input and output spectrum can
be averaged over several periods. The measurement noise gets averaged out and
drops towards zero at a cost of an increased measurement time.

The noise sensitivity of a model is larger if it contains a larger number of
parameters. Therefore,nrep = 2 will be used. Like this, a compensation for the
pole mismatch is present, while the noise sensitivity of the estimated model is
minimal.
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Iterative scheme

The measures that have been taken to get rid of the error sources result in an
iterative update scheme (see Figure 3.16). First, a high-order (withnrep = 2)
Wiener-Schetzen model is estimated using the identi�cation procedure described
in Subsection 3.3.2. As long as the obtained model is unsatisfactory, a low-order
BLA of the model is analytically calculated as described above, and a new high-
order Wiener-Schetzen model is estimated, this time using the pole estimates
of the calculated low-order BLA.

With the improved pole estimates, one could estimate a lower-order Wiener-
Schetzen model (nrep = 1) that clearly contains a smaller number of parameters.

3.5.4 Illustration

This subsection illustrates the iterative update scheme on a simulation example.
Three situations are considered: the noise-free case, the noisy case, and the case
where the model order is unknown.

Setup

Consider the discrete-time Wiener system given by (3.4) and (3.5). The system
is excited with an odd random-phase multisine containingN = 1024 samples.
The excited frequencies are between DC and one sixth of the sample frequency.
Only odd frequencies are excited. The amplitudesjUk j of the excited frequencies
are chosen equal to each other and such that the rms value ofu(t) is equal to
one. An odd random-phase multisine is chosen to get rid of the even nonlinear
distortions in the BLA estimate. Two phase realizations andP = 2 periods are
applied for estimation purposes.

Example 1: noise-free case

First, consider the noise-free case. Fifty Monte Carlo simulations are performed,
with each time a di�erent realization of the random phases of the multisine.

Figure 3.17 shows� (see (2.17)), which can be interpreted as a measure for
the quality of the pole estimates, as a function of the iteration number. The
closer � is to zero, the closer the pole estimates� i are to the true pole locations
pk of the underlying linear dynamic system. Figure 3.18 shows the relative rms
error on the simulated output for a validation data set that was not used during
identi�cation.

The results show that the proposed method converges in this case (a Wiener
system with a polynomial nonlinearity) to the true poles on a �nite noiseless
data set. Only a few iterations are needed.
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Figure 3.17: (Example 1) The median and the mean of � , a quality measure of the
pole estimates, along the 50 Monte Carlo simulations. The minimum and maximum �
for each iteration number correspond to the lower and upper bound of the �lled gray
area. The bounds of the gray area thus indicate the best and worst case. From the
�fth iteration on, the minimum is � = 0.
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Figure 3.18: (Example 1) The median and the mean of the relative rms error along
the 50 Monte Carlo simulations. The minimum and maximum relative rms error for
each iteration number correspond to the lower and upper bound of the �lled gray area.
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Figure 3.19: (Example 2) The median and the mean of � , a quality measure of the
pole estimates, along the 50 Monte Carlo simulations. The minimum and maximum �
for each iteration number correspond to the lower and upper bound of the �lled gray
area. (Noisy case: SNRy = 20 dB)

Example 2: noisy case

Next, consider the case where the output measurement is corrupted with a
zero-mean white Gaussian noise. The output signal-to-noise ratio SNRy =

� 2
y 0

� 2
v

is chosen equal to 100. In each of the �fty Monte Carlo simulations, di�erent
realizations of the excitation signal and the output noise are generated.

The results in Figures 3.19 and 3.20 show that the iterative update scheme
�nds improved pole estimates, and that the relative rms error on the simulated
output reaches the noise 
oor. The measurement noise prevents the method
from retrieving the true poles. Note that a large gain can be made, especially
in the worst-case, by running just a few iterations.

Example 3: unknown model order

Finally, consider the case where the model order is unknown. In this case, the
model order should be estimated on the nonparametric BLA estimate in the
initialization step. Several methods can be used for this purpose, such as the
AIC criterion [Akaike, 1974], the MDL criterion [Rissanen, 1978], or variants of
them [De Ridder et al., 2005].

Instead of estimating the model order, we here investigate the behavior of
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Figure 3.20: (Example 2) The median and the mean of the relative rms error along
the 50 Monte Carlo simulations. The minimum and maximum relative rms error for
each iteration number correspond to the lower and upper bound of the �lled gray area.
The noise 
oor 1p

P
� v

� y 0
is at � 23 dB. (Noisy case: SNRy = 20 dB)

the iterative update scheme if an incorrect model order is provided. We consider
the noisy case, whereG(q) is believed to have �ve poles and �ve zeros (over-
modeling), three poles and one zero (under-modeling 1), and two poles and two
zeros (under-modeling 2). The results are shown in Figures 3.21 and 3.22.

In case the correct number of poles is estimated (under-modeling 1) or the
true poles can be estimated (over-modeling with pole-zero cancellations), the
relative rms error reaches the noise 
oor. Nevertheless, the pole estimates are
better in case of over-modeling. When a too small number of poles is estimated,
the method fails to improve the initial estimate.

3.5.5 Conclusion

An iterative update scheme for the pole locations in a Wiener-Schetzen model
was presented. Instead of numerically optimizing both the pole locations and
the polynomial coe�cients at the same time, the iteration is split into two
simpler steps: the estimation of a high-order Wiener-Schetzen model, and the
extraction of a low-order BLA from the estimated Wiener-Schetzen model. The
only nonlinear optimization step in this case is the estimation of a parametric
transfer function model, which is a well-studied problem. Moreover, no addi-
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Figure 3.21: (Example 3) The median and the mean of � , a quality measure of the
pole estimates, along the 50 Monte Carlo simulations. The minimum and maximum �
for each iteration number correspond to the lower and upper bound of the �lled area.
(Model order 5=5: blue, 1=3: green, and 2=2: red)
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Figure 3.22: (Example 3) The median and the mean of the relative rms error along
the 50 Monte Carlo simulations. The minimum and maximum relative rms error for
each iteration number correspond to the lower and upper bound of the �lled area.
(Model order 5=5: blue, 1=3: green, and 2=2: red)
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tional measurements are required for this method. A simulation example on a
Wiener system with a polynomial nonlinearity showed convergence to the true
pole locations on a �nite, noise-free data set. With the improved pole estimates,
a lower-order Wiener-Schetzen model with a smaller number of parameters can
be estimated.

3.6 Overall conclusion
The approximation of the input/output behavior of a (parallel) Wiener system
with that of a Wiener-Schetzen model is considered.

Prior knowledge of the linear dynamics in the Wiener system can be in-
corporated in the Wiener-Schetzen model by constructing the OBFs based on
user-speci�ed pole locations. A mismatch between the true and the speci�ed
poles can be handled by periodically repeating the set of speci�ed poles. By
choosing the poles based on the BLA of the Wiener system, it was shown that
the number of pole repetitions could be kept small, which results in a Wiener-
Schetzen model with a moderate number of parameters.

The number of parameters can be reduced further for single-branch Wiener
systems by using the BLA itself as a basis function. The remaining basis func-
tions can then be considered as correction terms, which reduces the number of
signi�cantly contributing parameters.

Another way to reduce the number of parameters in a Wiener-Schetzen
model when approximating (parallel) Wiener systems is to iteratively improve
the pole estimates. In each iteration, a high-order Wiener-Schetzen model is
estimated, and a low-order BLA is extracted. The improved pole estimates
remove the need for the periodic repetition of the pole estimates. Hence, one can
estimate a low-order Wiener-Schetzen model, which contains less parameters.
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Appendix

3.A Normalized Q-polynomials
An ordinary multivariate polynomial in the variables x0; : : : ; xn with all possible
dth-degree terms can be represented as

y(t) =
nX

i 1 =0

nX

i 2 = i 1

� � �
nX

i d = i d � 1

� i 1 ;:::;i d x i 1 (t) � � � x i d (t) :

The coe�cients � of the polynomial can be determined using a linear regression,
where the terms x i 1 (t) � � � x i d (t) are the regressors. To improve the numerical
conditioning of the estimation of the coe�cients � , orthogonal regressors can
be used (see also Appendix 2.B). Hence, we replace the termsx i 1 � � � x i d by
multivariate Hermite polynomials.

Multivariate Hermite polynomials are called Q-polynomials in Schetzen [2006].
The dth-degreeQ-polynomial in the variables x0; : : : ; xn is de�ned as

Q(d)
i 1 i 2 :::i d

(x) =
nY

i =0

Hn i (x i ) ;

where i 1; : : : ; i d 2 f 0; : : : ; ng, and where ni , the degree of the Hermite polyno-
mial of the variable x i , is equal to the number of times the integeri appears in
the subscript of Q.

If the variables x0; : : : ; xn are statistically independent, i.e. orthogonal,
Gaussian random variables with zero mean, which is for example the case if the
variables x0; : : : ; xn are the outputs of OBFs with a white Gaussian input (see
Subsection 2.4.3), then it is shown in Schetzen [2006] that theQ-polynomials
are orthogonal. This means that

lim
T !1

1
2T

Z T

� T
Q(d1 )

i 1 i 2 :::i d 1
(x(t))Q(d2 )

k1 k2 :::k d 2
(x(t)) d t

is zero whenever (i 1; i 2; : : : ; i d1 ) is not a permutation of ( k1; k2; : : : ; kd2 ). Since
we use normalized Hermite polynomials (see Appendix 2.B), theQ-polynomials
are not only orthogonal, but also orthonormal.

3.B Proof of Lemma 3.9
Proof. Let �� be the \true" model parameters, such that

GM (k; �� ) = cBLA G(k)

=
B �� (k)
A �� (k)

8! k ;
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with A �� and B �� polynomials of degreenp. The roots of A �� (k) are equal to the
true polespi (i = 1 ; : : : ; np). If these poles are all distinct, the �rst-order Taylor
expansion ofA �� (k) results in [Guillaume et al., 1989]

� pi � �
n aX

l =0

pi
l

A0
�� (pi )

� al ; (3.15a)

where A
0

�� (pi ) 6= 0, and where � al follows from

�̂ � �� =
�
� a0 � � � � an a � b0 � � � � bn b

� T : (3.15b)

For a random-phase multisine excitation with �nite power (see De�nition 2.3),
and under Assumptions 2.5 and 3.7, it is shown in Schoukens et al. [1998] that

plim
N !1

�
�̂ (N ) � ��

�
= 0 :

For the considered output disturbances (no noise in Subsection 3.3.2, �ltered
white noise in Subsection 3.3.3), the least-squares estimator (3.2) is a maximum
likelihood estimator (MLE) [Pintelon et al., 1994]. From the properties of the
MLE, it follows that [Pintelon and Schoukens, 2012]

�̂ = �� + Op(N � 1=2) : (3.16)

Then from (3.15) and (3.16), it follows that

� pi = Op(N � 1=2) : (3.17)

This concludes the proof of Lemma 3.9.

3.C Proof of Lemma 3.10

Proof. From (2.17) and (3.17), it follows that � is an Op(N � 1=2). It then follows
from (2.18) that G(q) �

P n
l =0 � l Fl (q) = Op(N � n rep =2), and thus � x(t) is an

Op(N � n rep =2).
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3.D Proof of Theorem 3.11
Proof. The exact output

y(t) =
DX

d=0


 dxd(t)

=
DX

d=0


 d

 
nX

l =0

� l x l (t) + � x(t)

! d

=

2

4
DX

d=0


 d

 
nX

l =0

� l x l (t)

! d
3

5 + � y

= �� DC +
DX

d=1

0

@
nX

i 1 =0

nX

i 2 = i 1

� � �
nX

i d = i d � 1

�� i 1 ;:::;i d x i 1 (t) � � � x i d (t)

1

A + � y(t)

= y �� (t) + � y(t) ;

where y �� (t) is the output of a multivariate polynomial f̂ (x0; : : : ; xn ), in which
the coe�cients �� follow from the true coe�cients 
 d of f (x) and the true coe�-
cients � l of the series expansion ofG(q). The truncation of this series expansion
is taken into account by the term � y(t), which just as � x(t) is an Op(N � n rep =2).

Note that the coe�cients �� can be obtained as the minimizers of the arti�cial
least-squares problem

�� = arg min
�

kJ� � y �� k2
2 :

The estimated coe�cients are equal to

�̂ = ( J T J ) � 1J T y

= ( J T J ) � 1J T (y �� + � y )

= �� + ( J T J ) � 1J T � y :

(3.18)

We now show that (J T J ) � 1J T � y is an Op(N � n rep =2).
Each element in J is an O(N 0), due to the normalization of the excitation

signal (see Subsection 3.2.2). Consequently, each element in the matrixJ T J is
the sum of N terms that are an O(N 0), so J T J is an O(N ). The elements in
the matrix ( J T J ) � 1 are thus an O(N � 1).

Each element in the vector � y is an Op(N � n rep =2). Consequently, each
element in the vector J T � y is the sum of N terms that are the product of an
O(N 0) and an Op(N � n rep =2). The elements in the vector J T � y are thus an
O(N )Op(N � n rep =2).

73



Chapter 3: Making Wiener-Schetzen less parameter expensive

As a consequence,̂� = �� + Op(N � n rep =2). And thus

ŷ(t) � y(t) = J (t)( �̂ � �� ) � � y(t) = Op(N � n rep =2) :

This concludes the proof of Theorem 3.11.

3.E In
uence of output noise
In the case of additive output noise, the exact outputy(t) = y �� (t) + � y(t) + v(t).
The estimated coe�cients are then equal to (cfr. (3.18))

�̂ = �� + ( J T J ) � 1J T � y + ( J T J ) � 1J T v :

The columns ofJ are �ltered versions of the known input signal u(t), which are
independent ofv(t) under Assumption 3.6. It is thus clear that the noise v(t) is
uncorrelated with the columns of J . Consequently, each element in the vector
J T v is the sum of N uncorrelated terms that are the product of an O(N 0)
and an O(N 0). The elements in the vector J T v are thus an O(N 1=2), As a
consequence, (J T J ) � 1J T v = O(N � 1=2).

3.F Reduced number of parameters in the MISO
case

In the MISO case, the multivariate polynomial f̂ r has n + 1 inputs; nu of them
are the output of a basis function that is proportional to the BLA in one of
the input/output paths; the remaining n + 1 � nu inputs are considered to be
correction terms. In the multivariate polynomial f̂ r , only those terms are kept
in which at most one correction term is present. In these terms, either

1. all factors are the output of a basis function that is proportional to a BLA,
or

2. one factor is a correction term, and the remaining factors are the output
of a basis function that is proportional to a BLA.

In the �rst case, the remaining terms in f̂ r are those of a polynomial with
nu inputs and all possible terms up to degreeD . The number of terms in this
case is equal to(n u + D )!

n u !D ! .
In the second case, there aren + 1 � nu possibilities for the correction term,

and for each of these possibilities, the remaining factors form all possible terms
up to degreeD � 1 of a polynomial with nu inputs. The number of terms in
this case is equal to (n + 1 � nu ) (n u + D � 1)!

n u !( D � 1)! .
Summing up the number of terms in both cases results in the number of

parameters in (3.9).
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Chapter 4

Usefulness universal
approximation property in
practice

In this chapter, the Wiener-Schetzen model is used to model the input/output
behavior of two electronic circuits and a simulation example of a Hammerstein
system. Like this, the extent to which the universal approximation property of
the Wiener-Schetzen model is valid, is analyzed in practice.

4.1 A Wiener-like system

First, the input/output behavior of a Wiener-like system is modeled using a
Wiener-Schetzen model structure. According to the results in Section 3.3, the
Wiener-Schetzen model structure should perform well in this case. The param-
eter reduction step that was presented in Section 3.4 is illustrated as well.

4.1.1 Description of the circuit

The �rst circuit is a logarithmic ampli�er preceded by a low-pass �lter (see Fig-
ure 4.1). The logarithmic ampli�er (AD8307 [Analog Devices, 2008]) converts a
signal into a decibel scale and can thus be regarded as a static nonlinear map-
ping. The low-pass input �lter, an RC-circuit with a 3 dB bandwidth of 23 kHz,
desensitizes the logarithmic ampli�er to high-frequency signals. The �lter can
be regarded as linear dynamics. Hence, the overall circuit behaves as a Wiener
system.
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AD8307
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Figure 4.1: The AD8307 logarithmic ampli�er is preceded by a low-pass �lter for
low-frequency operation.

4.1.2 The measurement data

The logarithmic ampli�er circuit is excited by a random-phase multisine signal
u(t) containing N = 4096 samples. Ten phase realizations and three periods
are applied at �ve di�erent rms levels (0 :01 V, 0:0575 V, 0:105 V, 0:1525 V,
and 0:2 V). The 613 excited frequencies are equidistantly spaced between DC
and 93:7 kHz. Within this range, the multisine has a 
at amplitude spectrum,
where all harmonics are excited. The input and output are measured at a
sample frequencyf s = 625 kHz. The measurements were carried out by Maarten
Schoukens. More information can be found in Schoukens and Rolain [2012b].

4.1.3 Estimation of Wiener-Schetzen models

For each rms level, Wiener-Schetzen models with an increasing number of OBFs
are estimated. Each model is estimated by following the procedure described
in Subsection 3.3.2.

For each rms level, a nonparametric BLA is obtained via the robust method
[Schoukens et al., 2012] using the �rst nine phase realizations. A second-order
parametric transfer function model is estimated on top of each nonparametric
BLA. Next, the poles of the parametric model are used to construct GOBFs.
The increased number of OBFs are obtained by periodically repeating the set of
pole estimates. Up to eight repetitions are used. One extra OBF, a feed-through
term, is added as well. The static nonlinearity in each model is parameterized in
terms of multivariate normalized Hermite polynomials (see Appendix 3.A) up to
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4.1 A Wiener-like system

Table 4.1: Relative rms error on the measured output of the logarithmic ampli�er
circuit shown in Figure 4.1 for Wiener-Schetzen models with an increasing number of
OBFs, and the number of parameters of each of these models.

OBFs Relative rms error (in dB) Parameters

0:01 Vrms 0:0575 Vrms 0:105 Vrms 0:1525 Vrms 0:2 Vrms

3 � 74:07 � 74:41 � 74:11 � 73:53 � 71:05 20
5 � 74:07 � 74:41 � 74:36 � 74:57 � 73:70 56
7 � 74:06 � 74:41 � 74:37 � 74:66 � 74:00 120
9 � 74:05 � 74:41 � 74:38 � 74:66 � 74:02 220

11 � 74:05 � 74:40 � 74:37 � 74:65 � 74:01 364
13 � 74:04 � 74:38 � 74:36 � 74:64 � 73:99 560
15 � 74:03 � 74:37 � 74:34 � 74:62 � 73:97 816
17 � 74:00 � 74:34 � 74:31 � 74:60 � 73:96 1140

third degree. The normalization of the Hermite polynomials is done for each rms
level separately. Their coe�cients are estimated via a least-squares regression.
To improve the numerical conditioning of this least-squares estimation even
further, the regressors are normalized to have unit two-norm.

The last phase realization for each rms level is used to validate the models.
Table 4.1 shows the relative rms errors on the measured output as a function
of the number of OBFs. The relative rms error is calculated as

relative rms error =

q
1

NP
P NP � 1

t =0 (y(t) � ŷ(t))2

q
1

NP
P NP � 1

t =0 y2(t)
:

For low rms levels (0:01 V and 0:0575 V), increasing the complexity of the model
does not help to lower the model error. As can be seen from Figure 4.2, the
circuit behaves linearly in this operating range. A linear model thus su�ces to
explain the data for these rms levels.

For larger rms levels, increasing the number of OBFs at �rst helps to lower
the model error a bit. For example, for an rms level of 0:2 V, the relative rms
error drops with about 3 dB when using seven instead of three OBFs. Further
increasing the number of OBFs does not lower the rms error, as the noise 
oor
is already reached (see Figure 4.3). On the contrary, when more than nine
OBFs are used, the relative rms error very slightly increases due to over-�tting.
This trade-o� between increasing the model complexity to lower the model error
and decreasing the complexity to lower the noise sensitivity is the well-known
bias-variance trade-o�.
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Figure 4.2: The logarithmic ampli�er circuit behaves linearly for an rms level of 0 :01 V
(the noise distortion coincides with the total distortion level). The output spectrum
of the true system is shown in blue dots, while those simulated by the linear and the
nonlinear model (3 OBFs) are shown in green and red dots, respectively.

Figure 4.3: The model error of the nonlinear model (7 OBFs) almost coincides with
the noise 
oor. The output spectrum of the true system is shown in blue dots, while
those simulated by the linear and the nonlinear model are shown in green and red
dots, respectively.
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Table 4.2: Relative rms error on the measured output of the logarithmic ampli�er
circuit shown in Figure 4.1 for Wiener-Schetzen models with an increasing number of
OBFs, and the number of parameters of each of these models (parameter reduction
step included).

4.1.4 The parameter reduction step

To lower the number of parameters, and as such the variance error, the param-
eter reduction method, as explained in Section 3.4, can be applied. Table 4.2
shows the relative rms errors when the parameter reduction step is included. As
already pointed out, for the rms levels 0:01 V and 0:0575 V, the model complex-
ity can be reduced even further to that of a linear model, without compromising
on the model quality. For an rms level of 0:105 V, the parameter reduction step
halves the number of parameters (from 20 to 10), while the relative rms er-
ror only increases with about 0:7 dB. For the larger rms levels, a clear price
is paid for the reduced complexity, with an increase of the model error with
up to 7 dB at the largest rms level when using the parameter reduction step
and three OBFs instead of seven OBFs without the parameter reduction step.
Nevertheless, only 10 parameters are then required instead of 120.

4.1.5 Conclusion

For each rms level, it was possible to estimate a Wiener-Schetzen model for
which the discrepancy between the true and the simulated output is (almost)
within the noise 
oor. It can be concluded that the Wiener-Schetzen model
structure can successfully model the input/output behavior of a Wiener-like
system, as illustrated on measurements of a logarithmic ampli�er circuit.

The parameter reduction step could be applied to signi�cantly reduce the
number of parameters, but, depending on the rms level of the input signal, this
may involve a noticeable drop of the model quality.
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Figure 4.4: A discrete-time Hammerstein system ( f (u) is a static nonlinear function,
G(q) is a discrete-time linear dynamic system).

4.2 A discrete-time Hammerstein system

In this section, the Wiener-Schetzen model structure is compared to a Volterra
series approximation for modeling the input/output behavior of a discrete-time
Hammerstein system. The comparison is illustrated on a simulation example.

4.2.1 Description of the system

The discrete-time Hammerstein system is shown in Figure 4.4. The nonlinear
block is assumed to be a polynomial:

f (u) =
DX

d=0


 dud :

The linear dynamics are assumed to be a discrete-time transfer function and
can be described by their in�nite impulse responseg(� ) for � = 0 ; : : : ; 1 :

y(t) =
1X

� =0

g(� )x(t � � ) : (4.1)

Hence, the output of the Hammerstein system is equal to

y(t) =
1X

� =0

g(� )
DX

d=0


 dud(t � � ) : (4.2)

4.2.2 The simulation data

In the simulation example, Volterra series and Wiener-Schetzen model approxi-
mations will be compared. The polynomial nonlinearity is f (u) = u2 + u3, while
the linear dynamic block is a �rst-order transfer function G(q) = 1

q� p . Three
situations are considered:p = 0 :1, p = 0 :5, and p = 0 :9. In each of these situa-
tions, the system is excited by a white Gaussian signal containingN = 10 000
samples and the true polep is assumed to be known.

80



4.2 A discrete-time Hammerstein system

4.2.3 A Volterra series approximation
A discrete-time Volterra series approximation is given by

y(t) =
DX

d=0

yd(t)

=
DX

d=0

1X

� 1 =0

� � �
1X

� d =0

kd(� 1; : : : ; � d)u(t � � 1) � � � u(t � � d) ;

(4.3)

with kd(� 1; : : : ; � d) the dth-order Volterra kernel. By comparing (4.2) and (4.3),
the dth-order Volterra kernel of the considered Hammerstein system is equal to

kd(� 1; : : : ; � d) = g(� )
 d � � � 1 � � � � � � d :

Hence, the only non-zero coe�cients in the Volterra series approximation of a
Hammerstein system are the diagonal elements. They are a scaled version of
the impulse response of the linear block.

The Volterra series is usually truncated as follows,

y(t) �
DX

d=0

TX

� 1 =0

� � �
TX

� d =0

kd(� 1; : : : ; � d)u(t � � 1) � � � u(t � � d) ;

to limit the number of parameters that needs to be estimated. In the simulation
example, the Volterra kernelskd(� 1; : : : ; � d) for D = 3 are estimated via a least-
squares regression. The truncation is done forT = 1 ; 2; : : : ; 5 (see Table 4.3).
The resulting model error corresponds to the truncation error that is made when
the in�nite impulse response g(� ) is truncated to a �nite impulse response, with
non-zero coe�cients g(� ) only up to � = T , and is approximately equal to pT

(see Appendix 4.A).

4.2.4 A Wiener-Schetzen model approximation
The discrete-time Volterra model is a special case of a Wiener-Schetzen model,
which can be obtained by using time-delays as basis functions (Fi (q) = q� i for
i = 0 ; : : : ; 1 ). This corresponds to placing all the poles in the origin. When
the method presented in Subsection 3.3.2 is used to estimate a Wiener-Schetzen
model of a Hammerstein system, however, the poles will in general not be placed
in the origin. Due to Bussgang’s theorem [Bussgang, 1952], the estimated poles
will correspond to the poles of the linear blockG(q).

In the simulation example, the true pole location p is assumed to be known,
and up to �ve repetitions of this pole are used in the construction of the GOBFs.
A direct feed-through term is added as well. Hermite polynomials up to third
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Table 4.3: Relative rms error on the output of the estimation data for a simulation
of a Hammerstein system. The relative rms error is shown in black for the Volterra
models and in gray for the Wiener-Schetzen models.

degree are used to describe the nonlinearity. Like this, both the Volterra and
the Wiener-Schetzen model have the same number of parameters.

On the one hand, the use of the poles ofG(q) causes an extra model error
due to the pole mismatch. According to the results in Section 3.3, this model
error is in the order of Op(N � n rep =2), which is closely related to � n rep , with �
de�ned in (2.17) being a measure for how close the estimated poles are to the
true poles. If all the poles ofG(q) are close to the origin, the obtained Wiener-
Schetzen model structure is thus still expected to give a good approximation of
the Hammerstein system. The results in Table 4.3 con�rm that the decay of
the model error is slower for the Wiener-Schetzen model than for the Volterra
model. Nevertheless, a decent approximation can be obtained with the Wiener-
Schetzen model forp = 0 :1.

On the other hand, the truncation error can possibly be reduced, as in
general an in�nite impulse response will be obtained on the diagonal. This can
be observed in the results in Table 4.3 forp = 0 :9. At �rst, the rms error for
the Wiener-Schetzen model is lower than for the Volterra model. For a larger
number of OBFs, however, the truncation error decreases, and the model error
due to pole mismatch dominates.

Note that if a linear term would be included in the polynomial f (u), the
results would shift in favor of the Wiener-Schetzen model. This is because the
linear part can be perfectly modeled by a Wiener-Schetzen model by using only
one repetition of the poles ofG(q). For a Volterra model, the truncation error
remains equal to that of truncating the in�nite impulse response g(� ) to a �nite
impulse response.

4.2.5 Conclusion
The Wiener-Schetzen model structure can be used to model Hammerstein sys-
tems. For purely nonlinear terms, the fastest decay rate of the model error

82



4.3 A nonlinear feedback system: the Silverbox

with the number of OBFs is obtained for pole locations in the origin. Hence, a
discrete-time Volterra series approximation is obtained.

A Wiener-Schetzen model, estimated using the procedure presented in Sub-
section 3.3.2, will have its poles (almost) equal to those of the linear blockG(q)
of the Hammerstein system. A model error due to pole mismatch will thus be
present. The slow decay rate of this model error makes the use of the procedure
presented in Subsection 3.3.2 impractical for Hammerstein systems with a long
memory (poles away from the origin). For Hammerstein systems with a short
memory, decent approximations can still be obtained.

For Hammerstein systems with a long memory, a Volterra series approxima-
tion will be impractical as well. Indeed, the truncation error that corresponds
to the truncation of the in�nite impulse response of G(q) to a �nite impulse
response has a slow decay ifG(q) has poles away from the origin.

4.3 A nonlinear feedback system: the Silverbox
Finally, the Wiener-Schetzen model structure is used to model the input/output
behavior of a nonlinear feedback system: the Silverbox [Pintelon and Schoukens,
2012]. Two approaches are tested: a direct estimation of a Wiener-Schetzen
model and an approach based on the unfolding of the feedback loop that par-
tially exploits the structure of the system.

Note that a nonlinear feedback system does not belong to the class of Wiener
systems. For su�ciently small input levels, however, it is still a fading memory
system [Boyd and Chua, 1985]. Although the universal approximation property
is thus not necessarily valid for the Silverbox example, it will be tested how well
a Wiener-Schetzen model can approximate the input/output behavior of this
nonlinear feedback system.

4.3.1 Description of the device
The Silverbox is an electronic device that emulates the behavior of a mass-
spring-damper system. Its behavior can be approximately described by the
following di�erential equation:

a2 �y(~t) + a1 _y(~t) + a0y(~t) + aNL y3(~t) = u(~t) ; (4.4)

where u(~t) is the applied force on the massa2, and y(~t) is the resulting dis-
placement of the mass. Parametera1 is the damping coe�cient, and a0 and
aNL describe the sti�ness of the spring. For a sinusoidal excitationu(~t), (4.4)
is also known as the Du�ng equation. A block-structure representation of the
Silverbox is shown in Figure 4.5. Although the behavior of the Silverbox is
described by a di�erential equation, it will be modeled in discrete-time in this
thesis.
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Figure 4.5: The Silverbox is a nonlinear feedback system (K (s) = 1
a2 s2 + a1 s+ a0

).

Figure 4.6: The excitation signal that was applied to the Silverbox. The estimation
data (in gray) are 10 realizations of an odd random-phase multisine. The test data
(in black) are 40 400 samples of �ltered Gaussian noise with an increasing rms value.

4.3.2 The measurement data

The data that are used here are those presented as a benchmark at the IFAC
Symposium on Nonlinear Control Systems (NOLCOS) in 2004. The input and
output are measured at a sample frequency of 610:35 Hz. The excitation signal
consists of two parts (see Figure 4.6). The test data consist of 40 400 samples of
a �ltered Gaussian signal with a linearly increasing rms value. The estimation
data consist of 10 phase realizations of an odd random-phase multisine. Each
realization consists of 500 transient samples and 8192 data samples. Here, the
estimation data are split into two parts. Only the �rst �ve realizations are used
for estimation, while the last �ve are used for validation purposes. Note that
the amplitude of the test data exceeds the amplitude of the estimation data
at some point. In this region, extrapolation of the estimated model will occur,
which can lead to extrapolation issues if the model structure does not agree
with the underlying structure of the system.
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Table 4.4: A Wiener-Schetzen model (WS) that uses nrep = 2 repetitions of the pole
estimates provides a good balance between accuracy and complexity. The result of a
linear model (the BLA) is added as a reference.

4.3.3 Direct estimation of a Wiener-Schetzen model

First, a direct estimation of a Wiener-Schetzen model is tested. The estimation
procedure described in Subsection 3.3.2 is followed.

The BLA is estimated non-parametrically by means of the robust method
[Schoukens et al., 2012]. On top of the nonparametric BLA, a parametric
second-order transfer function model is estimated, from which the pole esti-
mates 0:7291� 0:6328j are obtained. One to four repetitions of these pole
estimates are used to construct GOBFs. One extra OBF, a feed-through term,
is added as well. The nonlinearity is represented by a multivariate polynomial
up to third degree. The polynomial coe�cients are estimated via a least-squares
regression.

Based on a comparison of the rms error on validation data and the number
of parameters for the di�erent numbers of repetitions of the pole estimates (see
Table 4.4), it is concluded that two repetitions of the pole estimates is a good
trade-o� between accuracy and complexity. The results for two repetitions of
the pole locations will be analyzed in more detail.

From the results in Table 4.5, it can be concluded that the Wiener-Schetzen
model does not perform much better than a linear model. The rms error drops
with a factor of 2:4 to 2:7, but this requires an increase of the number of pa-
rameters with a factor 11. On the full test data, that includes the extrapola-
tion part, the rms error only drops with a factor 1 :7. This indicates that the
Wiener-Schetzen model structure does not perfectly match with the underlying
structure of the Silverbox.

A black-box model structure that does include the feedback structure of
the Silverbox is the polynomial nonlinear state-space model (PNLSS) [Paduart,
2008]. It achieves much better results on the full test data (with extrapolation)
with less parameters.
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Table 4.5: Rms error on the measured output of the Silverbox obtained with the
linear model (BLA), the Wiener-Schetzen model (WS), and the initial and �nal model
obtained by cascading a Wiener-Schetzen model and the BLA (WS+BLA (init.) and
WS+BLA (�nal)), and the number of parameters of each of these models. The result
of a model structure as that in Figure 4.7, but with a linear and a cubic term in the
Wiener-Hammerstein branch instead of only a cubic term (BLA+WH), is estimated
as in Schoukens et al. [2003]. The result of a polynomial nonlinear state-space model
(PNLSS) is adopted from Paduart [2008]. These results are added as a reference.

4.3.4 Unfolding the feedback loop

The results of the Wiener-Schetzen model can possibly be improved by exploit-
ing the feedback structure of the system. This will be tested here.

Following a similar analysis as the one made in Schetzen [2006, Chapter 8],
the di�erential equation in (4.4) can be expanded into a Volterra series. The
displacementy(~t) is written as

y(~t) =
1X

d=1

Z + 1

�1
� � �

Z + 1

�1
kd(~� 1; : : : ; ~� d)u(~t � ~� 1) � � � u(~t � ~� d) d~� 1 � � � d~� d

=
1X

d=1

yd(~t) ;
(4.5)

with kd(~� 1; : : : ; ~� d) the dth-order Volterra kernel. The outputs yd(~t) of the
dth-order Volterra operators are calculated in Appendix 4.B. The outputs of
the second-order and fourth-order Volterra operators and, by extension, of all
even-order Volterra operators are zero. Hence, all even-order Volterra kernels
k2d(~� 1; : : : ; ~� 2d) are zero, asy2d(~t) in (4.5) should be zero for any u(~t). The
output of the �rst-order Volterra operator is equal to

y1(~t) = L � 1 �
K (s)L

�
u(~t)

		
; (4.6)
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Figure 4.7: The Silverbox’s Volterra series approximation up to third order is the sum
of a linear system K (s) = 1

a2 s2 + a1 s+ a0
and a Wiener-Hammerstein system.

while the output of the third-order Volterra operator is equal to

y3(~t) = L � 1 �
K (s)L

�
� aNL y3

1(~t)
		

; (4.7)

with
K (s) =

1
a2s2 + a1s + a0

:

By comparing (4.6) and (4.7) with the feedback structure shown in Figure 4.5,
the �rst-order and third-order Volterra operators correspond to the direct path
and going once through the feedback loop, respectively. Hence, the feedback
system can be approximated by the sum of a linear system and a Wiener-
Hammerstein system (see Figure 4.7). By moving the linear system after the
adder, the cascade of a parallel Wiener system and the linear system is obtained,
which can be modeled by the cascade of a Wiener-Schetzen model and the BLA.

The output of the �fth-order Volterra operator is equal to

y5(~t) = L � 1 �
K (s)L

�
� 3aNL y2

1(~t)y3(~t)
		

: (4.8)

A block structure representation of this �fth-order Volterra operator is shown in
Figure 4.8. The �fth- and higher-order odd Volterra operators rapidly become
complicated. They cannot be easily identi�ed using a simple variation of a
Wiener-Schetzen model, as was possible with the approximation up to third
order, shown in Figure 4.7. Therefore, we decide to stick with the approximation
up to third order only.

As already mentioned, the Silverbox is modeled in discrete-time in this the-
sis, resulting in the model structure shown in Figure 4.9. An initial estimate
is obtained as follows. First, the inverse �lter of the parametric BLA obtained
in Subsection 4.3.3 is applied to the output in order to remove the output
dynamics, which are hard to model with a Wiener-Schetzen model. Next, a
Wiener-Schetzen model is estimated between the input and the inverse �ltered
output. The LTI system G(q) is thus put equal to the parametric BLA. This
approximation is acceptable if the direct path is dominant. The obtained ini-
tial model is iteratively updated, where each iteration consists of the following
steps:
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Figure 4.8: The �fth-order Volterra operator of the Silverbox is quite complicated.

1. Calculate the output w(t) of the Wiener-Schetzen model.

2. Estimate a parametric transfer function model betweenw(t) and the mea-
sured output y(t).

3. Apply the inverse of this transfer function to the measured output y(t) to
obtain a new estimate for w(t).

4. Re-estimate the polynomial coe�cients by using the new estimate ofw(t).

5. Calculate the poles of the transfer function model obtained in step 2, and
use them to construct new GOBFsF1(q); : : : ; Fn (q).

Step 5 is motivated by the fact that the poles of the parallel Wiener part and
the LTI system at the output in Figure 4.7 are the same. Here, three repetitions
of the pole estimates are used. A direct feed-through termF0(q) = 1 is used as
well.

The results in Table 4.5 show that, compared with a single Wiener-Schetzen
model, some improvement is obtained by cascading a Wiener-Schetzen model
and the BLA. The rms error decreases with about a factor 2 to 2:5 on the
validation and estimation data and a factor 1:6 on the test data that does not
include the extrapolation part. On the full test data, however, no improvement
occurs, because the open loop structure fails completely to model the Silverbox
for large excitation levels.

The rms errors obtained by cascading a Wiener-Schetzen model and the
BLA are smaller than those obtained with the model structure in Schoukens
et al. [2003], where a feedback is also approximated by a Wiener-Hammerstein
branch. The number of parameters in the model structure of Schoukens et al.
[2003] is however much smaller.

4.3.5 Conclusion
The Wiener-Schetzen model does not perform much better than a linear model
on the Silverbox data, considering the huge increase of the number of parameters
to obtain a moderate drop of the model error. The drop of the model error is
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Figure 4.9: The Silverbox is modeled by the cascade of a Wiener-Schetzen model and
a discrete-time LTI system G(q).

signi�cantly smaller when the model needs to extrapolate, indicating that the
Wiener-Schetzen model structure does not perfectly match with the underlying
nonlinear feedback structure of the Silverbox.

The results can be slightly improved by cascading a Wiener-Schetzen model
and the BLA, a model structure that is motivated by the Silverbox’s Volterra
series approximation up to third order.

Increasing the order of the approximation might yield better results, but
the higher-order Volterra operators of the Silverbox cannot be easily identi�ed
using a simple variation of a Wiener-Schetzen model. Moreover, increasing the
degree of nonlinearity in the Wiener-Schetzen model approximation leads to a
rapid increase of the number of parameters. For example, an approximation
including �fth-degree terms requires 252 parameters.

4.4 Overall conclusion
The Wiener-Schetzen model structure is able to approximate Wiener-like sys-
tems, as illustrated on measurements of a logarithmic ampli�er circuit, but the
model structure is less appropriate to model feedback systems and systems with
output dynamics. In the next chapter, an attempt will be made to deal with
output dynamics.
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Appendix

4.A Truncation error of the Hammerstein sys-
tem

After truncation of the in�nite impulse response g(� ), a truncation error e(t)
on the output of the Hammerstein system in (4.1) is made:

e(t) =
1X

� = T +1

g(� )x(t � � ) : (4.9)

From (4.1) and (4.9), we have that

E
�

e2(t)
	

E f y2(t)g
=

E
n� P 1

� = T +1 g(� )x(t � � )
� 2

o

E
n

(
P 1

� =0 g(� )x(t � � ))2
o :

Sincex(t) is i.i.d. and stationary, E f x(t1)x(t2)g = 0 if t1 6= t2 and E f x2(t)g is
constant. Hence,

E
�

e2(t)
	

E f y2(t)g
=

P 1
� = T +1 g2(� )E

�
x2(t � � )

	
P 1

� =0 g2(� )E f x2(t � � )g

=
P 1

� = T +1 g2(� )
P 1

� =0 g2(� )

= 1 �
P T

� =0 g2(� )P 1
� =0 g2(� )

:

SinceG(q) = 1
q� p , the impulse responseg(� ) is given by g(� ) = p� � 1 for � > 0,

while it is zero for � � 0. Hence,

TX

� =0

g2(� ) = 1 + p2 + : : : + p2T � 2 ; (4.10)

and

p2
TX

� =0

g2(� ) = p2 + : : : + p2T � 2 + p2T : (4.11)

Subtracting (4.11) from (4.10) results in

TX

� =0

g2(� ) =
1 � p2T

1 � p2 ;
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and

lim
T !1

TX

� =0

g2(� ) =
1

1 � p2 :

Finally, we have that s
E f e2(t)g
E f y2(t)g

= pT :

4.B Volterra series approximation of the Silver-
box

To retrieve the outputs yd(~t) of the dth-order Volterra operators, a similar
approach is followed as the one in Schoukens et al. [2003] that considers a more
general nonlinear feedback system.

First, consider the block-structure of the Silverbox in Figure 4.5 from output
to input, i.e.

u(~t) = L � 1 �
K � 1(s)L

�
y(~t)

		
+ aNL y3(~t)

= H 1[y(~t)] + H 3[y(~t)]

= H[ y(~t)] ;
which is a Volterra series where only the �rst- and third-order operators are
non-zero. Next, the displacementy(~t) can be obtained by applying the inverse
operator H� 1 to the force u(~t). This inverse operator is approximated by its
pth-order inverse K(p) [Schetzen, 2006, Chapter 7], i.e.

ŷ(~t) = K (p) [u(~t)]

=
pX

d=1

Kd[u(~t)] ;

such that the overall Volterra seriesŷ(~t) =
P p

d=1 yd(~t) = K (p) [H[y(~t)]] = Q[ y(~t)]
can be written as

Q[y(~t)] = y(~t) +
1X

d= p+1

Qd[y(~t)] : (4.12)

By expressing the operators Qd in terms of the operators Kd and Hd, and by
requiring that they satisfy (4.12), the operators Kd can be determined. The
results in Schetzen [2006] can be directly adopted for the �rst three operators:

K1 = H � 1
1 ; (4.13)

K2 = � K1[H2[K1]]
= 0 ;

and
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Figure 4.10: Representation of the �fth-order Volterra operator of the Silverbox ac-
cording to (4.15).

K3 = � K1[H3[K1]] � 2K2f H1[K1]; H2[K1]g
= � K1[H3[K1]] : (4.14)

To obtain the fourth-order operator K 4, the expression for Q4 is [Schetzen, 2006]

Q4 = K 1[H4] + 2K 2f H1; H3g + K 2[H2] + 3K 3f H1; H1; H2g + K 4[H1]
= K 4[H1] :

According to (4.12), Q4 should be zero for any input, and thus K4 equals zero.
In the expression for Q5 [Schetzen, 2006], the only non-zero terms sum up to

Q5 = 3K 3f H1; H1; H3g + K 5[H1] ;

and thus

K5 = � 3K3f H1[K1]; H1[K1]; H3[K1]g
= � 3(� K1[H3f K1[H1[K1]]; K1[H1[K1]]; K1[H3[K1]]g]) :

(4.15)

A block-structure representation of this operator is shown in Figure 4.10. The
expression in (4.15) can be simpli�ed to

K5 = K 1[� 3H3f K1; K1; � K1[H3[K1]]g]
= K 1[� 3H3f K1; K1; K3g] :

(4.16)

Its block-structure representation is shown in Figure 4.8.
The expressions in (4.13), (4.14), and (4.16) result in the expressions in (4.6),

(4.7), and (4.8) for y1(~t), y3(~t), and y5(~t), respectively. The outputs y2(~t) and
y4(~t) are equal to zero.
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Chapter 5

Dynamics at the output:
Wiener-Hammerstein
models

This chapter considers the identi�cation of both single-branch and parallel
Wiener-Hammerstein models (see Figures 1.2c and 1.3a). After an introduction
on applications, and identi�cation and initialization methods, two initialization
methods for single-branch Wiener-Hammerstein models are proposed. Finally,
a method is proposed to get rid of the cross-terms in a multivariate polynomial
that describes the static nonlinearity in a parallel Wiener-Hammerstein model.

5.1 Wiener-Hammerstein system identi�cation

5.1.1 Applications

Since a Wiener-Hammerstein model is a generalization of both a Wiener and a
Hammerstein model, a Wiener-Hammerstein model can be used to model linear
systems with either sensor or actuator nonlinearities. Systems with an internal
nonlinearity can be modeled as well.

Actual applications of Wiener-Hammerstein models can mainly be found in
biology [Korenberg and Hunter, 1986; Dewhirst et al., 2010; Bai et al., 2009],
but also in echo cancellation [Nollett and Jones, 1997] and in the modeling of
RF power ampli�ers [Isaksson et al., 2006].
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5.1.2 Identi�cation methods
Several identi�cation methods have been proposed to identify single-branch
Wiener-Hammerstein systems. Early work can be found in Billings and Fakhouri
[1982] and Korenberg and Hunter [1986]. The maximum likelihood estimate is
formulated in Chen and Fassois [1992]. Wiener-Hammerstein systems are mod-
eled as the cascade of well-selected Hammerstein models in Wills and Ninness
[2012]. The recursive identi�cation of errors-in-variables Wiener-Hammerstein
systems is considered in Mu and Chen [2014].

5.1.3 Initial estimates
The identi�cation of a Wiener-Hammerstein model is a problem that is nonlinear-
in-the-parameters. Hence, good initial estimates are required. Both Chen and
Fassois [1992] and Wills and Ninness [2012] indicate the importance of good
initial estimates, but not how to obtain them.

Some approaches obtain initial estimates by using speci�cally designed ex-
periments. For example, Vandersteen et al. [1997] proposes a series of experi-
ments with large and small signal multisines. Weiss et al. [1998] uses only two
experiments with paired multisines, but the approach requires the estimation of
the Volterra kernels of the system, which can be time-consuming. Crama and
Schoukens [2005] proposes an iterative initialization scheme that only requires
one experiment of a well-designed multisine excitation.

Some other methods start from the BLA of the Wiener-Hammerstein system
[Sj�oberg et al., 2012; Westwick and Schoukens, 2012; Schoukens et al., 2014c].
These methods are discussed in more detail below.

5.1.4 Initialization methods that start from the BLA
A major di�culty is the generation of good initial estimates for the two linear
dynamic blocks. The poles and the zeros of both linear dynamic blocks can be
obtained from the BLA (see Theorem 2.7). To obtain estimates for both linear
blocks, the poles and the zeros of the BLA should be split over these individual
blocks. Several methods have been proposed to make this split.

The brute-force method in Sj�oberg et al. [2012] scans all possible splits. For
each of these splits, the static nonlinearity is estimated via a linear least-squares
regression. The obtained initial models are then tested on the data, and the
best performing model is retained for further optimization. The drawback of
this method is that the number of possible splits grows exponentially with the
model order. This method can thus require a large computation time.

The advanced method in Sj�oberg et al. [2012] uses a basis function expansion
for the input dynamics, based on the poles of the BLA, and a basis function
expansion for the inverse of the output dynamics, based on the zeros of the BLA.

94



5.1 Wiener-Hammerstein system identi�cation

By expressing the static nonlinearity in terms of two multivariate polynomials,
the estimation of the remaining model parameters (the polynomial coe�cients)
is formulated linearly-in-the-parameters. Since all the poles of the BLA are
used to parameterize the input dynamics, and all the zeros of the BLA are
used to parameterize the output dynamics, the model orders of the estimated
input and output dynamics are too large. A scanning procedure over the basis
functions is proposed to reduce these model orders. In each series of scans, all
basis functions are alternately removed. The rms error of the obtained models
is calculated, and the best performing model is retained as an initial model.
Starting from this initial model, a new series of scans is performed. Once the
scanning procedure is completed, the initial models are ranked with respect to
their rms error. Typically, the rms error makes a strong jump when a necessary
basis function was removed. Compared to the brute-force method, the number
of scans is lower, but the computation time can still be large.

The method described in Westwick and Schoukens [2012] not only uses
the BLA from the input to the output, but also the so-called quadratic BLA
(QBLA), which is the BLA from the squared input u2(t) to the output residual
yS (t) = y(t) � GBLA (q)u(t). This QBLA is shown to be asymptotically propor-
tional to the product of the output dynamics and the convolution of the input
dynamics with itself, i.e. GQBLA (k) = cQBLA [R � R](k)S(k) + O(N � 1). The
initialization approach in Westwick and Schoukens [2012] compares for each pos-
sible split a cost function that is equal to the sum over the excited frequencies of
the weighted di�erences between the QBLA obtained from the data (ĜQBLA (k))
and the QBLA obtained from splitting the BLA (

h
R̂[i ] � R̂[i ]

i
(k)Ŝ[i ](k) for the

i th split), where the inverse of the sample variance ofĜQBLA (k) is used as a
weighting. A variance expression is derived for the di�erence between the cost
functions of two di�erent splits, so that splits that have a signi�cantly worse
cost function than the best split can be removed from consideration. It is shown
that the number of possible splits can be greatly reduced in this way. Due to
the high-order nature of the QBLA (the ratio of the number of systematic con-
tributions to the number of stochastic contributions is much smaller in a QBLA
than in a BLA), however, long measurement times may be needed to obtain an
accurate estimate.

The nonparametric separation method proposed in Schoukens et al. [2014c]
avoids the pole/zero assignment problem completely, but also uses the QBLA.

This chapter proposes two initialization methods. Section 5.2 proposes a
scanning procedure where the number of scans is proportional to the model
order. Section 5.3 proposes a method based on a well-designed multisine exci-
tation and a �rst-order BLA, where the poles and the zeros of the input dy-
namics shift, while those of the output dynamics remain invariant. This makes
it possible to split the poles and the zeros of the BLA over the input and the
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output dynamics.

5.1.5 Parallel Wiener-Hammerstein systems
Only a few identi�cation methods for parallel Wiener-Hammerstein systems
can be found in the literature. Nevertheless, it is useful to have identi�cation
methods for this model structure, since parallel Wiener-Hammerstein models
are universal approximators (see Subsection 2.2.4).

The methods proposed in Baumgartner and Rugh [1975], Wysocki and
Rugh [1976], and Billings and Fakhouri [1982] directly identify a decoupled
(i.e. with univariate nonlinearities) parallel Wiener-Hammerstein model as in
Figure 1.3a. However, they consider a somewhat restricted class of parallel
Wiener-Hammerstein models, called the classSM . This model has M parallel
branches, each containing a simple Wiener-Hammerstein model with an integer
power nonlinearity, i.e. branch d contains a nonlinearity (�)d. The restriction is
that there is only one branch for each power.

Up to our knowledge, only one identi�cation method is available for a gen-
eral parallel Wiener-Hammerstein model [Schoukens et al., 2015b]. It represents
the static nonlinear block by a basis function expansion (e.g. multivariate poly-
nomial basis functions, piece-wise linear basis functions, or radial basis function
networks with a �xed width and a �xed center). If a multivariate polynomial
basis is chosen, then this polynomial typically contains cross-terms (a coupled
polynomial representation).

Section 5.4 presents a tensor decomposition method to get rid of the cross-
terms in the multivariate polynomial. This makes the model easier to interpret
and a possible reduction of the number of parameters is realized.

5.2 Initial estimates using basis function expan-
sions

Based on Tiels et al. [2014a].

This section presents a method to initialize the three sub-blocks in a single-
branch Wiener-Hammerstein model. The three sub-blocks are parameterized
in terms of basis function expansions. To reduce the number of parameters, a
simpli�ed scanning procedure is proposed.

5.2.1 Setup
The data-generating system is assumed to be a single-branch discrete-time
Wiener-Hammerstein system (see Figure 5.1). Note that the representation in
Figure 5.1 is not unique. Arbitrary non-zero scaling factors can be exchanged
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Figure 5.1: The data-generating system is a discrete-time Wiener-Hammerstein sys-
tem (R(q) and S(q) are discrete-time linear dynamic systems, f (x) is a static nonlinear
function).

between the linear dynamics and the static nonlinearity without changing the
input/output behavior of the system (see Figure 5.2). Also a delay can be
exchanged between the two linear dynamic sub-blocks.

The following assumptions are made on the system and the signals.

Assumption 5.1 (Proper, �nite-dimensional, stable, rational transfer functions
of known order). The linear dynamic systemsR(q) and S(q) are proper, �nite-
dimensional, stable, rational transfer functions of known order.

Assumption 5.2 (No pole-zero cancellations). There are no pole-zero cancel-
lations in the product R(q)S(q).

Assumption 5.3 (Non-even nonlinearity). The function f (x) is non-even around
the operating point.

Assumption 5.4 (Gaussian excitation). The excitation signal is either a Gaus-
sian noise (see De�nition 2.1) or a random-phase multisine (see De�nition 2.3).

The same noise assumption is made as in Assumption 3.6, which is repeated
here for convenience of the reader.

Assumption 5.5 (Zero-mean �ltered white output noise) . The measurement
noise v(t) is obtained by �ltering a sequence of independent random variables,
that are independent of the excitation signalu(t) and that have a zero mean and
a bounded variance, by a stable monic �lter.

Under this assumption, the classical least-squares framework is known to
result in consistent estimates of the BLA [Pintelon and Schoukens, 2012]. To
simplify the notation, and without loss of generality, the results in this section
are presented in the noise-free case.

5.2.2 Basic idea
The basic idea is to parameterize both the input and the output dynamics
in terms of GOBFs that are constructed based on all the poles of the BLA,
and to parameterize the static nonlinearity by a multivariate polynomial. The
obtained model is thus the cascade of a Wiener-Schetzen model and a linear
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Figure 5.2: Arbitrary non-zero scaling factors ceq1 and ceq2 can be exchanged between
the linear dynamics and the static nonlinearity in the Wiener-Hammerstein system in
Figure 5.1, without changing the input/output behavior of the system. Moreover, an
arbitrary delay � can be exchanged between the two linear dynamic sub-blocks.

dynamic model. A scanning procedure is proposed to reduce the number of
poles in both sets of GOBFs. Next, the Wiener-Schetzen model is projected to
a single-branch Wiener system in order to obtain initial estimates for the three
sub-blocks of the Wiener-Hammerstein system. This approach is explained in
more detail in the next subsection.

5.2.3 Proposed method

A model bilinear in its parameters

The input and output dynamics R and S, and the static nonlinearity f are
parameterized in terms of basis function expansions:

R̂(q) =
n �X

i =0

� R;i Fi (q) ; (5.1)

f̂ (x) =
DX

d=0


 dxd ; (5.2)

Ŝ(q) =
n �X

i =0

� S;i Fi (q) ; (5.3)

where F0(q) = 1 is a feed-through term, and where f F1(q); : : : ; Fn � (q)g are
GOBFs that are constructed based on all the poles of the BLA of the Wiener-
Hammerstein system. For simplicity reasons, we assume that there is no delay
in both R(q) and S(q), although this situation can be easily dealt with. Also
for simplicity reasons, the basis function expansion of the static nonlinearity is
here assumed polynomial. The Wiener part described by (5.1) and (5.2) can
then be rewritten as a Wiener-Schetzen model (see Section 3.3). This results in
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5.2 Initial estimates using basis function expansions

Figure 5.3: The resulting intermediate model is the cascade of a Wiener-Schetzen
model and a linear dynamic model (f F0(q); : : : ; Fn � (q)g are OBFs based on the poles
of the BLA;

�
f (x0 ; : : : ; x n � ) is a MIMO polynomial).

the model structure shown in Figure 5.3 that is described by

x i (t) = Fi (q)u(t) ; for i = 0 ; : : : ; n� ,

wi (t) =
�

f [i ](x0(t); : : : ; xn � (t)) ; for i = 1 ; : : : ; n� ,

ŵ(t) =
n �X

i =1

� i wi (t) ;

ŷ(t) =
n �X

i =0

� i Fi (q)ŵ(t) + ŷDC ;

(5.4)

where every
�

f [i ](x0; : : : ; xn � ) is a monomial of the multivariate polynomial
�
f (x0; : : : ; xn � ) with corresponding coe�cient � i , and where we have dropped
the subscript S from � S;i to simplify the notation. The constant term that
corresponds to
 0 in (5.2) is not included in

�

f , but it is estimated at the out-
put of the model (ŷDC in Figure 5.3). Sincen� corresponds to the number of
polynomial coe�cients in a multivariate polynomial, n� can become quite large
(see also Table 1.1).

Note that this intermediate model is bilinear in its model parameters �
and � . General purpose methods to solve problems that are bilinear in their
parameters, like the methods in Bai and Liu [2005], can thus be applied.

Note also that a Wiener system (the setting of Section 4.1) and a Ham-
merstein system (the setting of Section 4.2) �t in the general model structure
in Figure 5.3. If there are no output dynamics (Wiener) or no input dynam-
ics (Hammerstein), then the model in Figure 5.3 reduces to a model that is
linear-in-the-parameters.

Over-parameterization method

Under Assumption 5.1 and in case the static nonlinearity is a polynomial, the
intermediate model can exactly reproduce the input/output behavior of the true
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system. The output spectrum at frequencyk (not including DC) is then given
by

Y (k) = Ŝ(k)Ŵ (k)

=
�
F0(k) � � � Fn � (k)

�
2

64

� 0
...

� n �

3

75
�
� 1 � � � � n �

�
2

64

W1(k)
...

Wn � (k)

3

75

= F (k)�W T (k) :

(5.5)

Applying the \vec" operation on the last equation results in

vec(Y (k)) = Y (k)
= ( W (k) 
 F (k)) vec(� )
= J (k) vec(� ) :

(5.6)

Note that J (k) is a row vector. Collecting (5.6) at all measured frequenciesk
results in

Y = J vec(� ) : (5.7)

In a �rst step, vec( � ) is estimated via a linear least-squares approach. Next,
the singular value decomposition (SVD) of the obtained parameter matrix � LS
in (5.5) is taken, and is truncated to the �rst term to obtain estimates for the
� and � coe�cients. This corresponds to the over-parameterization approach
in Bai and Liu [2005].

From numerical simulations, we have observed that the regression matrix
J 2 CN � (n � +1) n � has rank n1n� + n� , where n1 = n� � (n � + D )!

n � !D ! + 1. The ma-
trix J is thus rank-de�cient as soon asn� > 0. Hence, the over-parameterization
method is not convergent in this case, as the �rst step does not converge to the
true � = �� T . Let vec(� [i ]) be in the null space ofJ . Then � LS is just one of
the in�nitely many solutions � all = � LS +

P corank( J )
i =1 � i � [i ] to the least-squares

problem in (5.7). To �nd the true � , one would need to �nd the � i s such that � all
is of minimal rank. This problem is known as the MinRank problem [Faug�ere
et al., 2008], which is hard to solve. Nevertheless, the over-parameterization
method can be used to calculate the modeled output using (5.7), and to obtain
starting values for the � and � coe�cients.

Simpli�ed scanning procedure

It should be noted that the model in (5.4) is too complex, since both the pa-
rameterizations of R̂ and Ŝ in (5.1) and (5.3) use the pole estimates of both
R and S. To reduce the complexity of the model, the user can decide to start
a simpli�ed scanning procedure. The rms error of the full-complexity model,
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calculated using (5.7), will serve as a reference level with which the results of
the scanning procedure will be compared.

In each scan, one pole (or complex conjugate pole pair for complex poles) is
alternately removed from R̂ and Ŝ in (5.1) and (5.3), respectively. The least-
squares estimate in (5.7) is calculated for both reduced-complexity models. If
the rms error on the simulated output strongly deteriorates with respect to the
reference level of the full-complexity model if a pole (or pole pair) is removed
from, say, the input dynamics, while the rms error does not deteriorate much
when the pole (pair) is removed from the output dynamics, then this pole (pair)
is removed from the output dynamics in the �nal model and is kept in the
input dynamics in the �nal model, and vice versa. After scanning, the over-
parameterization method is applied to the �nal model to obtain initial estimates
for the � and � coe�cients.

This scanning procedure requires at most 2n� scans. Compared to the scan-
ning procedures presented in Sj�oberg et al. [2012], where the number of scans
grows either exponentially (if no restrictions on properness of the subsystems,
etc. are imposed) or combinatorially with the model order, the proposed sim-
pli�ed scanning procedure requires a number of scans that is only proportional
to the model order.

Bilinear optimization

Next, the estimates of the � and � coe�cients are optimized using a normal-
ized iterative least-squares approach [Bai and Liu, 2005]. In each iteration,
either the � or � coe�cients are estimated, while the other set of coe�cients
remains constant. The norm of � is normalized to one in each iteration, and
the �rst non-zero element of � is constrained to be positive to obtain a unique
parameterization.

After this step, an estimate of S(q) in (5.3) is available. To obtain estimates
of R(q) and f (x), we need to project the Wiener-Schetzen model betweenu(t)
and ŵ(t) to a single-branch Wiener system.

Returning to a single-branch model

First, the intermediate signals x i (t) and ŵ(t) in (5.4) are simulated using the
measured input signalu(t) and the estimated model. The simulated interme-
diate signal ŵ(t) is an estimate of w(t) in the Wiener-Hammerstein system
shown in Figure 5.1. The BLA from u(t) to w(t) is equal to R(q), up to an
unknown scaling factor (special case of Theorem 2.7) that can be exchanged
with the static nonlinearity (see Figure 5.2). An estimate of (a scaled version
of) R(q) can thus be obtained by estimating the BLA from u(t) to ŵ(t). The
nonparametric and parametric estimation of this BLA are combined in one step
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as

�̂ R = arg min
� R







ŵ(t) �

n �X

i =0

� R;i x i (t)








2

2

;

where the parameterization in (5.1) is used for the parametric estimation of the
BLA.

Approximate pole-zero cancellations in the estimates ofR(q) and S(q) are
removed.

Next, the polynomial coe�cients 
 d in (5.2) are estimated using a linear
least-squares approach.

Finally, the parameters of the single-branch Wiener-Hammerstein model (its
polynomial and transfer function coe�cients) can be further optimized using a
Levenberg-Marquardt nonlinear optimization algorithm [Marquardt, 1963].

5.2.4 Illustration
This subsection illustrates the approach on a simulation example. The situation
where the simpli�ed scanning procedure is not included is compared to the
situation where it is included.

Setup

Consider the Wiener-Hammerstein system in Figure 5.1. The linear dynamics
R(q) and S(q) are second-order low-pass Chebyshev Type I �lters with a peak-
to-peak ripple of 10 dB and 20 dB, respectively, and with a normalized passband
edge frequency of 0:05 and 0:1, respectively. The static nonlinearity is given by
f (x) = atan(2 x).

The excitation signal u(t) is a random-phase multisine containingN = 1024
samples. The excited frequencies are equidistantly spaced between DC and one
sixth of the sample frequency, which is normalized tof s = 1 Hz. Within this
range, the amplitudes jUk j are chosen equal to each other and such that the
rms value of u(t) is equal to one. Seven phase realizations and three periods of
the multisine are applied. The �rst period is removed to avoid the in
uence of
the transients. A zero-mean white Gaussian disturbancev(t) is added to the
output, with a signal-to-noise ratio of 60 dB.

Simpli�ed scanning not included

The BLA of the system is estimated by averaging out the division of the output
and the input spectrum over the seven phase realizations. On top of this non-
parametric estimate, a fourth-order parametric model is estimated. The poles
of this parametric model are used to construct two sets of GOBFs, one for the
input dynamics and one for the output dynamics. The nonlinearity is modeled
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Figure 5.4: The true (full line) and estimated (dashed line) input (red) and output
(blue) dynamics agree well when the scanning procedure is not included.

using a low-degree (D = 3) MIMO polynomial
�

f to limit the number of � pa-
rameters. Starting values for the � and � coe�cients are obtained using the
over-parameterization method. These coe�cients are then bilinearly optimized.

Initial estimates for R(q) and f (x) are obtained by projecting the Wiener-
Schetzen model to a single-branch Wiener system, as described in Subsec-
tion 5.2.3. In this step, the static nonlinearity is estimated with a higher-degree
polynomial (D = 5), as the number of polynomial coe�cients 
 d only increases
proportionally with the degree as opposed to the combinatorial increase for the
MIMO polynomial coe�cients � i .

Figure 5.4 shows the true and the estimated linear dynamics, while Fig-
ure 5.5 shows the true and the estimated static nonlinearity. The estimates are
normalized, such that the estimated linear dynamic systemR̂ and the estimated
static nonlinearity f̂ match their true counterparts as well as possible in mean-
square sense. The remaining normalization factor is taken into account in the
estimate of S (see Figure 5.2). It can be observed that the estimates agree well
with the true dynamics and nonlinearity.

Simpli�ed scanning included

To see the e�ect of the simpli�ed scanning procedure, the model estimation
is repeated. this time including the scanning procedure described in Subsec-
tion 5.2.3.
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Figure 5.5: The true (full line) and estimated (dashed line) static nonlinearity agree
well when the scanning procedure is not included.

Table 5.1 shows the results of the scanning procedure. It can be deduced
that the estimated pole pair 0:8811� 0:4275j should be assigned to the output
dynamics, while the pole pair 0:9404� 0:2163j should be assigned to the input
dynamics. This is in good agreement with the true dynamics. WhereasR(q)
has a complex pole pair 0:9397� 0:2162j , S(q) has a pole pair 0:8800� 0:4275j .

Figures 5.6 and 5.7 show the true and estimated linear dynamics and nonlin-
earity, respectively. Again, good initial estimates are obtained, but they are not
as good as when the scanning procedure was not applied. Figure 5.6 only shows
amplitude information, but a phase error in the estimate of S(q) is present as
well. Note that due to the scanning procedure, less correction terms are present,
which causes the deterioration. Although the initial estimates are not as good,
the scanning procedure allowed us to reduce the complexity of the model before
the bilinear optimization. Moreover, both initial estimates converge to simi-
lar estimates after a Levenberg-Marquardt optimization [Marquardt, 1963] (see
Figures 5.8 and 5.9).

5.2.5 Conclusion
Initial estimates for a Wiener-Hammerstein model can be obtained by using
basis function expansions for the three sub-blocks. By parameterizing the dy-
namics in terms of GOBFs that are constructed based on the poles of the BLA,
and the nonlinearity in terms of a polynomial, the Wiener-Hammerstein model
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Figure 5.6: The true (full line) and estimated (dashed line) input (red) and output
(blue) dynamics also agree well when the scanning procedure is included.

Figure 5.7: The true (full line) and estimated (dashed line) static nonlinearity also
agree well when the scanning procedure is included.
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Figure 5.8: The optimized estimates with (dotted line) and without (dashed line)
inclusion of the scanning procedure are similar to each other and agree well with the
true (full line) input (red) and output (blue) dynamics.

Figure 5.9: The optimized estimates with (dotted line) and without (dashed line)
inclusion of the scanning procedure are similar to each other and agree well with the
true (full line) static nonlinearity.
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Table 5.1: Relative rms error on the simulated output in dB when a complex conjugate
pole pair is removed from the full-complexity model. The relative rms error of the
full-complexity model is equal to � 24:9 dB.

is reformulated to the cascade of a Wiener-Schetzen model and a linear dynamic
model. This intermediate model is bilinear in its parameters. A simpli�ed scan-
ning procedure can be performed to reduce the number of poles used in each set
of GOBFs. After a bilinear optimization of the model parameters, the Wiener-
Schetzen part of the intermediate model is projected to a single-branch Wiener
model. This results in an initial estimate of the Wiener-Hammerstein system.

The method, as presented here, still has problems to converge for high-order
Wiener-Hammerstein systems. If the linear dynamics are high-order, it is not
always clear for each pole (pair) whether it should be assigned to the input or
to the output dynamics. This is likely due to the fact that the large number
of poles compensate for the pole mismatch when a necessary pole is removed.
Moreover, the intermediate model has a large number of parameters when the
dynamics are high-order. Hence, the variance error may become quite large.
The scanning procedure could however be simpli�ed. Compared to the expo-
nential or combinatorial increase of the number of scans with the model order
in related scanning methods, the number of scans increases only proportionally
with the model order in the proposed simpli�ed scanning procedure.

5.3 Initial estimates using phase-coupled multi-
sines

Based on Tiels et al. [2014b].

This section presents an alternative method to initialize the linear dynamic
blocks in a single-branch Wiener-Hammerstein model. A well-designed multi-
sine excitation is used to split the overall dynamics of the BLA over the input
and the output dynamics.

5.3.1 Setup
The setup is slightly di�erent than the one in Subsection 5.2.1.
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This time, it should only be possible to approximate the nonlinearity by a
(possibly in�nite-degree) polynomial. The nonlinearity itself will not be esti-
mated. Note that a uniformly convergent polynomial approximation is always
possible for a continuous nonlinearity on a closed interval due to the Stone-
Weierstrass theorem. The type of convergence can even be relaxed to mean-
square convergence, since the BLAs that will be estimated make use of mean-
square approximation. Hence, discontinuous nonlinearities are also allowed.

Assumption 5.6 (Polynomial nonlinearity representation) . The static nonlin-
earity f (x) can be arbitrarily well approximated by a polynomial in the interval
[min(x(t)) ; max(x(t))] . Hence, f (x) can be thought of asf (x) =

P 1
d=0 
 dxd.

An assumption that is slightly stricter than the non-evenness of the nonlin-
earity is required.

Assumption 5.7 (Nonlinear odd term present). At least one nonlinear odd
term is present, i.e. there exists an oddd � 3 for which 
 d 6= 0 .

Moreover, transients are not considered here.
Finally, Assumption 5.5 is made as well. To simplify the notation, and

without loss of generality, also the results in this section are presented in the
noise-free case.

Assumption 5.8 (Noise-free). The input and output are measured without
disturbing noise.

5.3.2 Basic idea
The BLA of a Wiener-Hammerstein system for a Gaussian excitation is propor-
tional to the product of the underlying linear dynamic blocks (see Theorem 2.7).
The basic idea here is to introduce a multisine excitation with pairwise coupled
random phases. Compared to the random-phase multisine case explained in
Appendix 2.A, new terms will pop up in the output spectrum. A modi�ed BLA
will be estimated on a shifted frequency grid. It will be shown that the input
dynamics shift over a user-speci�ed frequency o�set in this shifted BLA, while
the output dynamics remain �xed. This allows us to separate the overall dy-
namics obtained from the BLA over the input and the output dynamics. The
approach is explained in more detail below.

5.3.3 Phase-coupled multisine excitation
Phase-coupled multisines are multisines where speci�cally selected pairs of ex-
cited harmonics have the same phase. Depending on whether both even and
odd, or only odd harmonics are excited, we are dealing with a full or an odd
phase-coupled multisine, respectively.
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De�nition 5.9 (Full phase-coupled multisine). A signal u(t) is a phase-coupled
multisine if it is a multisine (see De�nition 2.2) that only excites the harmonics
k for which

� k 2
��

�
2

+ � i;
�
2

+ � i + s
��

for i = 0 ; 1; : : : ; i max ;

where � and s are integers (more details below), and if each of the frequency
couples gets assigned an independently and identically distributed random phase
� �

2 + �i = � �
2 + �i + s with the property E

n
e

j� �
2 + �i

o
= 0 . For a full phase-coupled

multisine, the even integer � � 4 determines the frequency resolution (only ev-
ery � th harmonic is excited, starting from the harmonics �

2 and �
2 + s), and

s = cshift � + 1 will determine the shift of the poles and the zeros ofR(q) with
respect to those ofS(q), where cshift > 0 is an integer.

It can be useful to only excite the odd harmonics, just as with random-
phase multisines [Schoukens et al., 2005]. The de�nition of the phase-coupled
multisine then slightly changes.

De�nition 5.10 (Odd phase-coupled multisine). A signal u(t) is an odd phase-
coupled multisine if it is a phase-coupled multisine (see De�nition 5.9) where
�
2 � 5 is an odd integer, and wheres = cshift � + 2 .

To simplify the notation hereafter, de�ne

� :=
�
2

+ � i : (5.8)

Note that there is some abuse of notation, since the dependency oni is not
taken into account in the notation � .

Remark 5.11. Although this is not really necessary, the requirement� � 4
for a full phase-coupled multisine, and �

2 � 5 for an odd phase-coupled multi-
sine makes sure that the harmonicsk = � � s and k = � + 2s are not excited.
Hence, the output spectrum at these harmonics will not be disturbed by linear
contributions.

5.3.4 New terms in the output spectrum of the BLA
Consider the setting in Appendix 2.A, where the random-phase multisine case
is explained. SinceU(� ) and U(� + s) have the same phase in a phase-coupled
multisine, also other terms than the ones reported in (2.20) will contribute to
the BLA at the harmonics � and � + s when a phase-coupled multisine excitation
is used. Moreover, the output spectrum will contain terms that are proportional
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to S(k) and shifted versions ofR(k) at some non-excited harmonics. This is
explained below.

Let us take a look at the terms inYd(k) in (2.19) where the product
Q d

i =1 U(l i )
has a phase\ U(� ). These are the terms where one of the harmonicsl i is equal
to � or � + s (U(� + s) has the same phase asU(� )), and where the remaining
factors in the product

Q d
i =1 R(l i )U(l i ) combine pairwise to a constant. The

possible values for thesed� 1
2 (complex) constants are either

c0 =
N= 2X

l = � N= 2+1

X (l)X (� l) ;

c� s =
N= 2X

l = � N= 2+1

X (l)X (� (l + s)) ;

or

cs =
N= 2X

l = � N= 2+1

X (� l)X (l + s) :

Note that whenever a pair of factors combines toc� s, a frequency shift � s
is introduced in the sum

P d
i =1 l i = k. Likewise, a frequency shift s is intro-

duced whenever a pair of factors combines tocs = ( c� s) � . There are thus d + 1
harmonicsk that range from � � d� 1

2 s to � + d+1
2 s in steps ofs where the prod-

uct
Q d

i =1 U(l i ) has a phase\ U(� ). The smallest harmonic (k = � � d� 1
2 s) is

obtained when one of the harmonicsl i is equal to � , and when all the other
harmonics form pairs (l; � (l + s)). The largest harmonic (k = � + d+1

2 s) is ob-
tained when one harmonicl i is equal to � + s, and when all the other harmonics
form pairs (� l; l + s). From the discussion above, the following theorem follows:

Theorem 5.12. For the Wiener-Hammerstein system in Figure 5.1, excited by
a phase-coupled multisine (see De�nitions 5.9 and 5.10), operating in steady-
state, and under Assumptions 5.6 and 5.8, the expectationEu

n
Yd ( � + is )

U ( � )

o
is

equal to

d!S(� + is)

2

664R(� )
X

sk 2 S
d � 1

2
is

d � 1
2Y

k=1

csk

+ R(� + s)
jU(� + s)j

jU(� )j

X

sk 2 S
d � 1

2
( i � 1) s

d � 1
2Y

k=1

csk

3

775 + O(N � 1) ;
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and the expectationEu

n
Yd ( � ( � + is ))

U ( � � )

o
=

�
Eu

n
Yd ( � + is )

U ( � )

o� �
is equal to

d!S(� (� + is))

2

664R(� � )
X

sk 2 S
d � 1

2
� is

d � 1
2Y

k=1

csk

+ R(� (� + s))
jU(� + s)j

jU(� )j

X

sk 2 S
d � 1

2
� ( i � 1) s

d � 1
2Y

k=1

csk

3

775 + O(N � 1)

(5.9)

for i = � d� 1
2 ; � d� 1

2 + 1 ; : : : ; d+1
2 , and where the setSd

l is de�ned as

Sd
l := f sk : sk 2 f� s;0; sg ^

dX

k=1

sk = lg :

Proof. The theorem follows immediately from the discussion above.

Note that Eu

n
Yd ( � + is )

U ( � )

o
and Eu

n
Yd ( � ( � + is ))

U ( � � )

o
are zero if Assumption 5.7

is not ful�lled.
From here on, the error term O(N � 1) will be dropped.
For example, for d = 3, there are four harmonics whereEu

n
Y3 (k )
U ( � )

o
has a

non-zero mean. These are listed below.

� At harmonic k = � � s:

Eu

�
Y3(k)
U(� )

�
= 6S(� � s)R(� )c� s

� At harmonic k = � :

Eu

�
Y3(k)
U(� )

�
= 6S(� )R(� )c0

+ 6S(� )R(� + s)
jU(� + s)j

jU(� )j
c� s

� At harmonic k = � + s:

Eu

�
Y3(k)
U(� )

�
= 6S(� + s)R(� )cs

+ 6S(� + s)R(� + s)
jU(� + s)j

jU(� )j
c0
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� At harmonic k = � + 2s:

Eu

�
Y3(k)
U(� )

�
= 6S(� + 2s)R(� + s)

jU(� + s)j
jU(� )j

cs

The results at the harmonics k = � � s and k = � + 2s are of particular in-
terest. At these harmonics, Eu

n
Y3 (k )
U ( � )

o
is proportional to S(k)R(k + s) and

S(k)R(k � s), respectively. The frequency shift of the input dynamics R over
a frequency � s (or s) creates a shift of the poles and the zeros ofR over a
frequency � s (or s). Note that the shifted poles and zeros are no longer real
nor paired in complex conjugated couples. Hence, the rational transfer func-
tions related to Eu

n
Y3 ( � � s)

U ( � )

o
and Eu

n
Y3 ( � +2 s)

U ( � )

o
will have complex coe�cients

instead of real coe�cients. This will be used in the next subsection.

5.3.5 The shifted BLA and parametric smoothing
For simplicity, we continue to explain the idea on a third-degree nonlinearity.
The generalization to an arbitrary degree d is explained in Subsection 5.3.6.
First, the FRF measurements Eu

n
Y3 (k )
U ( � )

o
and Eu

n
Y3 (k )

U ( � � )

o
will be collected at

appropriate harmonics k, such that only contributions are selected where the
input and output dynamics shift over a unique frequency o�set. Next, a para-
metric transfer function model will be identi�ed to get direct access to the poles
and the zeros of the system. As the shifted poles result in a transfer func-
tion model with complex coe�cients, an adapted frequency domain estimator
[Peeters et al., 2001] will be used. Finally, the input and the output dynamics
will be split by separating the shifting poles and zeros from those that do not
move.

From (5.9), it follows that

Eu

�
Y3(� (� � s))

U(� � )

�
= 6S(� (� � s))R(� � )cs

and that

Eu

�
Y3(� (� + 2s))

U(� � )

�
= 6S(� (� + 2s))R(� (� + s))

jU(� + s)j
jU(� )j

c� s :

Consequently, Eu

n
Y3 (k )

U ( � � )

o
is proportional to S(k)R(k � s) at the harmon-

ics k = � (� � s), while it is proportional to S(k)R(k + s) at the harmonics
k = � (� + 2s). Therefore, by analogy with (2.9), de�ne the shifted BLAs
G+

SBLA (k) and G�
SBLA (k) by collecting Eu

n
Y (k )
U ( � )

o
and Eu

n
Y (k )

U ( � � )

o
at the ap-

propriate harmonics k, such that contributions proportional to S(k)R(k + s)
and S(k)R(k � s), respectively, result:
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De�nition 5.13 (Shifted best linear approximation). For a system excited
by a phase-coupled multisine (see De�nitions 5.9 and 5.10), the shifted BLA
G+

SBLA (k) is de�ned as

G+
SBLA (k) :=

8
<

:
Eu

n
Y (k )
U ( � )

o
at k = � � s

Eu

n
Y (k )

U ( � � )

o
at k = � (� + 2s)

while the shifted BLA G�
SBLA (k) is de�ned as

G�
SBLA (k) :=

8
<

:
Eu

n
Y (k )
U ( � )

o
at k = � + 2s

Eu

n
Y (k )

U ( � � )

o
at k = � (� � s)

(5.10)

with � de�ned in (5.8).
Since G�

SBLA (k) = ( G+
SBLA (� k)) � , we can focus completely on one of both,

e.g. G�
SBLA (k).

Since phase-coupled multisines rely on the fact that some harmonics have
equal phase, the time origin is important when estimating the shifted BLA
from measured input/output data. This synchronization issue is addressed in
Appendix 5.A.

Next, a parametric transfer function model is identi�ed on G�
SBLA (k), using

a weighted least-squares estimator [Peeters et al., 2001]

�̂ = arg min
�

K (� ) ; (5.11a)

where the cost function K (� ) is equal to

1
N

X

k2f � +2 s; � ( � � s)g

jG�
SBLA (k) � G�

SBLA (k; � )j2

�̂ 2
G �

SBLA
(k)

: (5.11b)

Here, �̂ 2
G �

SBLA
(k) is the sample variance ofG�

SBLA (k), and G�
SBLA (k; � ) is a para-

metric transfer function model:

G�
SBLA (k; � ) =

P n bR + n bS
l =0 bSBLA ;l e� j 2� k

N l

P n a R + n a S
l =0 aSBLA ;l e� j 2� k

N l
;

with the complex coe�cients bSBLA ;l and aSBLA ;l collected in the parameter
vector � . Since G�

SBLA (k) is proportional to S(k)R(k � s), the poles (and the
zeros) ofR will be shifted over a frequency o�sets, and will no longer be real, nor
complex conjugated. By comparing the poles (and the zeros) ofG�

SBLA (k; � )
and their complex conjugates, the poles (and the zeros) ofR and S can be
separated. Indeed, a frequency shiftej 2� 2s

N will be visible in the complex plane
between the shifted poles (and zeros) ofR and their complex conjugates, while
the poles (and zeros) ofS will not show this shift. Figure 5.10 shows an example
of the pole shifting.
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Figure 5.10: Original poles (black) of the input dynamics shift in the shifted BLA.
Hence, the shifted poles (red) and their complex conjugates (blue) show a frequency
shift in the complex plane ( � = 2 � 2s

N ).

5.3.6 Generalization to arbitrary degree polynomial non-
linearities

The basic idea, that was explained for a cubic nonlinearity in the previous
subsection, is now generalized to an arbitrary degreed. Under Assumption 5.7,
the result in Theorem 5.12 can be used to separate the input and the output
dynamics. The main concern, however, is that the shifted BLAs will contain
contributions where the input and the output dynamics are shifted over distinct
frequencies ifd � 5. This will be addressed now.

The results in Theorem 5.12 show that the shifted BLA G�
SBLA (k) will not

only contain terms that are proportional to S(k)R(k � s) for d � 5, but also
terms that are proportional to S(k)R(k � 2s). One way to deal with this
is to rede�ne the shifted BLA, thereby only considering the outer harmon-
ics k = � � D � 1

2 s and k = � + D +1
2 s, where a unique frequency shift ofR is

present. The main disadvantage of this approach is that it requires knowledge
of the maximal degree of nonlinearity D . Moreover, in order not to be dis-
turbed by linear contributions at these harmonics, the frequency resolution of
the phase-coupled multisine excitation should be lowered (cfr. Remark 5.11).
Therefore, a di�erent approach is followed here.

Both the contributions proportional to S(k)R(k � s) and S(k)R(k � 2s) will
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5.3 Initial estimates using phase-coupled multisines

make the poles ofR shift over a positive frequency o�set, while those ofS will
remain �xed. Hence, the poles and the zeros ofR and S can still be sepa-
rated. Since two distinct frequency shifts of the input dynamics are present
in the shifted BLA, its parametric model should have a larger model order,
namely the model order of S plus two times the model order of R. This
will not be done, however, because the contributions that are proportional to
S(k)R(k � s) are dominant over those that are proportional to S(k)R(k � 2s)
(see Appendix 5.B), certainly if we assume that the cubic nonlinearities domi-
nate the higher-order contributions. Hence, the terms inG�

SBLA (k) that are not
proportional to S(k)R(k � s) will simply be considered as nuisance terms.

5.3.7 Illustration

This subsection illustrates the proposed method on a simulation example and on
experimental data obtained from the Wiener-Hammerstein benchmark system
[Schoukens et al., 2009b].

Simulation example

Consider a discrete-time Wiener-Hammerstein system (see Figure 5.1). The lin-
ear dynamic systemsR(q) and S(q) are both second-order low-pass Chebyshev
Type I �lters with 20 dB peak-to-peak ripple in the passband. The normalized
passband edge frequency ofR(q) and S(q) is equal to 0:05 and 0:1, respectively.
The static nonlinear function f (x) = 10x3 is a cubic nonlinearity.

The system is excited with one random-phase multisine and two phase-
coupled multisines. These multisines containN = 8192 samples. They have an
rms value equal to one, and have a 
at amplitude distribution between DC and
one sixth of the sample frequencyf s = 1 Hz. The random-phase multisine has
equidistantly spaced excited harmonics within this range. The phase-coupled
multisines have the following properties (see De�nition 5.9): � = 4, s = 41, and
i max = 330 for the �rst multisine, and � = 4, s = 81, and i max = 320 for the
second multisine. One thousand phase realizations of the random-phase and
phase-coupled multisines are applied to be able to show su�ciently smooth
nonparametric estimates of the BLA and the shifted BLAs. In practical appli-
cations, this number can be strongly reduced. Two periods of the multisines
are applied. The �rst period is removed to avoid the e�ect of transients.

From the results in Figure 5.11, it can be seen that the input dynamics
indeed shift over a user-speci�ed frequency o�set in the shifted BLA, while the
output dynamics remain �xed. This allows us to split the overall dynamics of
the BLA over the input and the output dynamics.
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Figure 5.11: The BLA of a Wiener-Hammerstein system is proportional to the product
of the two linear dynamic blocks for a Gaussian distributed excitation. When using
a phase-coupled multisine excitation, the input dynamics shift over a user-speci�ed
frequency o�set s (in frequency bins) in the shifted BLA, while the output dynamics
remain �xed.

Figure 5.12: The Wiener-Hammerstein benchmark system consists of a diode-resistor
network sandwiched in between two third-order Chebyshev �lters.

Experimental results on the Wiener-Hammerstein benchmark system

The Wiener-Hammerstein benchmark system is an electronic circuit with a
Wiener-Hammerstein structure, built by Gerd Vandersteen [Vandersteen, 1997].
It consists of a diode-resistor network sandwiched in between two third-order
�lters (see Figure 5.12). The input �lter R is a Chebyshev low-pass �lter with
a ripple of 0:5 dB and a cut-o� frequency of 4:4 kHz. The output �lter S is
an inverse Chebyshev �lter with a stop-band attenuation of 40 dB starting at
5 kHz. It has a transmission zero in the frequency band of interest.

The benchmark data were obtained using a �ltered Gaussian noise excitation
[Schoukens et al., 2009b] and are therefore not used here. Instead, a random-
phase multisine is used to measure the BLA, and an odd phase-coupled multisine
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Figure 5.13: The shifted BLA (black dots) is not symmetric around the origin. Its
standard deviation is shown in black triangles.

is used to measure the shifted BLA. For both excitations, the input and output
are measured at a sample frequency of 78 125 Hz.

The random-phase multisine containsN = 16 384 samples. It has a 
at
amplitude spectrum with 2097 equidistantly spaced excited frequencies that
range from DC to 10 kHz, and has an rms level of 380 mV. This relatively small
rms level is chosen to keep the nonlinear distortion level small. Twenty phase
realizations and three periods are applied. The �rst period is removed to avoid
the e�ect of transients.

The phase-coupled multisine containsN = 16 384 samples as well, and also
has a 
at amplitude spectrum. With d = 10, s = 482, and i max = 224, there are
450 excited frequencies that range from 24 Hz to 13 003 Hz. The signal is nor-
malized to have a maximal amplitude of 2 V. This amplitude level corresponds
more or less to that of the Wiener-Hammerstein benchmark data. Again, three
periods are applied where the �rst one is removed to avoid the e�ect of tran-
sients. Five hundred phase realizations are applied to almost completely average
out the nonlinear distortions in the shifted BLA so that we can show a high-
quality nonparametric estimate of the shifted BLA (see Figure 5.13). However,
much less phase realizations can be used, since the parametric modeling step
will also reduce the impact of the nonlinear distortions (and the noise). For
example, ten phase realizations can be enough (see further).

The BLA is �rst estimated non-parametrically by applying the robust method
[Schoukens et al., 2012] on the random-phase multisine data. Next, a parametric
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Figure 5.14: A parametric fourth-order model (red line) can explain the non-
parametric BLA (green) (the magnitude of the complex di�erence between the BLAs
(red triangles) coincides with the estimated total distortion level (black)).

fourth-order transfer function model is estimated on top of the non-parametric
BLA. The poles and the zeros of the parametric model are used as a refer-
ence to compare them with those of the shifted BLA. Although a sixth-order
model is expected (R and S are both third-order �lters), a fourth-order model
seems enough for the data at hand (see Figure 5.14). The pole pair that is
missing in the fourth-order model belongs to the input dynamics. According
to the properties of the input �lter, the missing pole pair should be at about
0:8389� 0:3182j , which corresponds to a frequency of about 4:5 kHz. When a
sixth-order model was estimated, the extra pole and zero pair was almost coin-
ciding at 0:7335� 0:6799j , which corresponds to a frequency of about 9:3 kHz.
A possibility to pick up the correct pole pair in the sixth-order model would be
to use logarithmically spaced excited frequencies [Schoukens et al., 2012], such
that less power is applied in the highest frequency range. This would, however,
require a di�erent implementation of the phase-coupled multisine than the ones
de�ned in De�nitions 5.9 and 5.10.

The shifted BLA is estimated non-parametrically by averaging over the 500
realizations of the phase-coupled multisine. The averaged value is shown to-
gether with its standard deviation in Figure 5.13. Observe that there is a gap
in the shifted BLA between 2:3 kHz and 4:6 kHz. The �rst frequency where
Eu

n
Y (k )
U ( � )

o
is estimated in the shifted BLA in (5.10) is at k = �

2 + 2s, while the
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Figure 5.15: The poles of the shifted BLA are shown in red crosses, their complex
conjugates in blue pluses, and the original poles of the BLA in black dots. One pole
(where red and blue are not on top of each other) shows a clear shift and can be
assigned to the input �lter R. The three other poles (almost) remain invariant and
can be assigned to the output �lter S. This is in good agreement with the internal
structures of the �lters in Figure 5.12. Their poles are added in gray as a reference
(triangles: R, squares: S).

last frequency whereEu

n
Y (k )

U ( � � )

o
is estimated is atk = � �

2 + s. Hence, there is
a gap of� + s. The shift s should thus not be made too large. Observe also that
the amplitude characteristic is not symmetric around the origin. Hence, a para-
metric transfer function model with complex coe�cients is required. A fourth-
order model is estimated using the weighted least-squares approach in (5.11).
The poles of this model, together with their complex conjugates and the original
poles of the BLA are shown in Figure 5.15. A similar picture for the zeros is
shown in Figure 5.16.

One real pole can be assigned to the input �lterR, since the corresponding
pole of the shifted BLA shows a clear shift of about 21:7° with respect to its
complex conjugate. This shift also nicely corresponds to the expected shift of
2s
N 360° = 21:2°. The other poles do (almost) not move. They can be assigned to
the output �lter S. Considering the internal structures of the �lters, the poles
are assigned correctly. The input �lter R should have a complex conjugate pole
pair as well, but its e�ect on the FRFs seems unnoticeable due to the presence
of the transmission zero inS.

The complex pair of zeros can be assigned to the output �lterS, since these
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Figure 5.16: Zeros of the shifted BLA are shown in red circles, their complex conju-
gates in blue diamonds, and zeros of the BLA in black dots. One zero outside the unit
circle is not shown. The complex pair of zeros can clearly be assigned to the output
�lter S. The other zeros cannot be classi�ed.

zeros do not shift. This pair of zeros is assigned correctly, as it corresponds to
the transmission zero in the output �lter (see Figure 5.12). The real zero in
Figure 5.16 cannot be clearly assigned. Although a shift of about 15° is present
between the corresponding zero of the shifted BLA and its complex conjugate,
its amplitude is so small that a small uncertainty on the zero position can
completely change its classi�cation. The inability to assign most of the zeros is
to be expected, since, except for the transmission zero, the true zeros are at� 1,
and that part of the frequency band is not excited. Therefore, the uncertainty
on these estimated zero positions is large, which prohibits their classi�cation.

Similar results can be obtained when only ten phase realizations are used
instead of �ve hundred. The 500 experiments were split in 50 groups of ten
phase realizations. In 35 cases, a correct assignment of the poles and zeros
could clearly be made. In 12 of the remaining cases, the most damped real
pole could have been wrongfully assigned toS, while the least damped real
pole would then have been wrongfully assigned toR. The wrong assignment of
these poles is likely to have a small impact on the further initialization of the
Wiener-Hammerstein model, since both real poles lie close to each other. Only
in 3 cases, it was unclear whether both real poles should be assigned toR, to
S, or one to R and one to S.
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5.3.8 Conclusion

The BLA of a Wiener-Hammerstein system that is excited by Gaussian noise
or a random-phase multisine is proportional to the product of the underlying
linear dynamic blocks. By applying a more specialized phase-coupled multisine,
it is shown that a modi�ed BLA expression is proportional to the product of the
output dynamics and a frequency-shifted version of the input dynamics. On the
basis of the nonparametric measurement of this modi�ed BLA, it is shown to
be possible to assign the identi�ed poles and zeros to either the input or output
dynamics, provided that the poles and zeros are properly excited.

5.4 From coupled to decoupled polynomial rep-
resentations

Based on Tiels and Schoukens [2013a].

This section considers parallel Wiener-Hammerstein models. The identi�ca-
tion of these models quickly leads to a model structure with a coupled nonlin-
earity, e.g. a multivariate polynomial with cross-terms. This section presents a
method to decouple quadratic, cubic, and eventually mixed-degrees MIMO poly-
nomials that represent the static nonlinearity in a parallel Wiener-Hammerstein
model. The methods are based on the CPD (canonical polyadic decomposition)
tensor decomposition [Carroll and Chang, 1970; Harshman, 1970; Kolda and
Bader, 2009]. The CPD is also known as PARAFAC (parallel factors) [Harsh-
man, 1970] or CANDECOMP (canonical decomposition) [Carroll and Chang,
1970].

5.4.1 Setup

Consider the parallel Wiener-Hammerstein model in Figure 5.17, described by

�x i (t) =
�

Ri (q)u(t) ; i = 1 ; : : : ; n �
R

;
�wi (t) =

�

f [i ]( �x (t)) ; i = 1 ; : : : ; n �
S

;

�y(t) =

n �
SX

i =1

�
Si (q) �wi (t) ;

(5.12)

where �x (t) = [ �x1(t); : : : ; �xn �
R

(t)]T , and where every
�

f [i ]( �x (t)) is a polynomial.

To keep the notation simple, the polynomials
�

f [i ]( �x (t)) are assumed to be sums
of quadratic and cubic polynomials, but the results extend to higher degrees.
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Figure 5.17: Coupled representation of the parallel Wiener-Hammerstein model de-
scribed by (5.12).

Figure 5.18: Decoupled representation of the parallel Wiener-Hammerstein model
described by (5.13).

In general, the multivariate polynomials
�

f [i ]( �x (t)) contain cross-terms. We
want to eliminate these cross-terms, and thus come to a decoupled represen-
tation of the parallel Wiener-Hammerstein model (see Figure 5.18), described
by

x i (t) = Ri (q)u(t) ; i = 1 ; : : : ; n ;

wi (t) = f [i ](x(t)) ; i = 1 ; : : : ; n ;

y(t) =
nX

i =1

Si (q)wi (t) :
(5.13)

In this case, the polynomials f [i ](x(t)) are univariate instead of multivariate.
The model representation is thus simpli�ed to a sum of n parallel branches,
each containing a simple Wiener-Hammerstein model.

The problem addressed here is how to retrieve a decoupled representation
(5.13) of a parallel Wiener-Hammerstein model, given a cross-coupled repre-
sentation (5.12). The goal is to keep the number of branches in the decoupled
representation small, i.e. keepn small.
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5.4.2 Basic idea
Some methods already exist to decouple a MISO polynomial in Volterra models
[Favier and Bouilloc, 2009] and in parallel Wiener models [Schoukens and Ro-
lain, 2012a]. A disadvantage of the former is that it requires the measurement
of the Volterra kernels of di�erent orders, which can be time-consuming. The
approach in Schoukens and Rolain [2012a] circumvents this problem. It achieves
the same result starting from a polynomial description of the cross-coupled non-
linearity. The polynomial is �rst split in a sum of homogeneous polynomials.
Next, the cross-terms in each homogeneous polynomial are eliminated using
tensor decomposition methods. A drawback is the introduction of new input
signals for each degree in the polynomial.

This section considers the decoupling of a MIMO polynomial in parallel
Wiener-Hammerstein models. The focus is �rst on quadratic nonlinearities in
Subsection 5.4.3. The square matrices that describe the quadratic forms are
decomposed on a common basis, built on a product of vectors. This results in a
simultaneous decoupling across the outputs of the polynomial. Next, the idea is
generalized to cubic polynomials in Subsection 5.4.4, showing that the method
extends to higher-degree polynomials. Finally, the approach is generalized to
polynomials with mixed degrees of nonlinearity in Subsection 5.4.5. A simulta-
neous decoupling, both across the outputs and the degrees of the polynomial, is
thus considered. The basic idea is to impose more and more constraints, such
that the total number of branches n is kept as small as possible.

5.4.3 Simultaneous decoupling of quadratic polynomials
Decompose the coe�cient matrices on a common basis

First, quadratic polynomials are considered, i.e.

�

f [i ]( �x (t)) =

n �
RX

i 1 =1

n �
RX

i 2 =1

� [i ]
i 1 ;i 2

�x i 1 (t) �x i 2 (t) :

The quadratic polynomial coe�cients � [i ]
i 1 ;i 2

are collected in a symmetric ma-
trix B [i ] 2 Rn �

R
� n �

R , such that
�

f [i ]( �x (t)) = �x T (t)B [i ] �x (t). The basic idea is to
decompose the matricesB [i ] on a common basis, built on an outer product of
vectors � k :

B [i ] �
n quadX

k=1

� [i ]
k � k � T

k ; (5.14)

where each� [i ]
k is a scalar. Note that the basis vectors� k do not depend oni ;

all the matrices B [i ] are decomposed using the same basis.
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Decoupled parallel Wiener-Hammerstein model

Using the decomposition in (5.14), the outputs of the polynomials
�

f [i ]( �x (t)) can
be rewritten as

�wi (t) = �x T (t)B [i ] �x (t)

�
n quadX

k=1

� [i ]
k

�x T (t)� k � T
k

�x (t)

=
n quadX

k=1

� [i ]
k (� T

k
�x (t))2

=
n quadX

k=1

� [i ]
k

0

@
n �

RX

l =1

� l;k
�x l (t)

1

A
2

=
n quadX

k=1

� [i ]
k

0

@
n �

RX

l =1

� l;k
�

Rl (q)u(t)

1

A
2

:

De�ning the LTI systems Rk (q) as

Rk (q) :=

n �
RX

l =1

� l;k
�

Rl (q)

allows us to write �wi (t) as

�wi (t) �
n quadX

k=1

� [i ]
k (Rk (q)u(t))2

=
n quadX

k=1

� [i ]
k x2

k (t) :

The output of the parallel Wiener-Hammerstein model in Figure 5.17 is then
equal to

�y(t) =

n �
SX

i =1

�
Si (q) �wi (t)

�

n �
SX

i =1

�
Si (q)

n quadX

k=1

� [i ]
k x2

k (t)

=
n quadX

k=1

n �
SX

i =1

� [i ]
k

�
Si (q)x2

k (t) :
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De�ning the LTI systems Sk (q) as

Sk (q) :=

n �
SX

i =1

� [i ]
k

�
Si (q)

allows us to write �y(t) as

�y(t) �
n quadX

k=1

Sk (q)x2
k (t) :

De�ning the univariate polynomials f [k ](xk (t)) as

f [k ](xk (t)) := x2
k (t)

allows us to write
�y(t) �

n quadX

k=1

Sk (q)wk (t)

= y(t) ;
with

wk (t) = f [k ](xk (t)) :
A decoupled representation of the parallel Wiener-Hammerstein model, as in
(5.13), is thus retrieved. The model hasn = nquad branches.

Although an equal sign can be used in (5.14), we prefer to use an approxi-
mation sign, since the entries of the matricesB [i ] can be corrupted with noise.
An approximation with a far smaller number of terms then outweighs an exact
recovery of the matricesB [i ].

Determine the basis vectors using the CPD

In the foregoing, it was shown that a coupled (quadratic) polynomial represen-
tation in a parallel Wiener-Hammerstein model can be replaced by a decoupled
representation if a decomposition as in (5.14) can be made. Here, it is presented
how such a decomposition can be calculated.

First, we stack the matrices B [i ] in a partially symmetric third-order tensor
M quad 2 Rn �

R
� n �

R
� n �

S . Element-wisemquad
i 1 ;i 2 ;i 3

= � [i 3 ]
i 1 ;i 2

.
Next, the CPD [Carroll and Chang, 1970; Harshman, 1970; Kolda and Bader,

2009] of this tensor is calculated. The CPD of a tensor approximates the tensor
with a sum of rank-one tensors, where the approximation is done as well as
possible in mean-square sense on the tensor entries. For example, a (partially
symmetric) CPD of M quad is given by

M quad �
n quadX

k=1

� k � � k � � k ;
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where � denotes the tensor product. This means that element-wise

mquad
i 1 ;i 2 ;i 3

�
n quadX

k=1

� i 1 ;k � i 2 ;k � [i 3 ]
k :

The elements of the the vectors� k and � k are calculated as the minimizers of

min
� k ;� k







M quad �

n quadX

k=1

� k � � k � � k








2

F

;

wherek�kF denotes the Frobenius norm. The CPD of a tensor is often calculated
using an alternating least-squares (ALS) approach [Kolda and Bader, 2009].
Recently, other algorithms to calculate the CPD of a tensor were proposed in
Sorber et al. [2012, 2013a] that do better overall than ALS.

By stacking the matrices B [i ] in one tensor M quad , the basis vectors � k
are common for each of then �

S
matrices B [i ], which is not guaranteed if these

matrices are decomposed separately. To obtain a (partially) symmetric decom-
position, the symmetry conditions can be imposed in a �nal iteration, as is done
in INDSCAL (individual di�erences in scaling) [Carroll and Chang, 1970; Kolda
and Bader, 2009], or can be imposed in each iteration, as is done in Tensorlab
[Sorber et al., 2013b], resulting in a nonlinear least-squares problem.

Determine the number of branches

Up to now, it was assumed that the number of rank-one componentsnquad , and
thus the number of branches, is given. In practice, this number needs to be
determined somehow. The strategy used here is to �t CPDs for an increasing
number of rank-one components, and to select the �rst one that �ts well. As
pointed out in Kolda and Bader [2009], this might not be a good strategy to
determine the rank of a tensor (i.e. the minimal number nquad for which the
CPD \approximation" is exact), but all we are after here is a simple model that
approximates the tensor well, but not necessarily recovers the tensor exactly.

5.4.4 Simultaneous decoupling of cubic polynomials
The approach is now generalized to cubic polynomials, i.e.

�
f [i ]( �x (t)) =

n �
RX

i 1 =1

n �
RX

i 2 =1

n �
RX

i 3 =1

� [i ]
i 1 ;i 2 ;i 3

�x i 1 (t) �x i 2 (t) �x i 3 (t) :

This time, the polynomial coe�cients � [i ]
i 1 ;i 2 ;i 3

are collected in a symmetric tensor
B [i ] 2 Rn �

R
� n �

R
� n �

R . Similar to (5.14), the tensors B [i ] are decomposed on a
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common basis:

B [i ] �
n cubicX

k=1

� [i ]
k  k �  k �  k :

Note again that the basis vectors k are independent ofi , i.e. all the tensors
B [i ] are decomposed using the same basis.

The outputs of the polynomials
�

f [i ]( �x (t)) can now be written as

�wi (t) =

n �
RX

i 1 =1

n �
RX

i 2 =1

n �
RX

i 3 =1

� [i ]
i 1 ;i 2 ;i 3

�x i 1 (t) �x i 2 (t) �x i 3 (t)

�

n �
RX

i 1 =1

n �
RX

i 2 =1

n �
RX

i 3 =1

n cubicX

k=1

� [i ]
k  i 1 ;k  i 2 ;k  i 3 ;k

�x i 1 (t) �x i 2 (t) �x i 3 (t)

=
n cubicX

k=1

� [i ]
k ( T

k
�x (t))3

=
n cubicX

k=1

� [i ]
k w3

k (t) :

The LTI systems Rk (q) should now be de�ned as

Rk (q) :=

n �
RX

l =1

 l;k
�

Rl (q) :

De�ning the LTI systems Sk (q) as

Sk (q) :=

n �
SX

i =1

� [i ]
k

�
Si (q) ;

and the univariate polynomials f [k ](xk ) as

f [k ](xk (t)) := x3
k (t) ;

allows us to retrieve a decoupled representation of the Wiener-Hammerstein
model with n = ncubic branches.

Similar to quadratic polynomials, homogeneous cubic polynomials can be si-
multaneously decoupled by calculating the CPD of a partially symmetric fourth-
order tensorM cubic 2 Rn �

R
� n �

R
� n �

R
� n �

S , in which the n �
S

tensorsB [i ] are stacked,
and where the CPD ofM cubic is given by

M cubic �
n cubicX

k=1

 k �  k �  k � � k :

Note that the approach easily generalizes to higher-degree polynomials.
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5.4.5 Simultaneous decoupling of polynomials with mixed
degrees of nonlinearity

This subsection considers the simultaneous decoupling of a mixture of quadratic
and cubic polynomials, i.e.

�

f [i ]( �x (t)) =

n �
RX

i 1 =1

n �
RX

i 2 =1

� [i ]
i 1 ;i 2

�x i 1 (t) �x i 2 (t) +

n �
RX

i 1 =1

n �
RX

i 2 =1

n �
RX

i 3 =1

� [i ]
i 1 ;i 2 ;i 3

�x i 1 (t) �x i 2 (t) �x i 3 (t) :

Although the quadratic and cubic polynomials can each be decoupled separately
using the results in Subsection 5.4.3 and Subsection 5.4.4, respectively, the total
number of branches is then not necessarily as small as possible. The main idea
followed here is to impose that the SISO quadratic and cubic polynomials in
the decoupled representation share the same inputs, thus keeping the number
of input �lters Rk (q) small. This is done by imposing common factors in the
tensor decomposition.

Both the matrices B [i ] and the tensorsB [i ] are now decomposed on a com-
mon basis of vectors� k :

B [i ] �
n mixedX

k=1

� [i ]
k � k � T

k ;

B [i ] �
n mixedX

k=1

� [i ]
k � k � � k � � k :

The common basis can be imposed by casting both decompositions as one CPD
decomposition [De Lathauwer, 2012]. The main idea is to store then �

S
matrices

B [i ] 2 Rn �
R

� n �
R and the n �

S
tensorsB [i ] 2 Rn �

R
� n �

R
� n �

R in a partially symmetric

fourth-order tensor M mixed 2 Rn �
R

� n �
R

� (n �
R

+1) � 2n �
S , in such a way that M mixed

has a CPD

M mixed �
n mixedX

k=1

� k � � k �
�
� k
1

�
�

�
� k
� k

�
:

The entries of M mixed are given by

mmixed
i 1 ;i 2 ;i 3 ;i = � [i ]

i 1 ;i 2 ;i 3
;

mmixed
i 1 ;i 2 ;n �

R
+1 ;n �

S
+ i = � [i ]

i 1 ;i 2
;

mmixed
i 1 ;i 2 ;i 3 ;n �

S
+ i �

n mixedX

k=1

� i 1 ;k � i 2 ;k � i 3 ;k � [i ]
k ; (5.15)

mmixed
i 1 ;i 2 ;n �

R
+1 ;i �

n mixedX

k=1

� i 1 ;k � i 2 ;k � [i ]
k ; (5.16)
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for i 1; i 2; i 3 = 1 ; : : : ; n �
R

and i = 1 ; : : : ; n �
S

. Note that the entries given by (5.15)
and (5.16) are unknown, however, this issue can be handled by treating them
as missing elements in the tensor to be decomposed. The Tensorlab toolbox by
Sorber et al. [2013b] can handle both partial symmetry and missing elements.

The resulting decoupled representation of the parallel Wiener-Hammerstein
model is shown in Figure 5.19. The LTI systemsRk (q) and Sk (q), and the
univariate polynomials f [k ](xk (t)) are de�ned as

Rk (q) :=

n �
RX

l =1

� l;k
�

Rl (q)

(
Sk (q) :=

P n �
S

i =1 � [i ]
k

�
Si (q)

Sn mixed + k (q) :=
P n �

S
i =1 � [i ]

k
�
Si (q)

(
wk (t) = f [k ](xk (t)) := w2

k (t)
wn mixed + k (t) = f [n mixed + k ](xk (t)) := w3

k (t)

for k = 1 ; : : : ; nmixed . In general, the output �lters Sk (q) and Sn mixed + k (q) are
di�erent. Hence, branches that share the same input dynamics are eventually
split in a quadratic and a cubic output branch. This means that, in general,
the model hasn = 2nmixed branches.

An improved version of the simultaneous decoupling of a mixture of quadratic
and cubic polynomials is presented in Schoukens et al. [2014d]. There, branches
that share the same input dynamics are imposed to share the same output dy-
namics as well by imposing� [i ]

k = � [i ]
k . Moreover, the 
exibility of each branch

in the decoupled model is increased by including arbitrary polynomial coe�-
cients 
 [k ]

2 and 
 [k ]
3 for the SISO quadratic and cubic polynomials, respectively

(see Figure 5.20). This increased 
exibility allows for a smaller total number of
branches, at the cost of an increased complexity of the optimization problem.
The matrices B [i ] and the tensorsB [i ] are then stored in a partially symmet-
ric �fth-order tensor M mixed 2 R(n �

R
+1) � (n �

R
+1) � (n �

R
+1) � 2� n �

S that has a CPD
[Schoukens et al., 2014d]

M mixed �
n mixedX

k=1

�
� k
1

�
�

�
� k
1

�
�

�
� k
1

�
�

"

 [k ]

2


 [k ]
3

#

� � k :

5.4.6 Illustration

This subsection compares the decoupling approaches presented in the previous
subsections on a simulation example.
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Figure 5.19: Decoupled representation of a parallel Wiener-Hammerstein model with
quadratic and cubic polynomials, obtained using the simultaneous decoupling method
presented in Subsection 5.4.5 (nm = nmixed ).

Figure 5.20: Decoupled representation of a parallel Wiener-Hammerstein model with
quadratic and cubic polynomials, obtained using the improved simultaneous decou-
pling method presented in Schoukens et al. [2014d] (n = nmixed ).

Setup

The example considers the decoupling ofn �
S

= 2 quadratic and cubic polyno-
mials with n �

R
= 3 inputs. The entries of the matrices B [i ] and the tensorsB [i ]

that describe the polynomials are drawn from a normal distribution with zero
mean and unit variance. The polynomials are decoupled using four di�erent
approaches.

The �rst approach is a separate decoupling of the quadratic and cubic poly-
nomials. Each quadratic polynomial is decoupled using an eigenvalue decompo-
sition [Schoukens and Rolain, 2012a], while each cubic polynomial is decoupled
via its CPD [Schoukens and Rolain, 2012a].

The second approach is a simultaneous decoupling of homogeneous polyno-
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mials, which is described in Subsections 5.4.3 and 5.4.4. The symmetric matrices
B [i ] that contain the quadratic polynomial coe�cients are stacked in a partially
symmetric tensor M quad . The CPD of this tensor allows us to decouple both
quadratic polynomials on a common basis of vectors� k . Similarly, the tensors
B [i ] are stacked in a partially symmetric tensor M cubic . Its CPD allows us to
decouple both cubic polynomials on a common basis of vectors k .

The third approach is the simultaneous decoupling of all polynomials, which
is described in Subsection 5.4.5. Both the matricesB [i ] and the tensorsB [i ] are
stored in a partially symmetric fourth-order tensor M mixed . The CPD of this
tensor allows us to retrieve a set of basis vectors that is common for both the
quadratic and the cubic polynomials, hence they share the same input dynamics.

The fourth approach is the improved simultaneous decoupling of all polyno-
mials, which is presented in Schoukens et al. [2014d]. The tensorM mixed , in
which the matrices B [i ] and the tensorsB [i ] are stored, is then a partially sym-
metric �fth-order tensor. Its CPD again allows us to retrieve a set basis vectors
that is common for both the quadratic and the cubic polynomials. Moreover,
branches that share the same input dynamics are imposed to share the same
output dynamics as well.

When a CPD is calculated, we start at one rank-one component, and increase
the number of rank-one components, until a good enough approximation of
the tensor is found (see Subsection 5.4.3). LetM̂ quad and M̂ cubic be the
approximations of M quad and M cubic , respectively. Then we consider the

approximation good enough if both kM quad � M̂ quad kF

kM quad kF

and kM cubic � M̂ cubic kF

kM cubic kF

are

smaller than 1 � 10� 8. Each time, �fty di�erent randomly generated starting
values are used to increase the chance of converging to at least a good local
minimum. The example was implemented in MATLAB fi , by making use of the
Tensorlab toolbox [Sorber et al., 2013a].

Results

The results are summarized in Table 5.2. It can be seen that the separate decou-
pling approach (approach 1) results in a parallel Wiener-Hammerstein model
with 14 branches, whereas both the simultaneous decoupling of homogeneous
polynomials (approach 2) and the simultaneous decoupling of all polynomials
(approach 3) would result in only 12 branches. The advantage of the third
approach to have only six input branches is canceled out by the fact that each
input branch is eventually split in a quadratic and a cubic output branch (see
Figure 5.19). The improved simultaneous decoupling approach presented in
Schoukens et al. [2014d] (approach 4) remedies this issue. A parallel Wiener-
Hammerstein model with only seven branches is obtained in that case.

All the decoupled representations of the parallel Wiener-Hammerstein model
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Table 5.2: Results of the simulation example described in Subsection 5.4.6. Ap-
proach 1: separate decoupling of quadratic and cubic polynomials. Approach 2: si-
multaneous decoupling of homogeneous polynomials. Approach 3: simultaneous de-
coupling of all polynomials. Approach 4: improved simultaneous decoupling of all
polynomials.

result in a reduced number of polynomial coe�cients. Whereas the coupled
representation requires a total number of 32 polynomial coe�cients (two times
(6 + 10)), a decoupled representation with n branches only requires 2n poly-
nomial coe�cients. A reduction to only 14 coe�cients can thus be achieved.
Moreover, since the number of coe�cients only increases proportionally to the
number of branches and the degree of nonlinearity, the 
exibility of the decou-
pled model can be easily increased by increasing the degrees of the polynomials.
This approach was successfully applied in Schoukens et al. [2014d] on a custom-
built parallel Wiener-Hammerstein circuit.

5.4.7 Conclusion

Several approaches can be applied to decouple the polynomial representation of
the static nonlinearity in parallel Wiener-Hammerstein models. The simultane-
ous decoupling approaches are all based on the CPD tensor decomposition. By
imposing more and more constraints on the CPD, the total number of branches
in the decoupled model can be kept small. Compared to the coupled representa-
tion, a reduction of the number of parameters can be realized. Moreover, by get-
ting rid of the cross-terms in the polynomial, the parallel Wiener-Hammerstein
model becomes easier to interpret.

5.5 Overall conclusion

The identi�cation of single-branch and parallel Wiener-Hammerstein models is
considered.
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Since the estimation of Wiener-Hammerstein models is a problem that is
nonlinear-in-the-parameters, good initial estimates are required. A major dif-
�culty is the generation of good initial estimates for the two linear dynamic
sub-blocks. Although the product of the two linear dynamic blocks can be eas-
ily obtained using the BLA for a Gaussian distributed excitation, it is more
di�cult to split these global dynamics over the individual blocks.

In a �rst approach to make the split, the three sub-blocks of a single-branch
Wiener-Hammerstein system are parameterized in terms of basis function ex-
pansions. By only explicitly using the poles of the BLA in the basis function
expansions of both linear dynamic sub-blocks, it is possible to come up with a
simpli�ed scanning procedure, where the number of scans is only proportional
to the model order.

An alternative approach considers a well-designed excitation signal, a phase-
coupled multisine. Using this signal, it is possible to estimate a modi�ed BLA
that is proportional to the product of the output dynamics and a frequency-
shifted version of the input dynamics. Like this, the global dynamics of the
BLA can be split over the input and the output dynamics.

When estimating parallel Wiener-Hammerstein models, the static nonlin-
earity often has a coupled representation, which shows itself under the form
of e.g. cross-terms if a polynomial representation is chosen. The cross-terms
complicate the interpretation of the model. Since the number of parameters in
a multivariate polynomial increases combinatorially with both the number of
inputs to the polynomial, and with the degree of nonlinearity, the cross-terms
also limit the degree of nonlinearity that can be dealt with in the model.

By making use of tensor decomposition methods, the cross-terms in the poly-
nomial can be eliminated. The decoupling can be done simultaneously across
the outputs of the multivariate polynomial, and eventually also simultaneously
across the degrees of nonlinearity in the polynomial. Like this, the decoupled
model is imposed to have a small number of parallel branches. By getting rid of
the cross-terms, the model becomes easier to interpret, and a possible reduction
of the number of parameters is realized.
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Appendix

5.A Time origin
Suppose that the input and the output measurements are shifted over a time� ,
i.e. t becomest � � . This results in a frequency-dependent phase shift in the
input and the output spectrum. For example, U(k) becomesU(k)ejk � � , with
� � = � 2��

N . Since the shifted BLA is de�ned as the expected value of the ratio
of the input and the output spectrum at distinct harmonics (see De�nition 5.13),
a phase shift is present in this shifted BLA:

Eu

�
Y (k)
U(� )

�
! Eu

�
Y (k)
U(� )

ej (k � � )� �
�

:

Since � does not need to be an integer, the compensation for a shifted time
origin will be done in the frequency domain. The phase shift � � can be deter-
mined for each excited pair as

� � (� ) =
\ U(� + s) � \ U(� )

s
;

and the expected values in the shifted BLAs can be compensated by multiplying
Eu

n
Y (k )
U ( � )

o
with ej ( � � k )� � ( � ) , and Eu

n
Y (k )

U ( � � )

o
with ej ( � � � k )� � ( � ) .

5.B Dominant terms in the shifted BLA
This appendix shows that the contributions in G�

SBLA (k) that are proportional
to S(k)R(k � s) are dominant over those that are proportional to S(k)R(k � 2s).

First, it is shown that c0 � 2jcs j. We have that

c0 = 2
X

�

jX (� )j2 + jX (� + s)j2 ;

and that

jcs j = 2

�����
X

�

X (� � )X (� + s)

�����

� 2
X

�

jX (� � )jjX (� + s)j :

By working out ( jX (� )j � j X (� + s)j)2 and rearranging the terms, we have

jX (� )j2 + jX (� + s)j2 = 2 jX (� )jjX (� + s)j + ( jX (� )j � j X (� + s)j)2 ;

and thus c0 � 2jcs j.
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Let � d(k) be the ratio of the contributions in Yd(k) that are proportional to
S(k)R(k � s) and those that are proportional to S(k)R(k � 2s). Then we need
to show that j� d(k)j > 1. From Theorem 5.12, we have

� d(k) =

jU ( � + s) j
jU ( � ) j

P

sk 2 S
d � 1

2
s

Q d � 1
2

k=1 csk

P

sk 2 S
d � 1

2
2s

Q d � 1
2

k=1 csk

at the harmonics k = � + 2s, and

� d(k) =

P

sk 2 S
d � 1

2
s

Q d � 1
2

k=1 csk

jU ( � + s) j
jU ( � ) j

P

sk 2 S
d � 1

2
2s

Q d � 1
2

k=1 csk

at the harmonics k = � (� � s). As a factor jU ( � + s) j
jU ( � ) j > 1 would be advantageous

in one case, and disadvantageous in the other case, simply considerjU ( � + s) j
jU ( � ) j = 1.

Since thesk s in the numerator should sum up tos, at least one factorcs should
be present in the numerator. Likewise, two factorscs should be present in the
denominator. The remaining sk s should sum up to zero. Hence,

� d(k) =
cs

cscs

P

sk 2 S
d � 3

2
0

Q d � 3
2

k=1 csk

P

sk 2 S
d � 5

2
0

Q d � 5
2

k=1 csk

:

A zero-sum of the sk s is possible if all of them are zero. Furthermore, one or
more pairs c0c0 can be replaced bycsc� s = jcs j2. Hence,

j� d(k)j =
1

jcs j

bd � 3
4 cP

i =0
c

d � 3
2 � 2i

0 jcs j2i

bd � 5
4 cP

i =0
c

d � 5
2 � 2i

0 jcs j2i

�
c0

jcs j

;

and sincec0 � 2jcs j, we have j� d(k)j � 2 > 1.
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Chapter 6

Conclusions

6.1 Conclusions

This thesis considered the identi�cation of nonlinear dynamic systems using
block-oriented models. The focus was on a Wiener-Schetzen model. This model
has a parallel Wiener structure. Its linear dynamics are parameterized in terms
of rational orthonormal basis functions (OBFs). Its static nonlinearity is pa-
rameterized in terms of a multivariate polynomial. The parameters of the model
are the multivariate polynomial coe�cients.

The choice for a Wiener-Schetzen model is motivated by its universal approx-
imation property, which means that the input/output behavior of a large class
of systems (the class of Wiener systems) can be arbitrarily well approximated
in mean-square sense (i.e. the mean-square model error can be made arbitrarily
small). Prior knowledge can be incorporated in the model by constructing the
OBFs based on user-speci�ed pole locations. Moreover, the model is linear-
in-the-parameters, which allows for a convenient estimation of the model pa-
rameters. These advantages come at the cost of a large number of parameters,
however, which led to the �rst question addressed in this thesis:

Q1. How to make Wiener-Schetzen models less parameter expensive?

This question is addressed in three di�erent ways in Chapter 3, assuming that
the underlying system has a (parallel) Wiener structure.

By constructing the OBFs based on the poles of the best linear approxima-
tion (BLA) of the Wiener system, it is shown that the modeled output converges
in probability to the true output, and that fast convergence rates in terms of
the required number of OBFs can be obtained. This results in Wiener-Schetzen
models with a moderate number of parameters.
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For single-branch Wiener systems, the number of parameters can be reduced
even further by using the BLA itself as one of the OBFs. The other OBFs can
then be considered as correction terms, which reduces the number of signi�-
cantly contributing parameters.

An alternative parameter reduction step for (parallel) Wiener systems is to
iteratively improve the pole estimates. With the improved pole estimates, a
Wiener-Schetzen model with less OBFs, and as a result with less parameters,
can be estimated.

Besides a model error (bias), there is also a variance error, which increases
with the number of free parameters in the model. Considering the large number
of parameters in a Wiener-Schetzen model, the following question was raised:

Q2. Is the universal approximation property still useful in practice?

This question is addressed in Chapter 4, where the approximation quality of a
Wiener-Schetzen model is analyzed also for systems that do not belong to the
Wiener class of systems. The extent to which the universal approximation prop-
erty of the Wiener-Schetzen model is valid, is analyzed on both measurement
and simulation examples. It is shown that a Wiener-Schetzen model can suc-
cessfully model the input/output behavior of a Wiener-like system, but that the
model structure is less appropriate to approximate nonlinear feedback systems
and systems with dynamics at the output.

This observation led to a third question:

Q3. How to deal with dynamics at the output?

This question is addressed in Chapter 5, where the identi�cation of Wiener-
Hammerstein models is considered.

Since the identi�cation of Wiener-Hammerstein models is a problem that is
nonlinear-in-the-parameters, good initial estimates are required. An estimate
of the product of the input and the output dynamics can be obtained from the
BLA when using a Gaussian excitation. The remaining problem is how to split
these global dynamics over the input and the output dynamics. Two methods
are proposed in Chapter 5 to generate initial estimates for the linear dynamic
sub-blocks of a single-branch Wiener-Hammerstein model.

The �rst method uses basis function expansions for the three sub-blocks
of the Wiener-Hammerstein model. By only explicitly using the poles of the
BLA in the basis function expansions of the linear dynamic sub-blocks, it is
possible to come up with a simpli�ed scanning procedure. It is checked for
each pole (pair) whether its removal from the input or output dynamics results
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in a signi�cant deterioration of the rms error with respect to that of the full-
complexity model. Hence, the number of scans is only proportional to the model
order. This method does have problems to converge for high-order dynamics.

The second method uses a well-designed multisine excitation, the phase-
coupled multisine. Using this excitation signal, it is shown that a modi�ed BLA
is proportional to the product of the output dynamics and a frequency-shifted
version of the input dynamics. The frequency o�set of the input dynamics can be
controlled by the user. It is possible to assign the poles and the zeros of the BLA
to the input or output dynamics, depending on whether or not these poles and
zeros shifted in the modi�ed BLA. This was con�rmed by experimental results
on the Wiener-Hammerstein benchmark system. Nevertheless, zeros that were
not properly excited could not be assigned. One pole pair of the input dynamics
was missed as well, probably due to a too large excitation power at the higher
frequencies when using linearly spaced excited harmonics.

The estimation of parallel Wiener-Hammerstein models quickly leads to a
model structure with a coupled representation of the nonlinearity, e.g. a mul-
tivariate polynomial with cross-terms. Several methods based on a tensor de-
composition are proposed in Chapter 5 to retrieve a decoupled representation,
given a coupled representation. Compared to separately decoupling homoge-
neous polynomials, it is shown that a simultaneous decoupling of polynomials
with mixed degrees of nonlinearity can result in a decoupled parallel Wiener-
Hammerstein model with a small number of parallel branches. By getting rid
of the cross-terms in the polynomials, the model becomes easier to interpret,
and the number of parameters reduces. Instead of a combinatorial increase of
the number of polynomial coe�cients with the number of parallel branches and
the degree, only a proportional increase is obtained for the decoupled model.

6.2 Contributions
In summary, the contributions of this thesis are:

� Proposal and convergence analysis of an identi�cation method for (paral-
lel) Wiener systems with �nite-order IIR (in�nite impulse response) dy-
namics and a polynomial nonlinearity.

� Reduction of the number of parameters in a Wiener-Schetzen model by
using the BLA as a basis function when approximating SISO (single in-
put single output) and MISO (multiple input single output) single-branch
Wiener systems.

� Reduction of the number of parameters in a Wiener-Schetzen model by
iteratively updating the pole locations without making repeated experi-
ments.
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� Evaluation of the practical usefulness of the universal approximation prop-
erty of the Wiener-Schetzen model by means of measurement and simu-
lation examples.

� Proposal of an initialization method for Wiener-Hammerstein models based
on basis function expansions for the three sub-blocks and on a scanning
procedure that is linear in the model order.

� Experimental veri�cation of the use of phase-coupled multisines to split
the dynamics of the BLA of a Wiener-Hammerstein system over the input
and output dynamics.

� Generalization of the initialization method for Wiener-Hammerstein sys-
tems using phase-coupled multisines to Wiener-Hammerstein systems with
a polynomial nonlinearity of arbitrary degree.

� Making the connection between the CPD (canonical polyadic decomposi-
tion) tensor decomposition and the simultaneous decoupling of multivari-
ate polynomials of mixed degree of nonlinearity that describe the static
nonlinearity in a parallel Wiener-Hammerstein model.

6.3 Future work
� A Wiener-Schetzen model is linear-in-the-parameters, and hence a good

candidate for modeling time-varying and parameter-varying systems us-
ing simple tracking methods. This approach could be tested on some
applications. A result along these lines is found in Markou et al. [2011].

� As observed in the Silverbox example, feedback cannot be properly han-
dled by a Wiener-Schetzen model. A possibility to handle feedback, while
still keeping the model linear-in-the-parameters, is to include regressors
based on the measured output in the linear regression problem [G�omez
and Baeyens, 2001; Paduart, 2008].

� The simpli�ed scanning approach has some convergence problems in case
of high-order dynamics. A possible solution is to remove poles (or pole
pairs) that can be removed from either the input or output dynamics
immediately from the full-complexity model, instead of from the �nal
model. An additional advantage would be that for each assigned pole
(pair), a smaller least-squares problem needs to be solved in the next
scan. At best (if all the poles or pole pairs can be immediately assigned),
the number of scans will still be proportional to the model order. At worst
(if only the last pole or pole pair can be assigned in each round of scans),
the number of scans grows combinatorially with the model order.
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6.3 Future work

� The simpli�ed scanning procedure needs some user interaction. The user
should decide for each pole (pair) whether it can be assigned to the input
or output dynamics based on whether the deterioration of the rms error
is signi�cant or not. Currently, this decision can be made for all poles or
pole pairs together at the end of the scanning procedure. As mentioned
in the previous point, however, it might be necessary to make the decision
for each pole (pair) separately. It would then be convenient if the decision
could be made automatically, based on an expected deterioration of the
rms error if a necessary or unnecessary pole (pair) is removed.

� In the phase-coupled multisine approach, an automatic assignment of the
poles and zeros to the input or output dynamics would require con�dence
bounds on the pole and zero locations of the BLA and the shifted BLA.
Variance expressions for the shifted BLA can then be useful.

� When the phase-coupled multisine approach was applied to the Wiener-
Hammerstein benchmark system, it was observed that fourth-order linear
dynamics were su�cient in the BLA and the shifted BLA, although sixth-
order dynamics are expected (the underlying input and output dynamics
are third-order �lters). To pick up the missing pole pair in the input dy-
namics, logarithmically spaced excited harmonics could be useful. The
generation of a phase-coupled multisine with logarithmically spaced ex-
cited harmonics could be implemented to be able to deal with systems
with a large bandwidth.

� It can be useful to extend the simpli�ed scanning and phase-coupled mul-
tisine approaches to parallel Wiener-Hammerstein models. From the BLA
of a parallel Wiener-Hammerstein model, it is only possible to obtain the
underlying poles of the linear dynamics of the model.
In principle, the simpli�ed scanning procedure can thus be easily extended
to parallel Wiener-Hammerstein models. A point of attention are the con-
vergence problems for high-order dynamics.
The phase-coupled multisine approach would only be able to assign the
poles of the parallel Wiener-Hammerstein model to the input or output
dynamics. Nevertheless, this can still be useful, should the simpli�ed
scanning procedure fail to converge.

� The approaches to decouple multivariate polynomials all optimize on the
polynomial coe�cients, but they do not take into account the actual in-
put/output data. An error on one coe�cient may result in a poor in-
put/output approximation, while an equal error on another coe�cient
may still result in a good input/output approximation. Proper weighting
of the coe�cients in the tensor decomposition could be useful to obtain
more accurate decoupled parallel Wiener-Hammerstein models. Moreover,
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Chapter 6: Conclusions

a weighting on the coe�cients could re
ect the uncertainty on the esti-
mated coupled polynomial coe�cients, which at the moment is not taken
into account. A �rst result to take weighting of the multivariate polyno-
mial coe�cients into account can be found in Hollander et al. [2015].
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